The FreeRADIUS server $Id: 15bac2a4c627c01d1aa2047687b3418955ac7f00 $
Loading...
Searching...
No Matches
value.c
Go to the documentation of this file.
1/*
2 * This library is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU Lesser General Public
4 * License as published by the Free Software Foundation; either
5 * version 2.1 of the License, or (at your option) any later version.
6 *
7 * This library is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * Lesser General Public License for more details.
11 *
12 * You should have received a copy of the GNU Lesser General Public
13 * License along with this library; if not, write to the Free Software
14 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
15 */
16
17/** Boxed value structures and functions to manipulate them
18 *
19 * @file src/lib/util/value.c
20 *
21 * There are three notional data formats used in the server:
22 *
23 * - #fr_value_box_t are the INTERNAL format. This is usually close to the in-memory representation
24 * of the data, though uint32s and IPs are always converted to/from octets with BIG ENDIAN
25 * uint8 ordering for consistency.
26 * - #fr_value_box_cast is used to convert (cast) #fr_value_box_t between INTERNAL formats.
27 * - #fr_value_box_strdup* is used to ingest nul terminated strings into the INTERNAL format.
28 * - #fr_value_box_memdup* is used to ingest binary data into the INTERNAL format.
29 *
30 * - NETWORK format is the format we send/receive on the wire. It is not a perfect representation
31 * of data packing for all protocols, so you will likely need to overload conversion for some types.
32 * - fr_value_box_to_network is used to convert INTERNAL format data to generic NETWORK format data.
33 * For uint32s, IP addresses etc... This means BIG ENDIAN uint8 ordering.
34 * - fr_value_box_from_network is used to convert packet buffer fragments in NETWORK format to
35 * INTERNAL format.
36 *
37 * - PRESENTATION format is what we print to the screen, and what we get from the user, databases
38 * and configuration files.
39 * - #fr_value_box_aprint is used to convert from INTERNAL to PRESENTATION format.
40 * - #fr_value_box_from_substr is used to convert from PRESENTATION to INTERNAL format.
41 *
42 * @copyright 2014-2017 The FreeRADIUS server project
43 * @copyright 2017 Arran Cudbard-Bell (a.cudbardb@freeradius.org)
44 */
45RCSID("$Id: c6b93f5d2cc067b34e907acc1c69235d1a67511a $")
46
47#define _VALUE_PRIVATE
48#include <freeradius-devel/util/value.h>
49#undef _VALUE_PRIVATE
50
51#include <freeradius-devel/util/atexit.h>
52#include <freeradius-devel/util/base16.h>
53#include <freeradius-devel/util/dcursor.h>
54#include <freeradius-devel/util/size.h>
55#include <freeradius-devel/util/time.h>
56
57#include <math.h>
58
59/** Sanity checks
60 *
61 * There should never be an instance where these fail.
62 */
63static_assert(SIZEOF_MEMBER(fr_value_box_t, vb_ip.addr.v4.s_addr) == 4,
64 "in_addr.s_addr has unexpected length");
65static_assert(SIZEOF_MEMBER(fr_value_box_t, vb_ip.addr.v6.s6_addr) == 16,
66 "in6_addr.s6_addr has unexpected length");
67static_assert(SIZEOF_MEMBER(fr_value_box_t, vb_ifid) == 8,
68 "vb_ifid has unexpected length");
69static_assert(SIZEOF_MEMBER(fr_value_box_t, vb_ether) == 6,
70 "vb_ether has unexpected length");
71
72static_assert(SIZEOF_MEMBER(fr_value_box_t, datum.boolean) == 1,
73 "datum.boolean has unexpected length");
74static_assert(SIZEOF_MEMBER(fr_value_box_t, vb_uint8) == 1,
75 "vb_uint8 has unexpected length");
76static_assert(SIZEOF_MEMBER(fr_value_box_t, vb_uint16) == 2,
77 "vb_uint16 has unexpected length");
78static_assert(SIZEOF_MEMBER(fr_value_box_t, vb_uint32) == 4,
79 "vb_uint32 has unexpected length");
80static_assert(SIZEOF_MEMBER(fr_value_box_t, vb_uint64) == 8,
81 "vb_uint64 has unexpected length");
82
83static_assert(SIZEOF_MEMBER(fr_value_box_t, vb_int8) == 1,
84 "vb_int16 has unexpected length");
85static_assert(SIZEOF_MEMBER(fr_value_box_t, vb_int16) == 2,
86 "vb_int16 has unexpected length");
87static_assert(SIZEOF_MEMBER(fr_value_box_t, vb_int32) == 4,
88 "vb_int32 has unexpected length");
89static_assert(SIZEOF_MEMBER(fr_value_box_t, vb_int64) == 8,
90 "vb_int64 has unexpected length");
91
92static_assert(SIZEOF_MEMBER(fr_value_box_t, vb_float32) == 4,
93 "vb_float32 has unexpected length");
94static_assert(SIZEOF_MEMBER(fr_value_box_t, vb_float64) == 8,
95 "vb_float64 has unexpected length");
96
97/** How many bytes on-the-wire would a #fr_value_box_t value consume
98 *
99 * This is for the generic NETWORK format. For field sizes in the in-memory
100 * structure use #fr_value_box_field_sizes.
101 *
102 * @note Don't use this array directly when determining the length
103 * that would be consumed by the on-the-wire representation.
104 * Use #fr_value_box_network_length instead, as that deals with variable
105 * length attributes too.
106 */
107#define network_min_size(_x) (fr_value_box_network_sizes[_x][0])
108#define network_max_size(_x) (fr_value_box_network_sizes[_x][1])
109static size_t const fr_value_box_network_sizes[FR_TYPE_MAX + 1][2] = {
110 [FR_TYPE_NULL] = {~0, 0},
111
112 [FR_TYPE_STRING] = {0, ~0},
113 [FR_TYPE_OCTETS] = {0, ~0},
114
115 [FR_TYPE_IPV4_ADDR] = {4, 4},
116 [FR_TYPE_IPV4_PREFIX] = {5, 5},
117 [FR_TYPE_IPV6_ADDR] = {16, 17},
118 [FR_TYPE_IPV6_PREFIX] = {17, 18},
119 [FR_TYPE_COMBO_IP_ADDR] = {4, 17},
120 [FR_TYPE_COMBO_IP_PREFIX] = {16, 18},
121 [FR_TYPE_IFID] = {8, 8},
122 [FR_TYPE_ETHERNET] = {6, 6},
123
124 [FR_TYPE_BOOL] = {1, 1},
125 [FR_TYPE_UINT8] = {1, 1},
126 [FR_TYPE_UINT16] = {2, 2},
127 [FR_TYPE_UINT32] = {4, 4},
128 [FR_TYPE_UINT64] = {8, 8},
129
130 [FR_TYPE_INT8] = {1, 1},
131 [FR_TYPE_INT16] = {2, 2},
132 [FR_TYPE_INT32] = {4, 4},
133 [FR_TYPE_INT64] = {8, 8},
134
135 [FR_TYPE_FLOAT32] = {4, 4},
136 [FR_TYPE_FLOAT64] = {8, 8},
137
138 [FR_TYPE_DATE] = {2, 8}, //!< 2, 4, or 8 only
139 [FR_TYPE_TIME_DELTA] = {2, 8}, //!< 2, 4, or 8 only
140
141 [FR_TYPE_MAX] = {~0, 0} //!< Ensure array covers all types.
142};
143
144/** How many bytes wide each of the value data fields are
145 *
146 * This is useful when copying a value from a fr_value_box_t to a memory
147 * location passed as a void *.
148 */
149size_t const fr_value_box_field_sizes[] = {
152
161
162 [FR_TYPE_BOOL] = SIZEOF_MEMBER(fr_value_box_t, datum.boolean),
167
172
175
177
178 [FR_TYPE_TIME_DELTA] = SIZEOF_MEMBER(fr_value_box_t, datum.time_delta),
180
182
183 [FR_TYPE_MAX] = 0 //!< Ensure array covers all types.
184};
185
186/** Where the value starts in the #fr_value_box_t
187 *
188 */
189size_t const fr_value_box_offsets[] = {
192
199 [FR_TYPE_IFID] = offsetof(fr_value_box_t, vb_ifid),
201
202 [FR_TYPE_BOOL] = offsetof(fr_value_box_t, vb_bool),
207
208 [FR_TYPE_INT8] = offsetof(fr_value_box_t, vb_int8),
212
215
216 [FR_TYPE_DATE] = offsetof(fr_value_box_t, vb_date),
217
219 [FR_TYPE_SIZE] = offsetof(fr_value_box_t, vb_size),
220
221 [FR_TYPE_VALUE_BOX] = 0,
222
223 [FR_TYPE_MAX] = 0 //!< Ensure array covers all types.
224};
225
226static uint64_t const fr_value_box_integer_max[] = {
227 [FR_TYPE_BOOL] = true,
229 [FR_TYPE_UINT16] = UINT16_MAX,
230 [FR_TYPE_UINT32] = UINT32_MAX,
231 [FR_TYPE_UINT64] = UINT64_MAX,
232
233 [FR_TYPE_INT8] = INT8_MAX,
234 [FR_TYPE_INT16] = INT16_MAX,
235 [FR_TYPE_INT32] = INT32_MAX,
236 [FR_TYPE_INT64] = INT64_MAX,
237
238 [FR_TYPE_DATE] = UINT64_MAX,
239 [FR_TYPE_TIME_DELTA] = INT64_MAX,
240
241 [FR_TYPE_SIZE] = SIZE_MAX,
242
243 [FR_TYPE_MAX] = 0 //!< Ensure array covers all types.
244};
245
246static int64_t const fr_value_box_integer_min[] = {
247 [FR_TYPE_BOOL] = false,
248 [FR_TYPE_UINT8] = 0,
249 [FR_TYPE_UINT16] = 0,
250 [FR_TYPE_UINT32] = 0,
251 [FR_TYPE_UINT64] = 0,
252
253 [FR_TYPE_INT8] = INT8_MIN,
254 [FR_TYPE_INT16] = INT16_MIN,
255 [FR_TYPE_INT32] = INT32_MIN,
256 [FR_TYPE_INT64] = INT64_MIN,
257
258 [FR_TYPE_DATE] = 0,
259 [FR_TYPE_TIME_DELTA] = INT64_MIN,
260
261 [FR_TYPE_SIZE] = 0,
262
263 [FR_TYPE_MAX] = 0 //!< Ensure array covers all types.
264};
265
267 .name = "double",
268 .chr = '\\',
269 .subs = {
270 ['"'] = '"', /* Quoting char */
271 ['%'] = '%', /* xlat expansions */
272 ['\\'] = '\\',
273 ['a'] = '\a',
274 ['b'] = '\b',
275 ['e'] = '\\',
276 ['n'] = '\n',
277 ['r'] = '\r',
278 ['t'] = '\t',
279 ['v'] = '\v'
280 },
281 .do_hex = true,
282 .do_oct = true
283};
284
286 .name = "single",
287 .chr = '\\',
288 .subs = {
289 ['\''] = '\'', /* Quoting char */
290 ['\\'] = '\\'
291 },
292 .do_hex = false,
293 .do_oct = false
294};
295
297 .name = "solidus",
298 .chr = '\\',
299 .subs = {
300 ['%'] = '%', /* xlat expansions */
301 ['/'] = '/', /* Quoting char */
302 ['a'] = '\a',
303 ['b'] = '\b',
304 ['e'] = '\\',
305 ['n'] = '\n',
306 ['r'] = '\r',
307 ['t'] = '\t',
308 ['v'] = '\v'
309 },
310 .skip = {
311 ['\\'] = '\\' /* Leave this for the regex library */
312 },
313 .do_hex = true,
314 .do_oct = true
315};
316
318 .name = "backtick",
319 .chr = '\\',
320 .subs = {
321 ['%'] = '%', /* xlat expansions */
322 ['\\'] = '\\',
323 ['`'] = '`', /* Quoting char */
324 ['a'] = '\a',
325 ['b'] = '\b',
326 ['e'] = '\\',
327 ['n'] = '\n',
328 ['r'] = '\r',
329 ['t'] = '\t',
330 ['v'] = '\v'
331 },
332 .do_hex = true,
333 .do_oct = true
334};
335
342
349
351 .name = "double",
352 .chr = '\\',
353 .subs = {
354 ['"'] = '"', /* Quoting char */
355 ['%'] = '%', /* xlat expansions */
356 ['\\'] = '\\',
357 ['\a'] = 'a',
358 ['\b'] = 'b',
359 ['\n'] = 'n',
360 ['\r'] = 'r',
361 ['\t'] = 't',
362 ['\v'] = 'v'
363 },
364 .esc = {
367 },
368 .do_utf8 = true,
369 .do_oct = true
370};
371
372#ifdef __clang__
373#pragma clang diagnostic ignored "-Wgnu-designator"
374#endif
375
376/** Escape secret fields by simply mashing all data to '.'
377 *
378 * The length of the secret still leaks, but that is likely fine. Fixing that is more work.
379 *
380 */
382 .name = "secret",
383 .subs = {
384 [ 0 ... 255 ] = '.',
385 },
386};
387
389 .name = "single",
390 .chr = '\\',
391 .subs = {
392 ['\''] = '\'', /* Quoting char */
393 ['\\'] = '\\'
394 },
395 .do_utf8 = true,
396};
397
399 .name = "solidus",
400 .chr = '\\',
401 .subs = {
402 ['%'] = '%', /* xlat expansions */
403 ['/'] = '/', /* Quoting char */
404 ['\a'] = 'a',
405 ['\b'] = 'b',
406 ['\n'] = 'n',
407 ['\r'] = 'r',
408 ['\t'] = 't',
409 ['\v'] = 'v'
410 },
411 .esc = {
414 },
415 .do_utf8 = true,
416 .do_oct = true
417};
418
420 .name = "backtick",
421 .chr = '\\',
422 .subs = {
423 ['%'] = '%', /* xlat expansions */
424 ['\\'] = '\\',
425 ['`'] = '`', /* Quoting char */
426 ['\a'] = 'a',
427 ['\b'] = 'b',
428 ['\n'] = 'n',
429 ['\r'] = 'r',
430 ['\t'] = 't',
431 ['\v'] = 'v'
432 },
433 .esc = {
436 },
437 .do_utf8 = true,
438 .do_oct = true
439};
440
447
454
456 .name = "unprintables",
457 .chr = '\\',
458 .subs = {
459 ['\\'] = '\\',
460 },
461 .esc = {
464 },
465 .do_utf8 = true,
466 .do_oct = true
467};
468
469
470/** @name Produce a #tmpl_t from a string or substring
471 *
472 * @{
473 */
474
475/* clang-format off */
476/** Default formatting rules
477 *
478 * Control token termination, escaping and how the tmpl is printed.
479 */
480fr_sbuff_parse_rules_t const value_parse_rules_bareword_unquoted = {
481
482};
483
484fr_sbuff_parse_rules_t const value_parse_rules_double_unquoted = {
485 .escapes = &fr_value_unescape_double
486};
487
488fr_sbuff_parse_rules_t const value_parse_rules_single_unquoted = {
489 .escapes = &fr_value_unescape_single
490};
491
492fr_sbuff_parse_rules_t const value_parse_rules_solidus_unquoted = {
493 .escapes = &fr_value_unescape_solidus
494};
495
496fr_sbuff_parse_rules_t const value_parse_rules_backtick_unquoted = {
498};
499
500/** Parse rules for non-quoted strings
501 *
502 * These parse rules should be used for processing escape sequences in
503 * data from external data sources like SQL databases and REST APIs.
504 *
505 * They do not include terminals to stop parsing as it assumes the values
506 * are discrete, and not wrapped in quotes.
507 */
515
523
524fr_sbuff_parse_rules_t const value_parse_rules_bareword_quoted = {
525 .escapes = &(fr_sbuff_unescape_rules_t){
526 .chr = '\\',
527 /*
528 * Allow barewords to contain whitespace
529 * if they're escaped.
530 */
531 .subs = {
532 ['\t'] = '\t',
533 ['\n'] = '\n',
534 [' '] = ' '
535 },
536 .do_hex = false,
537 .do_oct = false
538 },
539 .terminals = &FR_SBUFF_TERMS(
540 L(""),
541 L("\t"),
542 L("\n"),
543 L(" ")
544 )
545};
546
547fr_sbuff_parse_rules_t const value_parse_rules_double_quoted = {
548 .escapes = &fr_value_unescape_double,
549 .terminals = &FR_SBUFF_TERMS(
550 L(""), L("\n"), L("\r"), L("\""))
551};
552
553fr_sbuff_parse_rules_t const value_parse_rules_single_quoted = {
554 .escapes = &fr_value_unescape_single,
555 .terminals = &FR_SBUFF_TERMS(
556 L(""), L("\n"), L("\r"), L("'"))
557};
558
559fr_sbuff_parse_rules_t const value_parse_rules_solidus_quoted = {
560 .escapes = &fr_value_unescape_solidus,
561 .terminals = &FR_SBUFF_TERMS(
562 L(""), L("\n"), L("\r"), L("/"))
563};
564
565fr_sbuff_parse_rules_t const value_parse_rules_backtick_quoted = {
566 .escapes = &fr_value_unescape_backtick,
567 .terminals = &FR_SBUFF_TERMS(
568 L(""), L("\n"), L("\r"), L("`"))
569};
570
571/*
572 * And triple-quoted versions of the above.
573 */
574fr_sbuff_parse_rules_t const value_parse_rules_double_3quoted = {
575 .escapes = &fr_value_unescape_double,
576 .terminals = &FR_SBUFF_TERMS(
577 L(""), L("\n"), L("\r"), L("\"\"\""))
578};
579
580fr_sbuff_parse_rules_t const value_parse_rules_single_3quoted = {
581 .escapes = &fr_value_unescape_single,
582 .terminals = &FR_SBUFF_TERMS(
583 L(""), L("\n"), L("\r"), L("'''"))
584};
585
586fr_sbuff_parse_rules_t const value_parse_rules_solidus_3quoted = {
587 .escapes = &fr_value_unescape_solidus,
588 .terminals = &FR_SBUFF_TERMS(
589 L(""), L("\n"), L("\r"), L("///"))
590};
591
592fr_sbuff_parse_rules_t const value_parse_rules_backtick_3quoted = {
593 .escapes = &fr_value_unescape_backtick,
594 .terminals = &FR_SBUFF_TERMS(
595 L(""), L("\n"), L("\r"), L("```"))
596};
597
598/** Parse rules for quoted strings
599 *
600 * These parse rules should be used for internal parsing functions that
601 * are working with configuration files.
602 *
603 * They include appropriate quote terminals to force functions parsing
604 * quoted strings to return when they reach a quote character.
605 */
613
621
629
630/* clang-format on */
631/** @} */
632
633/** Copy flags and type data from one value box to another
634 *
635 * @param[in] dst to copy flags to
636 * @param[in] src of data.
637 */
638static inline void fr_value_box_copy_meta(fr_value_box_t *dst, fr_value_box_t const *src)
639{
640 switch (src->type) {
642 dst->vb_length = src->vb_length;
643 break;
644 /*
645 * Not 100% sure this should be done here
646 * but if the intent is to make a null
647 * box usable, then we need to do this
648 * somewhere.
649 */
650 case FR_TYPE_GROUP:
651 fr_value_box_list_init(&dst->vb_group);
652 break;
653
654 default:
655 break;
656 }
657
658 dst->enumv = src->enumv;
659 dst->type = src->type;
660 dst->tainted = src->tainted;
661 dst->safe_for = src->safe_for;
662 dst->secret = src->secret;
663 fr_value_box_list_entry_init(dst);
664}
665
666/** Compare two values
667 *
668 * @param[in] a Value to compare.
669 * @param[in] b Value to compare.
670 * @return
671 * - -1 if a is less than b.
672 * - 0 if both are equal.
673 * - 1 if a is more than b.
674 * - < -1 on failure.
675 */
677{
678 if (!fr_cond_assert(a->type != FR_TYPE_NULL)) return -1;
679 if (!fr_cond_assert(b->type != FR_TYPE_NULL)) return -1;
680
681 if (a->type != b->type) {
682 fr_strerror_printf("%s: Can't compare values of different types", __FUNCTION__);
683 return -2;
684 }
685
686 /*
687 * After doing the previous check for special comparisons,
688 * do the per-type comparison here.
689 */
690 switch (a->type) {
692 {
693 size_t length;
694
695 if (a->vb_length < b->vb_length) {
696 length = a->vb_length;
697 } else {
698 length = b->vb_length;
699 }
700
701 if (length) {
702 int cmp;
703
704 /*
705 * Use constant-time comparisons for secret values.
706 */
707 if (a->secret || b->secret) {
708 cmp = fr_digest_cmp(a->datum.ptr, b->datum.ptr, length);
709 } else {
710 cmp = memcmp(a->datum.ptr, b->datum.ptr, length);
711 }
712 if (cmp != 0) return CMP(cmp, 0);
713 }
714
715 /*
716 * Contents are the same. The return code
717 * is therefore the difference in lengths.
718 *
719 * i.e. "0x00" is smaller than "0x0000"
720 */
721 return CMP(a->vb_length, b->vb_length);
722 }
723
724 /*
725 * Short-hand for simplicity.
726 */
727#define RETURN(_type) return CMP(a->datum._type, b->datum._type)
728#define COMPARE(_type) return CMP(memcmp(&a->datum._type, &b->datum._type, sizeof(a->datum._type)), 0)
729
730 case FR_TYPE_BOOL:
731 RETURN(boolean);
732
733 case FR_TYPE_DATE:
734 return fr_unix_time_cmp(a->datum.date, b->datum.date);
735
736 case FR_TYPE_UINT8:
737 RETURN(uint8);
738
739 case FR_TYPE_UINT16:
740 RETURN(uint16);
741
742 case FR_TYPE_UINT32:
743 RETURN(uint32);
744
745 case FR_TYPE_UINT64:
746 RETURN(uint64);
747
748 case FR_TYPE_INT8:
749 RETURN(int8);
750
751 case FR_TYPE_INT16:
752 RETURN(int16);
753
754 case FR_TYPE_INT32:
755 RETURN(int32);
756
757 case FR_TYPE_INT64:
758 RETURN(int64);
759
760 case FR_TYPE_SIZE:
761 RETURN(size);
762
764 return fr_time_delta_cmp(a->datum.time_delta, b->datum.time_delta);
765
766 case FR_TYPE_FLOAT32:
767 RETURN(float32);
768
769 case FR_TYPE_FLOAT64:
771
772 case FR_TYPE_ETHERNET:
773 COMPARE(ether);
774
781 return fr_ipaddr_cmp(&a->vb_ip, &b->vb_ip);
782
783 case FR_TYPE_IFID:
784 COMPARE(ifid);
785
786 /*
787 * These should be handled at some point
788 */
789 case FR_TYPE_NON_LEAF:
790 (void)fr_cond_assert(0); /* unknown type */
791 return -2;
792
793 /*
794 * Do NOT add a default here, as new types are added
795 * static analysis will warn us they're not handled
796 */
797 }
798 return 0;
799}
800
801/*
802 * We leverage the fact that IPv4 and IPv6 prefixes both
803 * have the same format:
804 *
805 * reserved, prefix-len, data...
806 */
807static int fr_value_box_cidr_cmp_op(fr_token_t op, int bytes,
808 uint8_t a_net, uint8_t const *a,
809 uint8_t b_net, uint8_t const *b)
810{
811 int i, common;
813
814 /*
815 * Handle the case of netmasks being identical.
816 */
817 if (a_net == b_net) {
818 int compare;
819
820 compare = memcmp(a, b, bytes);
821
822 /*
823 * If they're identical return true for
824 * identical.
825 */
826 if ((compare == 0) &&
827 ((op == T_OP_CMP_EQ) ||
828 (op == T_OP_LE) ||
829 (op == T_OP_GE))) {
830 return true;
831 }
832
833 /*
834 * Everything else returns false.
835 *
836 * 10/8 == 24/8 --> false
837 * 10/8 <= 24/8 --> false
838 * 10/8 >= 24/8 --> false
839 */
840 return false;
841 }
842
843 /*
844 * Netmasks are different. That limits the
845 * possible results, based on the operator.
846 */
847 switch (op) {
848 case T_OP_CMP_EQ:
849 return false;
850
851 case T_OP_NE:
852 return true;
853
854 case T_OP_LE:
855 case T_OP_LT: /* 192/8 < 192.168/16 --> false */
856 if (a_net < b_net) {
857 return false;
858 }
859 break;
860
861 case T_OP_GE:
862 case T_OP_GT: /* 192/16 > 192.168/8 --> false */
863 if (a_net > b_net) {
864 return false;
865 }
866 break;
867
868 default:
869 return false;
870 }
871
872 if (a_net < b_net) {
873 common = a_net;
874 } else {
875 common = b_net;
876 }
877
878 /*
879 * Do the check uint8 by uint8. If the bytes are
880 * identical, it MAY be a match. If they're different,
881 * it is NOT a match.
882 */
883 i = 0;
884 while (i < bytes) {
885 /*
886 * All leading bytes are identical.
887 */
888 if (common == 0) return true;
889
890 /*
891 * Doing bitmasks takes more work.
892 */
893 if (common < 8) break;
894
895 if (a[i] != b[i]) return false;
896
897 common -= 8;
898 i++;
899 continue;
900 }
901
902 mask = 1;
903 mask <<= (8 - common);
904 mask--;
905 mask = ~mask;
906
907 if ((a[i] & mask) == ((b[i] & mask))) {
908 return true;
909 }
910
911 return false;
912}
913
914/*
915 * So we don't have to include <util/regex.h> in a recursive fashion.
916 */
917extern int fr_regex_cmp_op(fr_token_t op, fr_value_box_t const *a, fr_value_box_t const *b);
918
919/** Compare two attributes using an operator
920 *
921 * @param[in] op to use in comparison.
922 * @param[in] a Value to compare.
923 * @param[in] b Value to compare.
924 * @return
925 * - 1 if true
926 * - 0 if false
927 * - -1 on failure.
928 */
930{
931 int compare = 0;
932
933 if (!fr_cond_assert(a->type != FR_TYPE_NULL)) return -1;
934 if (!fr_cond_assert(b->type != FR_TYPE_NULL)) return -1;
935
936 if (unlikely((op == T_OP_REG_EQ) || (op == T_OP_REG_NE))) return fr_regex_cmp_op(op, a, b);
937
938 switch (a->type) {
940 switch (b->type) {
942 if (b->vb_ip.af != AF_INET) goto fail_cmp_v4;
944
945 case FR_TYPE_IPV4_ADDR: /* IPv4 and IPv4 */
946 goto cmp;
947
949 if (b->vb_ip.af != AF_INET) goto fail_cmp_v4;
951
952 case FR_TYPE_IPV4_PREFIX: /* IPv4 and IPv4 Prefix */
953 return fr_value_box_cidr_cmp_op(op, 4, 32, (uint8_t const *) &a->vb_ip.addr.v4.s_addr,
954 b->vb_ip.prefix, (uint8_t const *) &b->vb_ip.addr.v4.s_addr);
955
956 default:
957 fail_cmp_v4:
958 fr_strerror_const("Cannot compare IPv4 with IPv6 address");
959 return -1;
960 }
961
962 case FR_TYPE_IPV4_PREFIX: /* IPv4 and IPv4 Prefix */
963 cmp_prefix_v4:
964 switch (b->type) {
966 if (b->vb_ip.af != AF_INET) goto fail_cmp_v4;
968
970 return fr_value_box_cidr_cmp_op(op, 4, a->vb_ip.prefix,
971 (uint8_t const *) &a->vb_ip.addr.v4.s_addr,
972 32, (uint8_t const *) &b->vb_ip.addr.v4);
973
975 if (b->vb_ip.af != AF_INET) goto fail_cmp_v4;
977
978 case FR_TYPE_IPV4_PREFIX: /* IPv4 Prefix and IPv4 Prefix */
979 return fr_value_box_cidr_cmp_op(op, 4, a->vb_ip.prefix,
980 (uint8_t const *) &a->vb_ip.addr.v4.s_addr,
981 b->vb_ip.prefix, (uint8_t const *) &b->vb_ip.addr.v4.s_addr);
982
983 default:
984 fr_strerror_const("Cannot compare IPv4 with IPv6 address");
985 return -1;
986 }
987
989 switch (b->type) {
991 if (b->vb_ip.af != AF_INET6) goto fail_cmp_v6;
993
994 case FR_TYPE_IPV6_ADDR: /* IPv6 and IPv6 */
995 goto cmp;
996
998 if (b->vb_ip.af != AF_INET6) goto fail_cmp_v6;
1000
1001 case FR_TYPE_IPV6_PREFIX: /* IPv6 and IPv6 Preifx */
1002 return fr_value_box_cidr_cmp_op(op, 16, 128, (uint8_t const *) &a->vb_ip.addr.v6,
1003 b->vb_ip.prefix, (uint8_t const *) &b->vb_ip.addr.v6);
1004
1005 default:
1006 fail_cmp_v6:
1007 fr_strerror_const("Cannot compare IPv6 with IPv4 address");
1008 return -1;
1009 }
1010
1012 cmp_prefix_v6:
1013 switch (b->type) {
1015 if (b->vb_ip.af != AF_INET6) goto fail_cmp_v6;
1017
1018 case FR_TYPE_IPV6_ADDR: /* IPv6 Prefix and IPv6 */
1019 return fr_value_box_cidr_cmp_op(op, 16, a->vb_ip.prefix,
1020 (uint8_t const *) &a->vb_ip.addr.v6,
1021 128, (uint8_t const *) &b->vb_ip.addr.v6);
1022
1024 if (b->vb_ip.af != AF_INET6) goto fail_cmp_v6;
1026
1027 case FR_TYPE_IPV6_PREFIX: /* IPv6 Prefix and IPv6 */
1028 return fr_value_box_cidr_cmp_op(op, 16, a->vb_ip.prefix,
1029 (uint8_t const *) &a->vb_ip.addr.v6,
1030 b->vb_ip.prefix, (uint8_t const *) &b->vb_ip.addr.v6);
1031
1032 default:
1033 fr_strerror_const("Cannot compare IPv6 with IPv4 address");
1034 return -1;
1035 }
1036
1038 if (a->vb_ip.af != b->vb_ip.af) goto fail_cmp_v4; /* as good as any */
1039
1040 goto cmp;
1041
1043 if (a->vb_ip.af != b->vb_ip.af) goto fail_cmp_v4; /* as good as any */
1044
1045 if (a->vb_ip.af == AF_INET) goto cmp_prefix_v4;
1046
1047 goto cmp_prefix_v6;
1048
1049 default:
1050 cmp:
1051 compare = fr_value_box_cmp(a, b);
1052 if (compare < -1) { /* comparison error */
1053 return -1;
1054 }
1055 }
1056
1057 /*
1058 * Now do the operator comparison.
1059 */
1060 switch (op) {
1061 case T_OP_CMP_EQ:
1062 return (compare == 0);
1063
1064 case T_OP_NE:
1065 return (compare != 0);
1066
1067 case T_OP_LT:
1068 return (compare < 0);
1069
1070 case T_OP_GT:
1071 return (compare > 0);
1072
1073 case T_OP_LE:
1074 return (compare <= 0);
1075
1076 case T_OP_GE:
1077 return (compare >= 0);
1078
1079 default:
1080 return 0;
1081 }
1082}
1083
1084/** Convert a string value with escape sequences into its binary form
1085 *
1086 * The quote character determines the escape sequences recognised.
1087 *
1088 * - Literal mode ("'" quote char) will unescape:
1089 @verbatim
1090 - \\ - Literal backslash.
1091 - <quote> - The quotation char.
1092 @endverbatim
1093 * - Expanded mode ('"' quote char) will also unescape:
1094 @verbatim
1095 - \a - Alert.
1096 - \b - Backspace.
1097 - \e - Escape character i.e. (\‍)
1098 - \r - Carriage return.
1099 - \n - Newline.
1100 - \t - Tab.
1101 - \v - Vertical tab
1102 - <oct> - An octal escape sequence.
1103 - \x<hex> - A hex escape sequence.
1104 @endverbatim
1105 * - Backtick mode ('`' quote char) identical to expanded mode.
1106 * - Regex mode ('/') identical to expanded mode but two successive
1107 * backslashes will be interpreted as an escape sequence, but not
1108 * unescaped, so that they will be passed to the underlying regex
1109 * library.
1110 * - Verbatim mode ('\0' quote char) copies in to out verbatim.
1111 *
1112 * @note The resulting output may contain embedded \0s.
1113 * @note Unrecognised escape sequences will be copied verbatim.
1114 * @note In and out may point to the same underlying buffer.
1115 * @note Copying will stop early if an unescaped instance of the
1116 * quoting char is found in the input buffer.
1117 *
1118 * @param[out] out Where to write the unescaped string.
1119 * @param[in] in The string to unescape.
1120 * @param[in] inlen Length of input string. Pass SIZE_MAX to copy all data
1121 * in the input buffer.
1122 * @param[in] quote Character around the string, determines unescaping mode.
1123 *
1124 * @return
1125 * - 0 if input string was empty.
1126 * - >0 the number of bytes written to out.
1127 */
1129{
1130 switch (quote) {
1131 default:
1132 break;
1133
1134 case '"':
1135 {
1137 }
1138 case '\'':
1139 {
1141 }
1142
1143 case '`':
1144 {
1146 }
1147
1148 case '/':
1149 {
1151 }
1152 }
1153
1155}
1156
1157/** Convert a string value with escape sequences into its binary form
1158 *
1159 * The quote character determines the escape sequences recognised.
1160 *
1161 * - Literal mode ("'" quote char) will unescape:
1162 @verbatim
1163 - \\ - Literal backslash.
1164 - <quote> - The quotation char.
1165 @endverbatim
1166 * - Expanded mode ('"' quote char) will also unescape:
1167 @verbatim
1168 - \a - Alert.
1169 - \b - Backspace.
1170 - \e - Escape character i.e. (\‍)
1171 - \r - Carriage return.
1172 - \n - Newline.
1173 - \t - Tab.
1174 - \v - Vertical tab
1175 - <oct> - An octal escape sequence.
1176 - \x<hex> - A hex escape sequence.
1177 @endverbatim
1178 * - Backtick mode ('`' quote char) identical to expanded mode.
1179 * - Regex mode ('/') identical to expanded mode but two successive
1180 * backslashes will be interpreted as an escape sequence, but not
1181 * unescaped, so that they will be passed to the underlying regex
1182 * library.
1183 * - Verbatim mode ('\0' quote char) copies in to out verbatim.
1184 *
1185 * @note The resulting output may contain embedded \0s.
1186 * @note Unrecognised escape sequences will be copied verbatim.
1187 * @note In and out may point to the same underlying buffer.
1188 * @note Copying will stop early if an unescaped instance of the
1189 * quoting char is found in the input buffer.
1190 *
1191 * @param[out] out Where to write the unescaped string.
1192 * @param[in] in The string to unescape.
1193 * @param[in] inlen Length of input string. Pass SIZE_MAX to copy all data
1194 * in the input buffer.
1195 * @param[in] quote Character around the string, determines unescaping mode.
1196 *
1197 * @return
1198 * - 0 if input string was empty.
1199 * - >0 the number of bytes written to out.
1200 */
1202{
1203 switch (quote) {
1204 default:
1205 break;
1206
1207 case '"':
1209
1210 case '\'':
1212
1213 case '`':
1215
1216 case '/':
1218 }
1219
1221}
1222
1223/** Performs byte order reversal for types that need it
1224 *
1225 * @param[in] dst Where to write the result. May be the same as src.
1226 * @param[in] src #fr_value_box_t containing an uint32 value.
1227 * @return
1228 * - 0 on success.
1229 * - -1 on failure.
1230 */
1232{
1233 if (!fr_cond_assert(src->type != FR_TYPE_NULL)) return -1;
1234
1235 switch (src->type) {
1236 default:
1237 break;
1238
1239 case FR_TYPE_BOOL:
1240 case FR_TYPE_UINT8:
1241 case FR_TYPE_INT8:
1242 case FR_TYPE_IPV4_ADDR:
1244 case FR_TYPE_IPV6_ADDR:
1248 case FR_TYPE_IFID:
1249 case FR_TYPE_ETHERNET:
1250 case FR_TYPE_SIZE:
1251 fr_value_box_copy(NULL, dst, src);
1252 return 0;
1253
1254 case FR_TYPE_OCTETS:
1255 case FR_TYPE_STRING:
1256 case FR_TYPE_NON_LEAF:
1257 fr_assert_fail(NULL);
1258 return -1; /* shouldn't happen */
1259 }
1260
1261 /*
1262 * If we're not just flipping in place
1263 * initialise the destination box
1264 * with similar meta data as the src.
1265 *
1266 * Don't use the copy meta data function
1267 * here as that doesn't initialise the
1268 * destination box.
1269 */
1270 if (dst != src) fr_value_box_init(dst, src->type, src->enumv, src->tainted);
1271
1272 switch (src->type) {
1273 case FR_TYPE_UINT16:
1274 dst->vb_uint16 = htons(src->vb_uint16);
1275 break;
1276
1277 case FR_TYPE_UINT32:
1278 dst->vb_uint32 = htonl(src->vb_uint32);
1279 break;
1280
1281 case FR_TYPE_UINT64:
1282 dst->vb_uint64 = htonll(src->vb_uint64);
1283 break;
1284
1285 case FR_TYPE_INT16:
1286 dst->vb_int16 = htons(src->vb_int16);
1287 break;
1288
1289 case FR_TYPE_INT32:
1290 dst->vb_int32 = htonl(src->vb_int32);
1291 break;
1292
1293 case FR_TYPE_INT64:
1294 dst->vb_int64 = htonll(src->vb_int64);
1295 break;
1296
1297 case FR_TYPE_DATE:
1298 dst->vb_date = fr_unix_time_wrap(htonll(fr_unix_time_unwrap(src->vb_date)));
1299 break;
1300
1301 case FR_TYPE_TIME_DELTA:
1302 dst->vb_time_delta = fr_time_delta_wrap(htonll(fr_time_delta_unwrap(src->vb_time_delta)));
1303 break;
1304
1305 case FR_TYPE_FLOAT32:
1306 dst->vb_float32 = htonl((uint32_t)src->vb_float32);
1307 break;
1308
1309 case FR_TYPE_FLOAT64:
1310 dst->vb_float64 = htonll((uint64_t)src->vb_float64);
1311 break;
1312
1313 default:
1314 fr_assert_fail(NULL);
1315 return -1; /* shouldn't happen */
1316 }
1317
1318 return 0;
1319}
1320
1321/** Get the size of the value held by the fr_value_box_t
1322 *
1323 * This is the length of the NETWORK presentation
1324 */
1326{
1327 switch (value->type) {
1329 if (value->enumv) {
1330 /*
1331 * Fixed-width fields.
1332 */
1333 if (value->enumv->flags.length) {
1334 return value->enumv->flags.length;
1335 }
1336
1337 /*
1338 * Clamp length at maximum we're allowed to encode.
1339 */
1340 if (da_is_length_field(value->enumv)) {
1341 if (value->enumv->flags.subtype == FLAG_LENGTH_UINT8) {
1342 if (value->vb_length > 255) return 255;
1343
1344 } else if (value->enumv->flags.subtype == FLAG_LENGTH_UINT16) {
1345 if (value->vb_length > 65535) return 65535;
1346 }
1347 }
1348 }
1349 return value->vb_length;
1350
1351 /*
1352 * These can have different encodings, depending on the underlying protocol.
1353 */
1354 case FR_TYPE_DATE:
1355 case FR_TYPE_TIME_DELTA:
1356 if (value->enumv) return value->enumv->flags.length;
1358
1359 default:
1360 return network_min_size(value->type);
1361 }
1362}
1363
1364/** Encode a single value box, serializing its contents in generic network format
1365 *
1366 * The serialized form of #fr_value_box_t may not match the requirements of your protocol
1367 * completely. In cases where they do not, you should overload specific types in the
1368 * function calling #fr_value_box_to_network.
1369 *
1370 * The general serialization rules are:
1371 *
1372 * - Octets are encoded in binary form (not hex).
1373 * - Strings are encoded without the trailing \0 byte.
1374 * - Integers are encoded big-endian.
1375 * - Bools are encoded using one byte, with value 0x00 (false) or 0x01 (true).
1376 * - Signed integers are encoded two's complement, with the MSB as the sign bit.
1377 * Byte order is big-endian.
1378 * - Network addresses are encoded big-endian.
1379 * - IPv4 prefixes are encoded with 1 byte for the prefix, then 4 bytes of address.
1380 * - IPv6 prefixes are encoded with 1 byte for the scope_id, 1 byte for the prefix,
1381 * and 16 bytes of address.
1382 * - Floats are encoded in IEEE-754 format with a big-endian byte order. We rely
1383 * on the fact that the C standards require floats to be represented in IEEE-754
1384 * format in memory.
1385 * - Dates are encoded as 16/32/64-bit unsigned UNIX timestamps.
1386 * - time_deltas are encoded as 16/32/64-bit signed integers.
1387 *
1388 * #FR_TYPE_SIZE is not encodable, as it is system specific.
1389 *
1390 * This function will not encode structural types (TLVs, VSAs etc...). These are usually
1391 * specific to the protocol anyway.
1392 *
1393 * All of the dictionary rules are respected. string/octets can have
1394 * a fixed length (which is zero-padded if necessary), or can have an
1395 * 8/16-bit "length" prefix.
1396 *
1397 * @param[out] dbuff Where to write serialized data.
1398 * @param[in] value to encode.
1399 * @return
1400 * - 0 no bytes were written.
1401 * - >0 the number of bytes written to out.
1402 * - <0 the number of bytes we'd need in dbuff to complete the operation.
1403 */
1405{
1406 size_t min, max;
1407 fr_dbuff_t work_dbuff = FR_DBUFF(dbuff);
1408
1409 /*
1410 * We cannot encode structural types here.
1411 */
1412 if (!fr_type_is_leaf(value->type)) {
1413 unsupported:
1414 fr_strerror_printf("%s: Cannot encode type \"%s\"",
1415 __FUNCTION__,
1416 fr_type_to_str(value->type));
1418 }
1419
1420 /*
1421 * Variable length types
1422 */
1423 switch (value->type) {
1424 case FR_TYPE_OCTETS:
1425 case FR_TYPE_STRING:
1426 max = value->vb_length;
1427
1428 /*
1429 * Sometimes variable length *inside* the server
1430 * has maximum length on the wire.
1431 */
1432 if (value->enumv) {
1433 if (value->enumv->flags.length) {
1434 /*
1435 * The field is fixed size, and the data is smaller than that, We zero-pad the field.
1436 */
1437 if (max < value->enumv->flags.length) {
1438 FR_DBUFF_IN_MEMCPY_RETURN(&work_dbuff, (uint8_t const *)value->datum.ptr, max);
1439 FR_DBUFF_MEMSET_RETURN(&work_dbuff, 0, value->enumv->flags.length - max);
1440 return fr_dbuff_set(dbuff, &work_dbuff);
1441
1442 } else if (max > value->enumv->flags.length) {
1443 /*
1444 * Truncate the input to the maximum allowed length.
1445 */
1446 max = value->enumv->flags.length;
1447 }
1448
1449 } else if (da_is_length_field(value->enumv)) {
1450 /*
1451 * Truncate the output to the max allowed for this field and encode the length.
1452 */
1453 if (value->enumv->flags.subtype == FLAG_LENGTH_UINT8) {
1454 if (max > 255) max = 255;
1455 FR_DBUFF_IN_RETURN(&work_dbuff, (uint8_t) max);
1456
1457 } else if (value->enumv->flags.subtype == FLAG_LENGTH_UINT16) {
1458 if (max > 65536) max = 65535;
1459 FR_DBUFF_IN_RETURN(&work_dbuff, (uint16_t) max);
1460
1461 } else {
1462 return -1;
1463 }
1464 }
1465 }
1466
1467 FR_DBUFF_IN_MEMCPY_RETURN(&work_dbuff, (uint8_t const *)value->datum.ptr, max);
1468 return fr_dbuff_set(dbuff, &work_dbuff);
1469
1470 /*
1471 * The data can be encoded in a variety of widths.
1472 */
1473 case FR_TYPE_DATE:
1474 case FR_TYPE_TIME_DELTA:
1475 if (value->enumv) {
1476 min = value->enumv->flags.length;
1477 } else {
1478 min = 4;
1479 }
1480 break;
1481
1482 default:
1483 min = network_min_size(value->type);
1484 break;
1485 }
1486
1487 /*
1488 * We have to encode actual data here.
1489 */
1490 fr_assert(min > 0);
1491
1492 switch (value->type) {
1493 case FR_TYPE_IPV4_ADDR:
1494 ipv4addr:
1495 FR_DBUFF_IN_MEMCPY_RETURN(&work_dbuff,
1496 (uint8_t const *)&value->vb_ip.addr.v4.s_addr,
1497 sizeof(value->vb_ip.addr.v4.s_addr));
1498 break;
1499 /*
1500 * Needs special mangling
1501 */
1503 ipv4prefix:
1504 FR_DBUFF_IN_RETURN(&work_dbuff, value->vb_ip.prefix);
1505 FR_DBUFF_IN_MEMCPY_RETURN(&work_dbuff,
1506 (uint8_t const *)&value->vb_ip.addr.v4.s_addr,
1507 sizeof(value->vb_ip.addr.v4.s_addr));
1508 break;
1509
1510 case FR_TYPE_IPV6_ADDR:
1511 ipv6addr:
1512 if (value->vb_ip.scope_id > 0) FR_DBUFF_IN_RETURN(&work_dbuff, value->vb_ip.scope_id);
1513 FR_DBUFF_IN_MEMCPY_RETURN(&work_dbuff, value->vb_ip.addr.v6.s6_addr, sizeof(value->vb_ip.addr.v6.s6_addr));
1514 break;
1515
1517 ipv6prefix:
1518 if (value->vb_ip.scope_id > 0) FR_DBUFF_IN_RETURN(&work_dbuff, value->vb_ip.scope_id);
1519 FR_DBUFF_IN_RETURN(&work_dbuff, value->vb_ip.prefix);
1520 FR_DBUFF_IN_MEMCPY_RETURN(&work_dbuff, value->vb_ip.addr.v6.s6_addr, sizeof(value->vb_ip.addr.v6.s6_addr));
1521 break;
1522
1523 case FR_TYPE_BOOL:
1524 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, value->datum.boolean);
1525 break;
1526
1528 switch (value->vb_ip.af) {
1529 case AF_INET:
1530 goto ipv4addr;
1531
1532 case AF_INET6:
1533 goto ipv6addr;
1534
1535 default:
1536 break;
1537 }
1538
1539 fr_strerror_const("Combo IP value missing af");
1540 return 0;
1541
1543 switch (value->vb_ip.af) {
1544 case AF_INET:
1545 goto ipv4prefix;
1546
1547 case AF_INET6:
1548 goto ipv6prefix;
1549
1550 default:
1551 break;
1552 }
1553
1554 fr_strerror_const("Combo IP value missing af");
1555 return 0;
1556
1557 /*
1558 * Already in network byte-order
1559 */
1560 case FR_TYPE_IFID:
1561 case FR_TYPE_ETHERNET:
1562 case FR_TYPE_UINT8:
1563 case FR_TYPE_INT8:
1565 break;
1566
1567 /*
1568 * Needs a bytesex operation
1569 */
1570 case FR_TYPE_UINT16:
1571 case FR_TYPE_UINT32:
1572 case FR_TYPE_UINT64:
1573 case FR_TYPE_INT16:
1574 case FR_TYPE_INT32:
1575 case FR_TYPE_INT64:
1576 case FR_TYPE_FLOAT32:
1577 case FR_TYPE_FLOAT64:
1578 {
1579 fr_value_box_t tmp;
1580
1581 fr_value_box_hton(&tmp, value);
1582
1583 FR_DBUFF_IN_MEMCPY_RETURN(&work_dbuff, fr_value_box_raw(&tmp, value->type), min);
1584 }
1585 break;
1586
1587 /*
1588 * Dates and deltas are stored internally as
1589 * 64-bit nanoseconds. We have to convert to the
1590 * network format. First by resolution (ns, us,
1591 * ms, s), and then by size (16/32/64-bit).
1592 */
1593 case FR_TYPE_DATE:
1594 {
1595 uint64_t date = 0;
1596 fr_time_res_t res;
1597
1598 if (!value->enumv) {
1599 res = FR_TIME_RES_SEC;
1600 } else {
1601 res = value->enumv->flags.flag_time_res;
1602 }
1603 date = fr_unix_time_to_integer(value->vb_date, res);
1604
1605 if (!value->enumv) {
1606 goto date_size4;
1607
1608 } else switch (value->enumv->flags.length) {
1609 case 2:
1610 if (date > UINT16_MAX) date = UINT16_MAX;
1611 FR_DBUFF_IN_RETURN(&work_dbuff, (int16_t) date);
1612 break;
1613
1614 date_size4:
1615 case 4:
1616 if (date > UINT32_MAX) date = UINT32_MAX;
1617 FR_DBUFF_IN_RETURN(&work_dbuff, (int32_t) date);
1618 break;
1619
1620 case 8:
1621 FR_DBUFF_IN_RETURN(&work_dbuff, date);
1622 break;
1623
1624 default:
1625 goto unsupported;
1626 }
1627
1628 }
1629 break;
1630
1631 case FR_TYPE_TIME_DELTA:
1632 {
1633 int64_t date = 0; /* may be negative */
1635 if (value->enumv) res = value->enumv->flags.flag_time_res;
1636
1637 date = fr_time_delta_to_integer(value->vb_time_delta, res);
1638
1639 if (!value->enumv) {
1640 goto delta_size4;
1641
1642 } else if (!value->enumv->flags.is_unsigned) {
1643 switch (value->enumv->flags.length) {
1644 case 2:
1645 if (date < INT16_MIN) {
1646 date = INT16_MIN;
1647 } else if (date > INT16_MAX) {
1648 date = INT16_MAX;
1649 }
1650 FR_DBUFF_IN_RETURN(&work_dbuff, (int16_t)date);
1651 break;
1652
1653 delta_size4:
1654 case 4:
1655 if (date < INT32_MIN) {
1656 date = INT32_MIN;
1657 } else if (date > INT32_MAX) {
1658 date = INT32_MAX;
1659 }
1660 FR_DBUFF_IN_RETURN(&work_dbuff, (int32_t)date);
1661 break;
1662
1663 case 8:
1664 FR_DBUFF_IN_RETURN(&work_dbuff, (int64_t)date);
1665 break;
1666
1667 default:
1668 goto unsupported;
1669 }
1670 } else { /* time delta is unsigned! */
1671 switch (value->enumv->flags.length) {
1672 case 2:
1673 if (date < 0) {
1674 date = 0;
1675 } else if (date > UINT16_MAX) {
1676 date = UINT16_MAX;
1677 }
1678 FR_DBUFF_IN_RETURN(&work_dbuff, (uint16_t)date);
1679 break;
1680
1681 case 4:
1682 if (date < 0) {
1683 date = 0;
1684 } else if (date > UINT32_MAX) {
1685 date = UINT32_MAX;
1686 }
1687 FR_DBUFF_IN_RETURN(&work_dbuff, (uint32_t)date);
1688 break;
1689
1690 case 8:
1691 FR_DBUFF_IN_RETURN(&work_dbuff, (uint64_t)date);
1692 break;
1693
1694 default:
1695 goto unsupported;
1696 }
1697 }
1698 }
1699 break;
1700
1701 case FR_TYPE_OCTETS:
1702 case FR_TYPE_STRING:
1703 case FR_TYPE_SIZE:
1704 case FR_TYPE_NON_LEAF:
1705 goto unsupported;
1706 }
1707
1708 return fr_dbuff_set(dbuff, &work_dbuff);
1709}
1710
1711/** Decode a #fr_value_box_t from serialized binary data
1712 *
1713 * The general deserialization rules are:
1714 *
1715 * - Octets are decoded in binary form (not hex).
1716 * - Strings are decoded without the trailing \0 byte. Strings must consist only of valid UTF8 chars.
1717 * - Integers are decoded big-endian.
1718 * - Bools are decoded using one byte, with value 0x00 (false) or 0x01 (true).
1719 * - Signed integers are decoded two's complement, with the MSB as the sign bit.
1720 * Byte order is big-endian.
1721 * - Network addresses are decoded big-endian.
1722 * - IPv4 prefixes are decoded with 1 byte for the prefix, then 4 bytes of address.
1723 * - IPv6 prefixes are decoded with 1 byte for the scope_id, 1 byte for the prefix,
1724 * and 16 bytes of address.
1725 * - Floats are decoded in IEEE-754 format with a big-endian byte order. We rely
1726 * on the fact that the C standards require floats to be represented in IEEE-754
1727 * format in memory.
1728 * - Dates are decoded as 32bit unsigned UNIX timestamps.
1729 *
1730 * All of the dictionary rules are respected. string/octets can have
1731 * a fixed length, or can have an 8/16-bit "length" prefix. If the
1732 * enumv is not an array, then the input # len MUST be the correct size
1733 * (not too large or small), otherwise an error is returned.
1734 *
1735 * If the enumv is an array, then the input must have the minimum
1736 * length, and the number of bytes decoded is capped at the maximum
1737 * length allowed to be decoded. This behavior allows the caller to
1738 * decode an array of values simply by calling this function in a
1739 * loop.
1740 *
1741 * @param[in] ctx Where to allocate any talloc buffers required.
1742 * @param[out] dst value_box to write the result to.
1743 * @param[in] type to decode data to.
1744 * @param[in] enumv Aliases for values.
1745 * @param[in] dbuff Binary data to decode.
1746 * @param[in] len Length of data to decode. For fixed length types we only
1747 * decode complete values.
1748 * @param[in] tainted Whether the value came from a trusted source.
1749 * @return
1750 * - >= 0 The number of bytes consumed.
1751 * - <0 - The negative offset where the error occurred.
1752 * - FR_VALUE_BOX_NET_OOM (negative value) - Out of memory.
1753 */
1755 fr_value_box_t *dst, fr_type_t type, fr_dict_attr_t const *enumv,
1756 fr_dbuff_t *dbuff, size_t len,
1757 bool tainted)
1758{
1759 size_t min, max;
1760 fr_dbuff_t work_dbuff = FR_DBUFF(dbuff);
1761
1763 max = network_max_size(type);
1764
1765 if (len < min) {
1766 fr_strerror_printf("Got truncated value parsing type \"%s\". "
1767 "Expected length >= %zu bytes, got %zu bytes",
1769 min, len);
1770 return -(len);
1771 }
1772
1773 /*
1774 * For array entries, we only decode one value at a time.
1775 */
1776 if (len > max) {
1777 if (enumv && !enumv->flags.array) {
1778 fr_strerror_printf("Found trailing garbage parsing type \"%s\". "
1779 "Expected length <= %zu bytes, got %zu bytes",
1781 max, len);
1782 return -(max);
1783 }
1784
1785 len = max;
1786 }
1787
1788 /*
1789 * String / octets are special.
1790 */
1792 size_t newlen = len;
1793 size_t offset = 0;
1794
1795 /*
1796 * Decode fixed-width fields.
1797 */
1798 if (enumv) {
1799 if (enumv->flags.length) {
1800 newlen = enumv->flags.length;
1801
1802 } else if (da_is_length_field(enumv)) {
1803 /*
1804 * Or fields with a length prefix.
1805 */
1806 if (enumv->flags.subtype == FLAG_LENGTH_UINT8) {
1807 uint8_t num = 0;
1808
1809 FR_DBUFF_OUT_RETURN(&num, &work_dbuff);
1810 newlen = num;
1811 offset = 1;
1812
1813 } else if (enumv->flags.subtype == FLAG_LENGTH_UINT16) {
1814 uint16_t num = 0;
1815
1816 FR_DBUFF_OUT_RETURN(&num, &work_dbuff);
1817 newlen = num;
1818 offset = 2;
1819
1820 } else {
1821 return -1;
1822 }
1823 }
1824 }
1825
1826 /*
1827 * If we need more data than exists, that's an error.
1828 *
1829 * Otherwise, bound the decoding to the count we found.
1830 */
1831 if (newlen > len) return -(newlen + offset);
1832 len = newlen;
1833
1834 switch (type) {
1835 case FR_TYPE_STRING:
1836 if (fr_value_box_bstrndup_dbuff(ctx, dst, enumv, &work_dbuff, len, tainted) < 0) {
1837 return FR_VALUE_BOX_NET_OOM;
1838 }
1839 return fr_dbuff_set(dbuff, &work_dbuff);
1840
1841 case FR_TYPE_OCTETS:
1842 if (fr_value_box_memdup_dbuff(ctx, dst, enumv, &work_dbuff, len, tainted) < 0) {
1843 return FR_VALUE_BOX_NET_OOM;
1844 }
1845 return fr_dbuff_set(dbuff, &work_dbuff);
1846
1847 default:
1848 return -1;
1849 }
1850 }
1851
1852 /*
1853 * Pre-Initialise box for non-variable types
1854 */
1855 fr_value_box_init(dst, type, enumv, tainted);
1856 switch (type) {
1857 /*
1858 * Already in network byte order
1859 */
1860 case FR_TYPE_IPV4_ADDR:
1861 ipv4addr:
1862 dst->vb_ip = (fr_ipaddr_t){
1863 .af = AF_INET,
1864 .prefix = 32,
1865 };
1866 FR_DBUFF_OUT_MEMCPY_RETURN((uint8_t *)&dst->vb_ip.addr.v4, &work_dbuff, len);
1867 break;
1868
1870 ipv4prefix:
1871 dst->vb_ip = (fr_ipaddr_t){
1872 .af = AF_INET,
1873 };
1874 FR_DBUFF_OUT_RETURN(&dst->vb_ip.prefix, &work_dbuff);
1875 FR_DBUFF_OUT_MEMCPY_RETURN((uint8_t *)&dst->vb_ip.addr.v4, &work_dbuff, len - 1);
1876 break;
1877
1878 case FR_TYPE_IPV6_ADDR:
1879 ipv6addr:
1880 dst->vb_ip = (fr_ipaddr_t){
1881 .af = AF_INET6,
1882 .scope_id = 0,
1883 .prefix = 128
1884 };
1885 if (len == max) {
1886 uint8_t scope_id = 0;
1887
1888 FR_DBUFF_OUT_RETURN(&scope_id, &work_dbuff);
1889 dst->vb_ip.scope_id = scope_id;
1890 len--;
1891 }
1892 FR_DBUFF_OUT_MEMCPY_RETURN((uint8_t *)&dst->vb_ip.addr.v6, &work_dbuff, len);
1893 break;
1894
1896 ipv6prefix:
1897 dst->vb_ip = (fr_ipaddr_t){
1898 .af = AF_INET6,
1899 .scope_id = 0,
1900 };
1901 if (len == max) {
1902 uint8_t scope_id = 0;
1903
1904 FR_DBUFF_OUT_RETURN(&scope_id, &work_dbuff);
1905 dst->vb_ip.scope_id = scope_id;
1906 len--;
1907 }
1908 FR_DBUFF_OUT_RETURN(&dst->vb_ip.prefix, &work_dbuff);
1909 FR_DBUFF_OUT_MEMCPY_RETURN((uint8_t *)&dst->vb_ip.addr.v6, &work_dbuff, len - 1);
1910 break;
1911
1913 if ((len >= network_min_size(FR_TYPE_IPV6_ADDR)) &&
1914 (len <= network_max_size(FR_TYPE_IPV6_ADDR))) goto ipv6addr; /* scope is optional */
1915 else if ((len >= network_min_size(FR_TYPE_IPV4_ADDR)) &&
1916 (len <= network_max_size(FR_TYPE_IPV4_ADDR))) goto ipv4addr;
1917 fr_strerror_const("Invalid combo ip address value");
1918 return 0;
1919
1921 if ((len >= network_min_size(FR_TYPE_IPV6_PREFIX)) &&
1922 (len <= network_max_size(FR_TYPE_IPV6_PREFIX))) goto ipv6prefix; /* scope is optional */
1923 else if ((len >= network_min_size(FR_TYPE_IPV4_PREFIX)) &&
1924 (len <= network_max_size(FR_TYPE_IPV4_PREFIX))) goto ipv4prefix;
1925 fr_strerror_const("Invalid combo ip prefix value");
1926 return 0;
1927
1928 case FR_TYPE_BOOL:
1929 {
1930 uint8_t val = 0;
1931
1932 FR_DBUFF_OUT_RETURN(&val, &work_dbuff);
1933 dst->datum.boolean = (val != 0);
1934 }
1935 break;
1936
1937 case FR_TYPE_IFID:
1938 case FR_TYPE_ETHERNET:
1939 FR_DBUFF_OUT_MEMCPY_RETURN(fr_value_box_raw(dst, type), &work_dbuff, len);
1940 break;
1941
1942 case FR_TYPE_UINT8:
1943 FR_DBUFF_OUT_RETURN(&dst->vb_uint8, &work_dbuff);
1944 break;
1945
1946 case FR_TYPE_UINT16:
1947 FR_DBUFF_OUT_RETURN(&dst->vb_uint16, &work_dbuff);
1948 break;
1949
1950 case FR_TYPE_UINT32:
1951 FR_DBUFF_OUT_RETURN(&dst->vb_uint32, &work_dbuff);
1952 break;
1953
1954 case FR_TYPE_UINT64:
1955 FR_DBUFF_OUT_RETURN(&dst->vb_uint64, &work_dbuff);
1956 break;
1957
1958 case FR_TYPE_INT8:
1959 FR_DBUFF_OUT_RETURN(&dst->vb_int8, &work_dbuff);
1960 break;
1961
1962 case FR_TYPE_INT16:
1963 FR_DBUFF_OUT_RETURN(&dst->vb_int16, &work_dbuff);
1964 break;
1965
1966 case FR_TYPE_INT32:
1967 FR_DBUFF_OUT_RETURN(&dst->vb_int32, &work_dbuff);
1968 break;
1969
1970 case FR_TYPE_INT64:
1971 FR_DBUFF_OUT_RETURN(&dst->vb_int64, &work_dbuff);
1972 break;
1973
1974 case FR_TYPE_FLOAT32:
1975 FR_DBUFF_OUT_RETURN(&dst->vb_float32, &work_dbuff);
1976 break;
1977
1978 case FR_TYPE_FLOAT64:
1979 FR_DBUFF_OUT_RETURN(&dst->vb_float64, &work_dbuff);
1980 break;
1981
1982 /*
1983 * Dates and deltas are stored internally as
1984 * 64-bit nanoseconds. We have to convert from
1985 * the network format. First by size
1986 * (16/32/64-bit), and then by resolution (ns,
1987 * us, ms, s).
1988 */
1989 case FR_TYPE_DATE:
1990 {
1991 size_t length = 4;
1992 fr_time_res_t precision = FR_TIME_RES_SEC;
1993 uint64_t date;
1994
1995 if (enumv) {
1996 length = enumv->flags.length;
1997 precision = (fr_time_res_t)enumv->flags.flag_time_res;
1998 }
1999
2000 /*
2001 * Input data doesn't match what we were told we
2002 * need.
2003 */
2004 if (len > length) return -(length);
2005
2006 dst->enumv = enumv;
2007
2008 FR_DBUFF_OUT_UINT64V_RETURN(&date, &work_dbuff, length);
2009
2010 if (!fr_multiply(&date, date, fr_time_multiplier_by_res[precision])) {
2011 fr_strerror_const("date would overflow");
2012 return 0;
2013 }
2014
2015 dst->vb_date = fr_unix_time_wrap(date);
2016 }
2017 break;
2018
2019 case FR_TYPE_TIME_DELTA:
2020 {
2021 size_t length = 4;
2022 fr_time_res_t precision = FR_TIME_RES_SEC;
2023 int64_t date;
2024
2025 if (enumv) {
2026 length = enumv->flags.length;
2027 precision = (fr_time_res_t)enumv->flags.flag_time_res;
2028 }
2029
2030 /*
2031 * Input data doesn't match what we were told we
2032 * need.
2033 */
2034 if (len > length) return -(length);
2035
2036 dst->enumv = enumv;
2037
2038 if (!enumv || !enumv->flags.is_unsigned) {
2039 FR_DBUFF_OUT_INT64V_RETURN(&date, &work_dbuff, length);
2040 } else {
2041 uint64_t tmp;
2042
2043 /*
2044 * Else it's an unsigned time delta, but
2045 * we do have to clamp it at the max
2046 * value for a signed 64-bit integer.
2047 */
2048 FR_DBUFF_OUT_UINT64V_RETURN(&tmp, &work_dbuff, length);
2049
2050 if (tmp > INT64_MAX) tmp = INT64_MAX;
2051
2052 date = tmp;
2053 }
2054
2055 dst->vb_time_delta = fr_time_delta_wrap(fr_time_scale(date, precision));
2056 }
2057 break;
2058
2059 case FR_TYPE_STRING:
2060 case FR_TYPE_OCTETS:
2061 break; /* Already dealt with */
2062
2063 case FR_TYPE_SIZE:
2064 case FR_TYPE_NON_LEAF:
2065 fr_strerror_printf("Cannot decode type \"%s\" - Is not a value",
2067 break;
2068 }
2069
2070 return fr_dbuff_set(dbuff, &work_dbuff);
2071}
2072
2073/** Get a key from a value box
2074 *
2075 * @param[in,out] out - set to a small buffer on input. If the callback has more data
2076 * than is available here, the callback can update "out" to point elsewhere
2077 * @param[in,out] outlen The number of bits available in the initial buffer. On output,
2078 * the number of bits available in the key
2079 * @param[in] value the value box which contains the key
2080 * @return
2081 * - <0 on error
2082 * - 0 on success
2083 */
2085{
2086 ssize_t slen;
2087 fr_dbuff_t dbuff;
2088
2089 switch (value->type) {
2090 case FR_TYPE_BOOL:
2091 if (*outlen < 8) return -1;
2092
2093 *out[0] = (value->vb_bool) << 7;
2094 *outlen = 1;
2095 break;
2096
2098 if (*outlen < (fr_value_box_network_sizes[value->type][1] * 8)) return -1;
2099
2100 /*
2101 * Integers are put into network byte order.
2102 */
2103 fr_dbuff_init(&dbuff, *out, *outlen >> 3);
2104
2105 slen = fr_value_box_to_network(&dbuff, value);
2106 if (slen < 0) return -1;
2107 *outlen = slen * 8; /* bits not bytes */
2108 break;
2109
2110 case FR_TYPE_IP:
2111 /*
2112 * IPs are already in network byte order.
2113 */
2114 *out = UNCONST(uint8_t *, &value->vb_ip.addr);
2115 *outlen = value->vb_ip.prefix;
2116 break;
2117
2118 case FR_TYPE_STRING:
2119 case FR_TYPE_OCTETS:
2120 *out = value->datum.ptr;
2121 *outlen = value->vb_length * 8;
2122 break;
2123
2124 case FR_TYPE_ETHERNET:
2125 *out = UNCONST(uint8_t *, &value->vb_ether[0]);
2126 *outlen = sizeof(value->vb_ether) * 8;
2127 break;
2128
2129 default:
2130 fr_strerror_printf("Invalid data type '%s' for getting key",
2131 fr_type_to_str(value->type));
2132 return -1;
2133 }
2134
2135 return 0;
2136}
2137
2138/** Convert octets to a fixed size value box value
2139 *
2140 * All fixed size types are allowed.
2141 *
2142 * @param dst Where to write result of casting.
2143 * @param dst_type to cast to.
2144 * @param dst_enumv enumeration values.
2145 * @param src Input data.
2146 */
2148 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv,
2149 fr_value_box_t const *src)
2150{
2151 uint8_t *ptr;
2152
2153 if (!fr_type_is_fixed_size(dst_type)) if (!fr_cond_assert(false)) return -1;
2154
2155 if (src->vb_length > network_max_size(dst_type)) {
2156 fr_strerror_printf("Invalid cast from %s to %s. Source length %zu is greater than "
2157 "destination type size %zu",
2158 fr_type_to_str(src->type),
2159 fr_type_to_str(dst_type),
2160 src->vb_length,
2161 network_max_size(dst_type));
2162 return -1;
2163 }
2164
2165 fr_value_box_init(dst, dst_type, dst_enumv, src->tainted);
2166
2167 /*
2168 * No data to copy means just reset it to zero.
2169 */
2170 if (!src->vb_length) return 0;
2171
2172 ptr = (uint8_t *) &dst->datum;
2173
2174 /*
2175 * If the source is too small, just left-fill with zeroes.
2176 */
2177 if (src->vb_length < network_min_size(dst_type)) {
2178 ptr += network_min_size(dst_type) - src->vb_length;
2179 }
2180
2181 /*
2182 * Copy the raw octets into the datum of a value_box
2183 * inverting bytesex for uint32s (if LE).
2184 */
2185 memcpy(ptr, src->vb_octets, src->vb_length);
2186 fr_value_box_hton(dst, dst);
2187
2188 return 0;
2189}
2190
2191/** v4 to v6 mapping prefix
2192 *
2193 * Part of the IPv6 range is allocated to represent IPv4 addresses.
2194 */
2195static uint8_t const v4_v6_map[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2196 0x00, 0x00, 0x00, 0x00, 0xff, 0xff };
2197
2198
2199/** Convert any supported type to a string
2200 *
2201 * All non-structural types are allowed.
2202 *
2203 * @param ctx unused.
2204 * @param dst Where to write result of casting.
2205 * @param dst_type to cast to.
2206 * @param dst_enumv enumeration values.
2207 * @param src Input data.
2208 */
2209static inline int fr_value_box_cast_to_strvalue(TALLOC_CTX *ctx, fr_value_box_t *dst,
2210 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv,
2211 fr_value_box_t const *src)
2212{
2213 if (!fr_cond_assert(dst_type == FR_TYPE_STRING)) return -1;
2214
2215 switch (src->type) {
2216 /*
2217 * The presentation format of octets is hex
2218 * What we actually want here is the raw string
2219 */
2220 case FR_TYPE_OCTETS:
2221 return fr_value_box_bstrndup(ctx, dst, dst_enumv,
2222 (char const *)src->vb_octets, src->vb_length, src->tainted);
2223
2224 case FR_TYPE_GROUP:
2226 dst, UNCONST(fr_value_box_list_t *, &src->vb_group),
2229 SIZE_MAX);
2230
2231 /*
2232 * Get the presentation format
2233 */
2234 default:
2235 {
2236 char *str;
2237
2238 fr_value_box_aprint(ctx, &str, src, NULL);
2239 if (unlikely(!str)) return -1;
2240
2241 return fr_value_box_bstrdup_buffer_shallow(NULL, dst, dst_enumv, str, src->tainted);
2242 }
2243 }
2244}
2245
2246/** Convert any supported type to octets
2247 *
2248 * All non-structural types are allowed.
2249 *
2250 * @param ctx unused.
2251 * @param dst Where to write result of casting.
2252 * @param dst_type to cast to.
2253 * @param dst_enumv enumeration values.
2254 * @param src Input data.
2255 */
2256static inline int fr_value_box_cast_to_octets(TALLOC_CTX *ctx, fr_value_box_t *dst,
2257 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv,
2258 fr_value_box_t const *src)
2259{
2260 if (!fr_cond_assert(dst_type == FR_TYPE_OCTETS)) return -1;
2261
2262 switch (src->type) {
2263 /*
2264 * <string> (excluding terminating \0)
2265 */
2266 case FR_TYPE_STRING:
2267 if (fr_value_box_memdup(ctx, dst, dst_enumv,
2268 (uint8_t const *)src->vb_strvalue, src->vb_length, src->tainted) < 0) {
2269 return -1;
2270 }
2271 return 0;
2272
2273 case FR_TYPE_GROUP:
2275 dst, UNCONST(fr_value_box_list_t *, &src->vb_group),
2278 SIZE_MAX);
2279 /*
2280 * <4 bytes address>
2281 */
2282 case FR_TYPE_IPV4_ADDR:
2283 return fr_value_box_memdup(ctx, dst, dst_enumv,
2284 (uint8_t const *)&src->vb_ip.addr.v4.s_addr,
2285 sizeof(src->vb_ip.addr.v4.s_addr), src->tainted);
2286
2287 /*
2288 * <1 uint8 prefix> + <4 bytes address>
2289 */
2291 {
2292 uint8_t *bin;
2293
2294 if (fr_value_box_mem_alloc(ctx, &bin, dst, dst_enumv,
2295 sizeof(src->vb_ip.addr.v4.s_addr) + 1, src->tainted) < 0) return -1;
2296
2297 bin[0] = src->vb_ip.prefix;
2298 memcpy(&bin[1], (uint8_t const *)&src->vb_ip.addr.v4.s_addr, sizeof(src->vb_ip.addr.v4.s_addr));
2299 }
2300 return 0;
2301
2302 /*
2303 * <16 bytes address>
2304 */
2305 case FR_TYPE_IPV6_ADDR:
2306 return fr_value_box_memdup(ctx, dst, dst_enumv,
2307 (uint8_t const *)src->vb_ip.addr.v6.s6_addr,
2308 sizeof(src->vb_ip.addr.v6.s6_addr), src->tainted);
2309
2310 /*
2311 * <1 uint8 prefix> + <1 uint8 scope> + <16 bytes address>
2312 */
2314 {
2315 uint8_t *bin;
2316
2317 if (fr_value_box_mem_alloc(ctx, &bin, dst, dst_enumv,
2318 sizeof(src->vb_ip.addr.v6.s6_addr) + 2, src->tainted) < 0) return -1;
2319 bin[0] = src->vb_ip.scope_id;
2320 bin[1] = src->vb_ip.prefix;
2321 memcpy(&bin[2], src->vb_ip.addr.v6.s6_addr, sizeof(src->vb_ip.addr.v6.s6_addr));
2322 }
2323 return 0;
2324
2325 /*
2326 * Get the raw binary in memory representation
2327 */
2328 case FR_TYPE_NUMERIC:
2329 {
2330 fr_value_box_t tmp;
2331
2332 fr_value_box_hton(&tmp, src); /* Flip any numeric representations */
2333 return fr_value_box_memdup(ctx, dst, dst_enumv,
2334 fr_value_box_raw(&tmp, src->type),
2335 fr_value_box_field_sizes[src->type], src->tainted);
2336 }
2337
2338 default:
2339 /* Not the same talloc_memdup call as above. The above memdup reads data from the dst */
2340 return fr_value_box_memdup(ctx, dst, dst_enumv,
2341 fr_value_box_raw(src, src->type),
2342 fr_value_box_field_sizes[src->type], src->tainted);
2343 }
2344}
2345
2346#define CAST_IP_FIX_COMBO \
2347 case FR_TYPE_COMBO_IP_ADDR: \
2348 if (src->vb_ip.af == AF_INET) { \
2349 src_type = FR_TYPE_IPV4_ADDR; \
2350 } else if (src->vb_ip.af == AF_INET6) { \
2351 src_type = FR_TYPE_IPV6_ADDR; \
2352 } \
2353 break; \
2354 case FR_TYPE_COMBO_IP_PREFIX: \
2355 if (src->vb_ip.af == AF_INET) { \
2356 src_type = FR_TYPE_IPV4_PREFIX; \
2357 } else if (src->vb_ip.af == AF_INET6) { \
2358 src_type = FR_TYPE_IPV6_PREFIX; \
2359 } \
2360 break
2361
2362
2363/** Convert any supported type to an IPv4 address
2364 *
2365 * Allowed input types are:
2366 * - FR_TYPE_IPV6_ADDR (with v4 prefix).
2367 * - FR_TYPE_IPV4_PREFIX (with 32bit mask).
2368 * - FR_TYPE_IPV6_PREFIX (with v4 prefix and 128bit mask).
2369 * - FR_TYPE_OCTETS (of length 4).
2370 * - FR_TYPE_UINT32
2371 *
2372 * @param ctx unused.
2373 * @param dst Where to write result of casting.
2374 * @param dst_type to cast to.
2375 * @param dst_enumv enumeration values.
2376 * @param src Input data.
2377 */
2378static inline int fr_value_box_cast_to_ipv4addr(TALLOC_CTX *ctx, fr_value_box_t *dst,
2379 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv,
2380 fr_value_box_t const *src)
2381{
2382 fr_type_t src_type = src->type;
2383
2384 fr_assert(dst_type == FR_TYPE_IPV4_ADDR);
2385
2386 switch (src_type) {
2387 case FR_TYPE_STRING:
2388 return fr_value_box_from_str(ctx, dst, dst_type, dst_enumv,
2389 src->vb_strvalue, src->vb_length,
2390 NULL, src->tainted);
2391
2393
2394 default:
2395 break;
2396 }
2397
2398 /*
2399 * Pre-initialise box for non-variable types
2400 */
2401 fr_value_box_init(dst, dst_type, dst_enumv, src->tainted);
2402 dst->vb_ip.af = AF_INET;
2403 dst->vb_ip.prefix = 32;
2404 dst->vb_ip.scope_id = 0;
2405
2406 switch (src_type) {
2407 case FR_TYPE_IPV6_ADDR:
2408 if (memcmp(src->vb_ip.addr.v6.s6_addr, v4_v6_map, sizeof(v4_v6_map)) != 0) {
2409 bad_v6_prefix_map:
2410 fr_strerror_printf("Invalid cast from %s to %s. No IPv4-IPv6 mapping prefix",
2411 fr_type_to_str(src->type),
2412 fr_type_to_str(dst_type));
2413 return -1;
2414 }
2415
2416 memcpy(&dst->vb_ip.addr.v4, &src->vb_ip.addr.v6.s6_addr[sizeof(v4_v6_map)],
2417 sizeof(dst->vb_ip.addr.v4));
2418
2419 break;
2420
2422 if (src->vb_ip.prefix != 32) {
2423 fr_strerror_printf("Invalid cast from %s to %s. Only /32 (not %i/) prefixes may be "
2424 "cast to IP address types",
2425 fr_type_to_str(src->type),
2426 fr_type_to_str(dst_type),
2427 src->vb_ip.prefix);
2428 return -1;
2429 }
2431
2432 case FR_TYPE_IPV4_ADDR: /* Needed for handling combo addresses */
2433 memcpy(&dst->vb_ip.addr.v4, &src->vb_ip.addr.v4, sizeof(dst->vb_ip.addr.v4));
2434 break;
2435
2437 if (src->vb_ip.prefix != 128) {
2438 fr_strerror_printf("Invalid cast from %s to %s. Only /128 (not /%i) prefixes may be "
2439 "cast to IP address types",
2440 fr_type_to_str(src->type),
2441 fr_type_to_str(dst_type),
2442 src->vb_ip.prefix);
2443 return -1;
2444 }
2445 if (memcmp(&src->vb_ip.addr.v6.s6_addr, v4_v6_map, sizeof(v4_v6_map)) != 0) goto bad_v6_prefix_map;
2446 memcpy(&dst->vb_ip.addr.v4, &src->vb_ip.addr.v6.s6_addr[sizeof(v4_v6_map)],
2447 sizeof(dst->vb_ip.addr.v4));
2448 break;
2449
2450 case FR_TYPE_OCTETS:
2451 if (src->vb_length != sizeof(dst->vb_ip.addr.v4.s_addr)) {
2452 fr_strerror_printf("Invalid cast from %s to %s. Needed octet string of length %zu, got %zu",
2453 fr_type_to_str(src->type),
2454 fr_type_to_str(dst_type),
2455 sizeof(dst->vb_ip.addr.v4.s_addr), src->vb_length);
2456 return -1;
2457 }
2458 memcpy(&dst->vb_ip.addr.v4, src->vb_octets, sizeof(dst->vb_ip.addr.v4.s_addr));
2459 break;
2460
2461 case FR_TYPE_UINT32:
2462 {
2463 uint32_t net;
2464
2465 net = ntohl(src->vb_uint32);
2466 memcpy(&dst->vb_ip.addr.v4, (uint8_t *)&net, sizeof(dst->vb_ip.addr.v4.s_addr));
2467 }
2468 break;
2469
2470 default:
2471 fr_strerror_printf("Invalid cast from %s to %s. Unsupported",
2472 fr_type_to_str(src->type),
2473 fr_type_to_str(dst_type));
2474 return -1;
2475 }
2476
2477 return 0;
2478}
2479
2480/** Convert any supported type to an IPv6 address
2481 *
2482 * Allowed input types are:
2483 * - FR_TYPE_IPV4_ADDR
2484 * - FR_TYPE_IPV4_PREFIX (with 32bit mask).
2485 * - FR_TYPE_IPV6_PREFIX (with 128bit mask).
2486 * - FR_TYPE_OCTETS (of length 16).
2487 *
2488 * @param ctx unused.
2489 * @param dst Where to write result of casting.
2490 * @param dst_type to cast to.
2491 * @param dst_enumv enumeration values.
2492 * @param src Input data.
2493 */
2494static inline int fr_value_box_cast_to_ipv4prefix(TALLOC_CTX *ctx, fr_value_box_t *dst,
2495 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv,
2496 fr_value_box_t const *src)
2497{
2498 fr_type_t src_type = src->type;
2499 fr_assert(dst_type == FR_TYPE_IPV4_PREFIX);
2500
2501 switch (src_type) {
2502 case FR_TYPE_STRING:
2503 return fr_value_box_from_str(ctx, dst, dst_type, dst_enumv,
2504 src->vb_strvalue, src->vb_length,
2505 NULL, src->tainted);
2506
2508
2509 default:
2510 break;
2511 }
2512
2513 /*
2514 * Pre-initialise box for non-variable types
2515 */
2516 fr_value_box_init(dst, dst_type, dst_enumv, src->tainted);
2517 dst->vb_ip.af = AF_INET;
2518 dst->vb_ip.scope_id = 0;
2519
2520 switch (src_type) {
2521 case FR_TYPE_IPV4_PREFIX: /* Needed for handling combo prefixes */
2522 dst->vb_ip.prefix = src->vb_ip.prefix;
2524
2525 case FR_TYPE_IPV4_ADDR:
2526 memcpy(&dst->vb_ip, &src->vb_ip, sizeof(dst->vb_ip));
2527 break;
2528
2529 /*
2530 * Copy the last four bytes, to make an IPv4prefix
2531 */
2532 case FR_TYPE_IPV6_ADDR:
2533 if (memcmp(src->vb_ip.addr.v6.s6_addr, v4_v6_map, sizeof(v4_v6_map)) != 0) {
2534 bad_v6_prefix_map:
2535 fr_strerror_printf("Invalid cast from %s to %s. No IPv4-IPv6 mapping prefix",
2536 fr_type_to_str(src->type),
2537 fr_type_to_str(dst_type));
2538 return -1;
2539 }
2540 memcpy(&dst->vb_ip.addr.v4.s_addr, &src->vb_ip.addr.v6.s6_addr[sizeof(v4_v6_map)],
2541 sizeof(dst->vb_ip.addr.v4.s_addr));
2542 dst->vb_ip.prefix = 32;
2543 break;
2544
2546 if (memcmp(src->vb_ip.addr.v6.s6_addr, v4_v6_map, sizeof(v4_v6_map)) != 0) goto bad_v6_prefix_map;
2547
2548 if (src->vb_ip.prefix < (sizeof(v4_v6_map) << 3)) {
2549 fr_strerror_printf("Invalid cast from %s to %s. Expected prefix >= %u bits got %u bits",
2550 fr_type_to_str(src->type),
2551 fr_type_to_str(dst_type),
2552 (unsigned int)(sizeof(v4_v6_map) << 3), src->vb_ip.prefix);
2553 return -1;
2554 }
2555 memcpy(&dst->vb_ip.addr.v4.s_addr, &src->vb_ip.addr.v6.s6_addr[sizeof(v4_v6_map)],
2556 sizeof(dst->vb_ip.addr.v4.s_addr));
2557
2558 /*
2559 * Subtract the bits used by the v4_v6_map to get the v4 prefix bits
2560 */
2561 dst->vb_ip.prefix = src->vb_ip.prefix - (sizeof(v4_v6_map) << 3);
2562 break;
2563
2564 case FR_TYPE_OCTETS:
2565 if (src->vb_length != sizeof(dst->vb_ip.addr.v4.s_addr) + 1) {
2566 fr_strerror_printf("Invalid cast from %s to %s. Needed octet string of length %zu, got %zu",
2567 fr_type_to_str(src->type),
2568 fr_type_to_str(dst_type),
2569 sizeof(dst->vb_ip.addr.v4.s_addr) + 1, src->vb_length);
2570 return -1;
2571 }
2572 dst->vb_ip.prefix = src->vb_octets[0];
2573 memcpy(&dst->vb_ip.addr.v4, &src->vb_octets[1], sizeof(dst->vb_ip.addr.v4.s_addr));
2574 break;
2575
2576 case FR_TYPE_UINT32:
2577 {
2578 uint32_t net;
2579
2580 net = ntohl(src->vb_uint32);
2581 memcpy(&dst->vb_ip.addr.v4, (uint8_t *)&net, sizeof(dst->vb_ip.addr.v4.s_addr));
2582 dst->vb_ip.prefix = 32;
2583 break;
2584 }
2585
2586 default:
2587 fr_strerror_printf("Invalid cast from %s to %s. Unsupported",
2588 fr_type_to_str(src->type),
2589 fr_type_to_str(dst_type));
2590 return -1;
2591 }
2592
2593 return 0;
2594}
2595
2596/** Convert any supported type to an IPv6 address
2597 *
2598 * Allowed input types are:
2599 * - FR_TYPE_IPV4_ADDR
2600 * - FR_TYPE_IPV4_PREFIX (with 32bit mask).
2601 * - FR_TYPE_IPV6_PREFIX (with 128bit mask).
2602 * - FR_TYPE_OCTETS (of length 16).
2603 *
2604 * @param ctx unused.
2605 * @param dst Where to write result of casting.
2606 * @param dst_type to cast to.
2607 * @param dst_enumv enumeration values.
2608 * @param src Input data.
2609 */
2610static inline int fr_value_box_cast_to_ipv6addr(TALLOC_CTX *ctx, fr_value_box_t *dst,
2611 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv,
2612 fr_value_box_t const *src)
2613{
2614 fr_type_t src_type = src->type;
2615
2616 static_assert((sizeof(v4_v6_map) + sizeof(src->vb_ip.addr.v4)) <=
2617 sizeof(src->vb_ip.addr.v6), "IPv6 storage too small");
2618 fr_assert(dst_type == FR_TYPE_IPV6_ADDR);
2619
2620 switch (src_type) {
2621 case FR_TYPE_STRING:
2622 return fr_value_box_from_str(ctx, dst, dst_type, dst_enumv,
2623 src->vb_strvalue, src->vb_length,
2624 NULL, src->tainted);
2625
2627
2628 default:
2629 break;
2630 }
2631
2632 /*
2633 * Pre-initialise box for non-variable types
2634 */
2635 fr_value_box_init(dst, dst_type, dst_enumv, src->tainted);
2636 dst->vb_ip.af = AF_INET6;
2637 dst->vb_ip.prefix = 128;
2638
2639 switch (src_type) {
2640 case FR_TYPE_IPV4_ADDR:
2641 {
2642 uint8_t *p = dst->vb_ip.addr.v6.s6_addr;
2643
2644 /* Add the v4/v6 mapping prefix */
2645 memcpy(p, v4_v6_map, sizeof(v4_v6_map));
2646 p += sizeof(v4_v6_map);
2647 memcpy(p, (uint8_t const *)&src->vb_ip.addr.v4.s_addr, sizeof(src->vb_ip.addr.v4.s_addr));
2648 dst->vb_ip.scope_id = 0;
2649 }
2650 break;
2651
2653 {
2654 uint8_t *p = dst->vb_ip.addr.v6.s6_addr;
2655
2656 if (src->vb_ip.prefix != 32) {
2657 fr_strerror_printf("Invalid cast from %s to %s. Only /32 (not /%i) prefixes may be "
2658 "cast to IP address types",
2659 fr_type_to_str(src->type),
2660 fr_type_to_str(dst_type),
2661 src->vb_ip.prefix);
2662 return -1;
2663 }
2664
2665 /* Add the v4/v6 mapping prefix */
2666 memcpy(p, v4_v6_map, sizeof(v4_v6_map));
2667 p += sizeof(v4_v6_map);
2668 memcpy(p, (uint8_t const *)&src->vb_ip.addr.v4.s_addr, sizeof(src->vb_ip.addr.v4.s_addr));
2669 dst->vb_ip.scope_id = 0;
2670 }
2671 break;
2672
2674 if (src->vb_ip.prefix != 128) {
2675 fr_strerror_printf("Invalid cast from %s to %s. Only /128 (not /%i) prefixes may be "
2676 "cast to IP address types",
2677 fr_type_to_str(src->type),
2678 fr_type_to_str(dst_type),
2679 src->vb_ip.prefix);
2680 return -1;
2681 }
2683
2684 case FR_TYPE_IPV6_ADDR: /* Needed for handling combo addresses */
2685 memcpy(dst->vb_ip.addr.v6.s6_addr, src->vb_ip.addr.v6.s6_addr,
2686 sizeof(dst->vb_ip.addr.v6.s6_addr));
2687 dst->vb_ip.scope_id = src->vb_ip.scope_id;
2688 break;
2689
2690 case FR_TYPE_OCTETS:
2691 if (src->vb_length != sizeof(dst->vb_ip.addr.v6.s6_addr)) {
2692 fr_strerror_printf("Invalid cast from %s to %s. Needed octet string of length %zu, got %zu",
2693 fr_type_to_str(src->type),
2694 fr_type_to_str(dst_type),
2695 sizeof(dst->vb_ip.addr.v6.s6_addr), src->vb_length);
2696 return -1;
2697 }
2698 memcpy(&dst->vb_ip.addr.v6.s6_addr, src->vb_octets, sizeof(dst->vb_ip.addr.v6.s6_addr));
2699 break;
2700
2701 default:
2702 fr_strerror_printf("Invalid cast from %s to %s. Unsupported",
2703 fr_type_to_str(src->type),
2704 fr_type_to_str(dst_type));
2705 break;
2706 }
2707
2708 return 0;
2709}
2710
2711/** Convert any supported type to an IPv6 address
2712 *
2713 * Allowed input types are:
2714 * - FR_TYPE_IPV4_ADDR
2715 * - FR_TYPE_IPV4_PREFIX (with 32bit mask).
2716 * - FR_TYPE_IPV6_PREFIX (with 128bit mask).
2717 * - FR_TYPE_OCTETS (of length 16).
2718 *
2719 * @param ctx unused.
2720 * @param dst Where to write result of casting.
2721 * @param dst_type to cast to.
2722 * @param dst_enumv enumeration values.
2723 * @param src Input data.
2724 */
2725static inline int fr_value_box_cast_to_ipv6prefix(TALLOC_CTX *ctx, fr_value_box_t *dst,
2726 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv,
2727 fr_value_box_t const *src)
2728{
2729 fr_type_t src_type = src->type;
2730
2731 fr_assert(dst_type == FR_TYPE_IPV6_PREFIX);
2732
2733 switch (src_type) {
2734 case FR_TYPE_STRING:
2735 return fr_value_box_from_str(ctx, dst, dst_type, dst_enumv,
2736 src->vb_strvalue, src->vb_length,
2737 NULL, src->tainted);
2738
2740
2741 default:
2742 break;
2743 }
2744
2745 /*
2746 * Pre-initialise box for non-variable types
2747 */
2748 fr_value_box_init(dst, dst_type, dst_enumv, src->tainted);
2749 dst->vb_ip.af = AF_INET6;
2750
2751 switch (src_type) {
2752 case FR_TYPE_IPV4_ADDR:
2753 {
2754 uint8_t *p = dst->vb_ip.addr.v6.s6_addr;
2755
2756 /* Add the v4/v6 mapping prefix */
2757 memcpy(p, v4_v6_map, sizeof(v4_v6_map));
2758 p += sizeof(v4_v6_map);
2759 memcpy(p, (uint8_t const *)&src->vb_ip.addr.v4.s_addr, sizeof(src->vb_ip.addr.v4.s_addr));
2760 dst->vb_ip.prefix = 128;
2761 dst->vb_ip.scope_id = 0;
2762 }
2763 break;
2764
2766 {
2767 uint8_t *p = dst->vb_ip.addr.v6.s6_addr;
2768
2769 /* Add the v4/v6 mapping prefix */
2770 memcpy(p, v4_v6_map, sizeof(v4_v6_map));
2771 p += sizeof(v4_v6_map);
2772 memcpy(p, (uint8_t const *)&src->vb_ip.addr.v4.s_addr, sizeof(src->vb_ip.addr.v4.s_addr));
2773 dst->vb_ip.prefix = (sizeof(v4_v6_map) << 3) + src->vb_ip.prefix;
2774 dst->vb_ip.scope_id = 0;
2775 }
2776 break;
2777
2778 case FR_TYPE_IPV6_PREFIX: /* Needed for handling combo prefixes */
2779 dst->vb_ip.prefix = src->vb_ip.prefix;
2780 goto v6_common;
2781
2782 case FR_TYPE_IPV6_ADDR:
2783 dst->vb_ip.prefix = 128;
2784 v6_common:
2785 memcpy(dst->vb_ip.addr.v6.s6_addr, src->vb_ip.addr.v6.s6_addr,
2786 sizeof(dst->vb_ip.addr.v6.s6_addr));
2787 dst->vb_ip.scope_id = src->vb_ip.scope_id;
2788 break;
2789
2790 case FR_TYPE_OCTETS:
2791 if (src->vb_length != (sizeof(dst->vb_ip.addr.v6.s6_addr) + 2)) {
2792 fr_strerror_printf("Invalid cast from %s to %s. Needed octet string of length %zu, got %zu",
2793 fr_type_to_str(src->type),
2794 fr_type_to_str(dst_type),
2795 sizeof(dst->vb_ip.addr.v6.s6_addr) + 2, src->vb_length);
2796 return -1;
2797 }
2798 dst->vb_ip.scope_id = src->vb_octets[0];
2799 dst->vb_ip.prefix = src->vb_octets[1];
2800 memcpy(&dst->vb_ip.addr.v6.s6_addr, src->vb_octets, sizeof(dst->vb_ip.addr.v6.s6_addr));
2801 break;
2802
2803 default:
2804 fr_strerror_printf("Invalid cast from %s to %s. Unsupported",
2805 fr_type_to_str(src->type),
2806 fr_type_to_str(dst_type));
2807 return -1;
2808 }
2809 return 0;
2810}
2811
2812/** Convert any supported type to an ethernet address
2813 *
2814 * Allowed input types are:
2815 * - FR_TYPE_STRING ("00:11:22:33:44:55")
2816 * - FR_TYPE_OCTETS (0x001122334455)
2817 *
2818 *
2819 * @param ctx unused.
2820 * @param dst Where to write result of casting.
2821 * @param dst_type to cast to.
2822 * @param dst_enumv enumeration values.
2823 * @param src Input data.
2824 */
2825static inline int fr_value_box_cast_to_ethernet(TALLOC_CTX *ctx, fr_value_box_t *dst,
2826 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv,
2827 fr_value_box_t const *src)
2828{
2829 fr_assert(dst_type == FR_TYPE_ETHERNET);
2830
2831 switch (src->type) {
2832 case FR_TYPE_STRING:
2833 return fr_value_box_from_str(ctx, dst, dst_type, dst_enumv,
2834 src->vb_strvalue, src->vb_length,
2835 NULL, src->tainted);
2836
2837 case FR_TYPE_OCTETS:
2838 return fr_value_box_fixed_size_from_octets(dst, dst_type, dst_enumv, src);
2839
2840 default:
2841 break;
2842 }
2843
2844 /*
2845 * Pre-initialise box for non-variable types
2846 */
2847 fr_value_box_init(dst, dst_type, dst_enumv, src->tainted);
2848
2849 switch (src->type) {
2850 case FR_TYPE_UINT64: {
2851 uint8_t array[8];
2852
2853 fr_nbo_from_uint64(array, src->vb_uint64);
2854
2855 /*
2856 * For OUIs in the DB.
2857 */
2858 if ((array[0] != 0) || (array[1] != 0)) return -1;
2859
2860 memcpy(dst->vb_ether, &array[2], 6);
2861 break;
2862 }
2863
2864 default:
2865 fr_strerror_printf("Invalid cast from %s to %s. Unsupported",
2866 fr_type_to_str(src->type),
2867 fr_type_to_str(dst_type));
2868 return -1;
2869 }
2870
2871 return 0;
2872}
2873
2874/** Convert any supported type to a bool
2875 *
2876 * Allowed input types are:
2877 * - FR_TYPE_STRING ("yes", "true", "no", "false")
2878 *
2879 * @param ctx unused.
2880 * @param dst Where to write result of casting.
2881 * @param dst_type to cast to.
2882 * @param dst_enumv enumeration values.
2883 * @param src Input data.
2884 */
2885static inline int fr_value_box_cast_to_bool(TALLOC_CTX *ctx, fr_value_box_t *dst,
2886 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv,
2887 fr_value_box_t const *src)
2888{
2889 fr_assert(dst_type == FR_TYPE_BOOL);
2890
2891 switch (src->type) {
2892 case FR_TYPE_STRING:
2893 return fr_value_box_from_str(ctx, dst, dst_type, dst_enumv,
2894 src->vb_strvalue, src->vb_length,
2895 NULL, src->tainted);
2896
2897 case FR_TYPE_OCTETS:
2898 /*
2899 * This is really "bool from network"
2900 */
2901 return fr_value_box_fixed_size_from_octets(dst, dst_type, dst_enumv, src);
2902
2903 default:
2904 break;
2905 }
2906
2907 /*
2908 * Pre-initialise box for non-variable types
2909 */
2910 fr_value_box_init(dst, dst_type, dst_enumv, src->tainted);
2911
2912 switch (src->type) {
2913 case FR_TYPE_INT8:
2914 dst->vb_bool = (src->vb_int8 != 0);
2915 break;
2916
2917 case FR_TYPE_UINT8:
2918 dst->vb_bool = (src->vb_uint8 != 0);
2919 break;
2920
2921 case FR_TYPE_INT16:
2922 dst->vb_bool = (src->vb_int16 != 0);
2923 break;
2924
2925 case FR_TYPE_UINT16:
2926 dst->vb_bool = (src->vb_uint16 != 0);
2927 break;
2928
2929 case FR_TYPE_INT32:
2930 dst->vb_bool = (src->vb_int32 != 0);
2931 break;
2932
2933 case FR_TYPE_UINT32:
2934 dst->vb_bool = (src->vb_uint32 != 0);
2935 break;
2936
2937 case FR_TYPE_INT64:
2938 dst->vb_bool = (src->vb_int64 != 0);
2939 break;
2940
2941 case FR_TYPE_UINT64:
2942 dst->vb_bool = (src->vb_uint64 != 0);
2943 break;
2944
2945 case FR_TYPE_SIZE:
2946 dst->vb_bool = (src->vb_size != 0);
2947 break;
2948
2949 case FR_TYPE_TIME_DELTA:
2950 dst->vb_bool = (fr_time_delta_unwrap(src->vb_time_delta) != 0);
2951 break;
2952
2953 case FR_TYPE_FLOAT32:
2954 dst->vb_bool = (fpclassify(src->vb_float32) == FP_ZERO);
2955 break;
2956
2957 case FR_TYPE_FLOAT64:
2958 dst->vb_bool = (fpclassify(src->vb_float64) == FP_ZERO);
2959 break;
2960
2961 default:
2962 fr_strerror_printf("Invalid cast from %s to %s. Unsupported",
2963 fr_type_to_str(src->type),
2964 fr_type_to_str(dst_type));
2965 return -1;
2966 }
2967
2968 return 0;
2969}
2970
2971/** Convert any signed or unsigned integer type to any other signed or unsigned integer type
2972 *
2973 */
2974static inline int fr_value_box_cast_integer_to_integer(UNUSED TALLOC_CTX *ctx, fr_value_box_t *dst,
2975 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv,
2976 fr_value_box_t const *src)
2977{
2978 uint64_t tmp = 0;
2979 size_t len = fr_value_box_field_sizes[src->type];
2980 int64_t min;
2981
2982#define SIGN_BIT_HIGH(_int, _len) ((((uint64_t)1) << (((_len) << 3) - 1)) & (_int))
2983#define SIGN_PROMOTE(_int, _len) ((_len) < sizeof(_int) ? \
2984 (_int) | (~((__typeof__(_int))0)) << ((_len) << 3) : (_int))
2985
2986#if !defined(NDEBUG) || defined(STATIC_ANALYZER)
2987 /*
2988 * Helps catch invalid fr_value_box_field_sizes
2989 * entries, and shuts up clang analyzer.
2990 */
2991 if (!fr_cond_assert_msg(len > 0, "Invalid cast from %s to %s. "
2992 "invalid source type len, expected > 0, got %zu",
2993 fr_type_to_str(src->type),
2994 fr_type_to_str(dst_type),
2995 len)) return -1;
2996
2997 if (!fr_cond_assert_msg(len <= sizeof(uint64_t),
2998 "Invalid cast from %s to %s. "
2999 "invalid source type len, expected <= %zu, got %zu",
3000 fr_type_to_str(src->type),
3001 fr_type_to_str(dst_type),
3002 sizeof(uint64_t), len)) return -1;
3003#endif
3004
3005 switch (src->type) {
3006 /*
3007 * Dates are always represented in nanoseconds
3008 * internally, but when we convert to another
3009 * integer type, we scale appropriately.
3010 *
3011 * i.e. if the attribute value resolution is
3012 * seconds, then the integer value is
3013 * nanoseconds -> seconds.
3014 */
3015 case FR_TYPE_DATE:
3016 {
3018 if (src->enumv) res = src->enumv->flags.flag_time_res;
3019
3020 tmp = fr_unix_time_to_integer(src->vb_date, res);
3021 }
3022 break;
3023
3024 /*
3025 * Same deal with time deltas. Note that
3026 * even though we store the value as an
3027 * unsigned integer, it'll be cast to a
3028 * signed integer for comparisons.
3029 */
3030 case FR_TYPE_TIME_DELTA:
3031 {
3033
3034 if (src->enumv) res = src->enumv->flags.flag_time_res;
3035
3036 tmp = (uint64_t)fr_time_delta_to_integer(src->vb_time_delta, res);
3037 }
3038 break;
3039
3040 default:
3041#ifdef WORDS_BIGENDIAN
3042 memcpy(((uint8_t *)&tmp) + (sizeof(tmp) - len),
3043 fr_value_box_raw(src, src->type), len);
3044#else
3045 memcpy(&tmp, fr_value_box_raw(src, src->type), len);
3046#endif
3047 break;
3048 }
3049
3050 min = fr_value_box_integer_min[dst_type];
3051
3052 /*
3053 * Sign promote the input if the source type is
3054 * signed, and the high bit is set.
3055 */
3056 if (fr_value_box_integer_min[src->type] < 0) {
3057 if (SIGN_BIT_HIGH(tmp, len)) tmp = SIGN_PROMOTE(tmp, len);
3058
3059 if ((int64_t)tmp < min) {
3060 fr_strerror_printf("Invalid cast from %s to %s. %"PRId64" "
3061 "outside value range %"PRId64"-%"PRIu64,
3062 fr_type_to_str(src->type),
3063 fr_type_to_str(dst_type),
3064 (int64_t)tmp,
3065 min, fr_value_box_integer_max[dst_type]);
3066 return -1;
3067 }
3068 } else if (tmp > fr_value_box_integer_max[dst_type]) {
3069 fr_strerror_printf("Invalid cast from %s to %s. %"PRIu64" "
3070 "outside value range 0-%"PRIu64,
3071 fr_type_to_str(src->type),
3072 fr_type_to_str(dst_type),
3073 tmp, fr_value_box_integer_max[dst_type]);
3074 return -1;
3075 }
3076
3077 fr_value_box_init(dst, dst_type, dst_enumv, src->tainted);
3078 switch (dst_type) {
3079 case FR_TYPE_DATE:
3080 {
3081 bool overflow;
3083 if (dst->enumv) res = dst->enumv->flags.flag_time_res;
3084
3085 dst->vb_date = fr_unix_time_from_integer(&overflow, tmp, res);
3086 if (overflow) {
3087 fr_strerror_const("Input to data type would overflow");
3088 return -1;
3089 }
3090 }
3091 break;
3092
3093 case FR_TYPE_TIME_DELTA:
3094 {
3095 bool overflow;
3097 if (dst->enumv) res = dst->enumv->flags.flag_time_res;
3098
3099 dst->vb_time_delta = fr_time_delta_from_integer(&overflow, tmp, res);
3100 if (overflow) {
3101 fr_strerror_const("Input to time_delta type would overflow");
3102 return -1;
3103 }
3104 }
3105 break;
3106
3107 default:
3108#ifdef WORDS_BIGENDIAN
3109 memcpy(fr_value_box_raw(dst, dst->type),
3110 ((uint8_t *)&tmp) + (sizeof(tmp) - len), fr_value_box_field_sizes[dst_type]);
3111#else
3112 memcpy(fr_value_box_raw(dst, dst->type),
3113 &tmp, fr_value_box_field_sizes[dst_type]);
3114#endif
3115 break;
3116 }
3117
3118 return 0;
3119}
3120
3121/** Convert any value to a signed or unsigned integer
3122 *
3123 * @param ctx unused.
3124 * @param dst Where to write result of casting.
3125 * @param dst_type to cast to.
3126 * @param dst_enumv enumeration values.
3127 * @param src Input data.
3128 */
3129static inline int fr_value_box_cast_to_integer(TALLOC_CTX *ctx, fr_value_box_t *dst,
3130 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv,
3131 fr_value_box_t const *src)
3132{
3133 switch (src->type) {
3134 case FR_TYPE_STRING:
3135 return fr_value_box_from_str(ctx, dst, dst_type, dst_enumv,
3136 src->vb_strvalue, src->vb_length,
3137 NULL, src->tainted);
3138
3139 case FR_TYPE_OCTETS:
3140 return fr_value_box_fixed_size_from_octets(dst, dst_type, dst_enumv, src);
3141
3142 case FR_TYPE_INTEGER:
3143 return fr_value_box_cast_integer_to_integer(ctx, dst, dst_type, dst_enumv, src);
3144
3145 case FR_TYPE_IPV4_ADDR:
3147 {
3148 fr_value_box_t tmp;
3149
3150 switch (dst_type) {
3151 case FR_TYPE_UINT32:
3152 case FR_TYPE_INT64:
3153 case FR_TYPE_UINT64:
3154 case FR_TYPE_DATE:
3155 case FR_TYPE_TIME_DELTA:
3156 break;
3157
3158 default:
3159 goto bad_cast;
3160 }
3161
3162 fr_value_box_init(&tmp, FR_TYPE_UINT32, src->enumv, src->tainted);
3163 memcpy(&tmp.vb_uint32, &src->vb_ip.addr.v4, sizeof(tmp.vb_uint32));
3164 fr_value_box_hton(&tmp, &tmp);
3165 return fr_value_box_cast_integer_to_integer(ctx, dst, dst_type, dst_enumv, &tmp);
3166 }
3167
3168 case FR_TYPE_ETHERNET:
3169 {
3170 fr_value_box_t tmp;
3171
3172 switch (dst_type) {
3173 case FR_TYPE_INT64:
3174 case FR_TYPE_UINT64:
3175 case FR_TYPE_DATE:
3176 case FR_TYPE_TIME_DELTA:
3177 break;
3178
3179 default:
3180 goto bad_cast;
3181 }
3182
3183 fr_value_box_init(&tmp, FR_TYPE_UINT64, src->enumv, src->tainted);
3184 memcpy(((uint8_t *)&tmp.vb_uint64) + (sizeof(tmp.vb_uint64) - sizeof(src->vb_ether)),
3185 &src->vb_ether, sizeof(src->vb_ether));
3186#ifndef WORDS_BIGENDIAN
3187 /*
3188 * Ethernet addresses are always stored bigendian,
3189 * convert to native on little endian systems
3190 */
3191 fr_value_box_hton(&tmp, &tmp);
3192#endif
3193 return fr_value_box_cast_integer_to_integer(ctx, dst, dst_type, dst_enumv, &tmp);
3194 }
3195
3196 case FR_TYPE_IFID:
3197 {
3198 switch (dst_type) {
3199 case FR_TYPE_UINT64:
3200 break;
3201
3202 default:
3203 goto bad_cast;
3204 }
3205
3206 fr_value_box_init(dst, dst_type, dst_enumv, src->tainted);
3207 dst->vb_uint64 = fr_nbo_to_uint64(&src->vb_ifid[0]);
3208 return 0;
3209 }
3210
3211 default:
3212 break;
3213 }
3214
3215bad_cast:
3216 fr_strerror_printf("Invalid cast from %s to %s. Unsupported",
3217 fr_type_to_str(src->type),
3218 fr_type_to_str(dst_type));
3219 return -1;
3220}
3221
3222/** Convert any value to a floating point value
3223 *
3224 * @param ctx unused.
3225 * @param dst Where to write result of casting.
3226 * @param dst_type to cast to.
3227 * @param dst_enumv enumeration values.
3228 * @param src Input data.
3229 */
3230static inline int fr_value_box_cast_to_float(UNUSED TALLOC_CTX *ctx, fr_value_box_t *dst,
3231 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv,
3232 fr_value_box_t const *src)
3233{
3234 double num;
3235
3236 switch (src->type) {
3237 case FR_TYPE_FLOAT32:
3238 if (dst_type == FR_TYPE_FLOAT64) {
3239 num = (double) src->vb_float32;
3240 goto good_cast;
3241 }
3242
3243 goto bad_cast;
3244
3245 case FR_TYPE_FLOAT64:
3246 if (dst_type == FR_TYPE_FLOAT32) {
3247 num = src->vb_float64;
3248 goto good_cast;
3249 }
3250
3251 goto bad_cast;
3252
3253 case FR_TYPE_BOOL:
3254 num = src->vb_bool;
3255 goto good_cast;
3256
3257 case FR_TYPE_INT8:
3258 num = src->vb_int8;
3259 goto good_cast;
3260
3261 case FR_TYPE_INT16:
3262 num = src->vb_int16;
3263 goto good_cast;
3264
3265 case FR_TYPE_INT32:
3266 num = src->vb_int32;
3267 goto good_cast;
3268
3269 case FR_TYPE_INT64:
3270 num = src->vb_int64;
3271 goto good_cast;
3272
3273 case FR_TYPE_UINT8:
3274 num = src->vb_uint8;
3275 goto good_cast;
3276
3277 case FR_TYPE_UINT16:
3278 num = src->vb_uint16;
3279 goto good_cast;
3280
3281 case FR_TYPE_UINT32:
3282 num = src->vb_uint32;
3283 goto good_cast;
3284
3285 case FR_TYPE_UINT64:
3286 num = src->vb_uint64;
3287 goto good_cast;
3288
3289 case FR_TYPE_DATE:
3290 /*
3291 * Unix times are in nanoseconds
3292 */
3293 num = fr_unix_time_unwrap(src->vb_date);
3294 num /= NSEC;
3295 goto good_cast;
3296
3297 case FR_TYPE_TIME_DELTA:
3298 /*
3299 * Time deltas are in nanoseconds, but scaled.
3300 */
3301 num = fr_time_delta_unwrap(src->vb_time_delta);
3302 if (src->enumv) {
3303 num /= fr_time_multiplier_by_res[src->enumv->flags.flag_time_res];
3304 } else {
3305 num /= NSEC;
3306 }
3307 goto good_cast;
3308
3309 case FR_TYPE_SIZE:
3310 num = src->vb_size;
3311
3312 good_cast:
3313 fr_value_box_init(dst, dst_type, dst_enumv, src->tainted);
3314 if (dst_type == FR_TYPE_FLOAT32) {
3315 dst->vb_float32 = num;
3316 } else {
3317 dst->vb_float64 = num;
3318 }
3319 return 0;
3320
3321 default:
3322 break;
3323 }
3324
3325bad_cast:
3326 fr_strerror_printf("Invalid cast from %s to %s. Unsupported",
3327 fr_type_to_str(src->type),
3328 fr_type_to_str(dst_type));
3329 return -1;
3330}
3331
3332
3333/** Convert one type of fr_value_box_t to another
3334 *
3335 * This should be the canonical function used to convert between INTERNAL data formats.
3336 *
3337 * If you want to convert from PRESENTATION format, use #fr_value_box_from_substr.
3338 *
3339 * @note src and dst must not be the same box. We do not support casting in place.
3340 *
3341 * @param ctx to allocate buffers in (usually the same as dst)
3342 * @param dst Where to write result of casting.
3343 * @param dst_type to cast to.
3344 * @param dst_enumv Aliases for values contained within this fr_value_box_t.
3345 * If #fr_value_box_t is passed to #fr_value_box_aprint
3346 * names will be printed instead of actual value.
3347 * @param src Input data.
3348 * @return
3349 * - 0 on success.
3350 * - -1 on failure.
3351 */
3352int fr_value_box_cast(TALLOC_CTX *ctx, fr_value_box_t *dst,
3353 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv,
3354 fr_value_box_t const *src)
3355{
3356 if (!fr_cond_assert(dst_type != FR_TYPE_NULL)) return -1;
3357 if (!fr_cond_assert(src != dst)) return -1;
3358 if (!fr_cond_assert(src->type != FR_TYPE_NULL)) return -1;
3359
3360 if (fr_type_is_non_leaf(dst_type)) {
3361 fr_strerror_printf("Invalid cast from %s to %s. Can only cast simple data types",
3362 fr_type_to_str(src->type),
3363 fr_type_to_str(dst_type));
3364 return -1;
3365 }
3366
3367 /*
3368 * If it's the same type, copy, but set the enumv
3369 * in the destination box to be the one provided.
3370 *
3371 * The theory here is that the attribute value isn't
3372 * being converted into its presentation format and
3373 * re-parsed, and the enumv names only get applied
3374 * when converting internal values to/from strings,
3375 * so it's OK just to swap out the enumv.
3376 *
3377 * If there's a compelling case in the future we
3378 * might revisit this, but it'd likely mean fixing
3379 * all the casting functions to treat any value
3380 * with an enumv as a string, which seems weird.
3381 */
3382 if (dst_type == src->type) {
3383 int ret;
3384
3385 ret = fr_value_box_copy(ctx, dst, src);
3386 if (ret < 0) return ret;
3387
3388 dst->enumv = dst_enumv;
3389
3390 return ret;
3391 }
3392
3393 /*
3394 * Initialise dst
3395 */
3396 fr_value_box_init(dst, dst_type, NULL, src->tainted);
3397
3398 /*
3399 * Dispatch to specialised cast functions
3400 */
3401 switch (dst_type) {
3402 case FR_TYPE_STRING:
3403 return fr_value_box_cast_to_strvalue(ctx, dst, dst_type, dst_enumv, src);
3404
3405 case FR_TYPE_OCTETS:
3406 return fr_value_box_cast_to_octets(ctx, dst, dst_type, dst_enumv, src);
3407
3408 case FR_TYPE_IPV4_ADDR:
3409 return fr_value_box_cast_to_ipv4addr(ctx, dst, dst_type, dst_enumv, src);
3410
3412 return fr_value_box_cast_to_ipv4prefix(ctx, dst, dst_type, dst_enumv, src);
3413
3414 case FR_TYPE_IPV6_ADDR:
3415 return fr_value_box_cast_to_ipv6addr(ctx, dst, dst_type, dst_enumv, src);
3416
3418 return fr_value_box_cast_to_ipv6prefix(ctx, dst, dst_type, dst_enumv, src);
3419
3422 break;
3423 /*
3424 * Need func
3425 */
3426 case FR_TYPE_IFID:
3427 break;
3428
3429 case FR_TYPE_ETHERNET:
3430 return fr_value_box_cast_to_ethernet(ctx, dst, dst_type, dst_enumv, src);
3431
3432 case FR_TYPE_BOOL:
3433 return fr_value_box_cast_to_bool(ctx, dst, dst_type, dst_enumv, src);
3434
3435 case FR_TYPE_DATE:
3436 if (src->type != FR_TYPE_TIME_DELTA) return fr_value_box_cast_to_integer(ctx, dst, dst_type, dst_enumv, src);
3437
3438 if (fr_time_delta_isneg(src->vb_time_delta)) {
3439 fr_strerror_const("Input to data type would underflow");
3440 return -1;
3441 }
3442
3443 dst->type = dst_type;
3444 dst->enumv = dst_enumv;
3445 dst->vb_date = fr_unix_time_wrap(fr_time_delta_unwrap(src->vb_time_delta));
3446 return 0;
3447
3448 case FR_TYPE_TIME_DELTA:
3449 /*
3450 * Unix time cast to time_delta is just nanoseconds since the epoch.
3451 *
3452 * Note that we do NOT change time resolution, but we DO change enumv. Both unix time
3453 * and time_delta are tracked internally as nanoseconds, and the only use of precision is
3454 * for printing / parsing.
3455 */
3456 if (src->type == FR_TYPE_DATE) {
3457 uint64_t when;
3458
3459 when = fr_unix_time_unwrap(src->vb_date);
3460 if (when > INT64_MAX) {
3461 fr_strerror_const("Input to data type would overflow");
3462 return -1;
3463 }
3464
3465 dst->type = dst_type;
3466 dst->enumv = dst_enumv;
3467 dst->vb_time_delta = fr_time_delta_wrap((int64_t) when);
3468 return 0;
3469 }
3471
3472 case FR_TYPE_UINT8:
3473 case FR_TYPE_UINT16:
3474 case FR_TYPE_UINT32:
3475 case FR_TYPE_UINT64:
3476 case FR_TYPE_INT8:
3477 case FR_TYPE_INT16:
3478 case FR_TYPE_INT32:
3479 case FR_TYPE_INT64:
3480 case FR_TYPE_SIZE:
3481 return fr_value_box_cast_to_integer(ctx, dst, dst_type, dst_enumv, src);
3482
3483 case FR_TYPE_FLOAT32:
3484 case FR_TYPE_FLOAT64:
3485 if (fr_type_is_fixed_size(src->type)) {
3486 return fr_value_box_cast_to_float(ctx, dst, dst_type, dst_enumv, src);
3487 }
3488 break; /* use generic string/octets stuff below */
3489
3490 /*
3491 * Invalid types for casting (should have been caught earlier)
3492 */
3493 case FR_TYPE_VALUE_BOX:
3494 case FR_TYPE_STRUCTURAL:
3495 case FR_TYPE_NULL:
3496 case FR_TYPE_VOID:
3497 case FR_TYPE_MAX:
3498 fr_strerror_printf("Invalid cast from %s to %s. Invalid destination type",
3499 fr_type_to_str(src->type),
3500 fr_type_to_str(dst_type));
3501 return -1;
3502 }
3503
3504 /*
3505 * Deserialise a fr_value_box_t
3506 */
3507 if (src->type == FR_TYPE_STRING) return fr_value_box_from_str(ctx, dst, dst_type, dst_enumv,
3508 src->vb_strvalue, src->vb_length,
3509 NULL, src->tainted);
3510
3511 if (src->type == FR_TYPE_OCTETS) {
3512 fr_value_box_t tmp;
3513
3514 if (src->vb_length < network_min_size(dst_type)) {
3515 fr_strerror_printf("Invalid cast from %s to %s. Source is length %zu is smaller than "
3516 "destination type size %zu",
3517 fr_type_to_str(src->type),
3518 fr_type_to_str(dst_type),
3519 src->vb_length,
3520 network_min_size(dst_type));
3521 return -1;
3522 }
3523
3524 if (src->vb_length > network_max_size(dst_type)) {
3525 fr_strerror_printf("Invalid cast from %s to %s. Source length %zu is greater than "
3526 "destination type size %zu",
3527 fr_type_to_str(src->type),
3528 fr_type_to_str(dst_type),
3529 src->vb_length,
3530 network_max_size(dst_type));
3531 return -1;
3532 }
3533
3534 fr_value_box_init(&tmp, dst_type, NULL, false);
3535
3536 /*
3537 * Copy the raw octets into the datum of a value_box
3538 * inverting bytesex for uint32s (if LE).
3539 */
3540 memcpy(&tmp.datum, src->vb_octets, fr_value_box_field_sizes[dst_type]);
3541 tmp.type = dst_type;
3542 dst->enumv = dst_enumv;
3543
3544 fr_value_box_hton(dst, &tmp);
3545 return 0;
3546 }
3547
3548 memcpy(&dst->datum, &src->datum, fr_value_box_field_sizes[src->type]);
3549
3550 dst->type = dst_type;
3551 dst->enumv = dst_enumv;
3552
3553 return 0;
3554}
3555
3556/** Convert one type of fr_value_box_t to another in place
3557 *
3558 * This should be the canonical function used to convert between INTERNAL data formats.
3559 *
3560 * If you want to convert from PRESENTATION format, use #fr_value_box_from_substr.
3561 *
3562 * @param ctx to allocate buffers in (usually the same as dst)
3563 * @param vb to cast.
3564 * @param dst_type to cast to.
3565 * @param dst_enumv Aliases for values contained within this fr_value_box_t.
3566 * If #fr_value_box_t is passed to #fr_value_box_aprint
3567 * names will be printed instead of actual value.
3568 * @return
3569 * - 0 on success.
3570 * - -1 on failure.
3571 */
3573 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv)
3574{
3575 fr_value_box_t tmp;
3576 /*
3577 * Store list pointers to restore later - fr_value_box_cast clears them
3578 */
3579 fr_value_box_entry_t entry = vb->entry;
3580
3581 /*
3582 * Simple case, destination type and current
3583 * type are the same.
3584 */
3585 if (vb->type == dst_type) {
3586 vb->enumv = dst_enumv; /* Update the enumv as this may be different */
3587 return 0;
3588 }
3589
3590 /*
3591 * Copy meta data and any existing buffers to
3592 * a temporary box. We then clear that value
3593 * box after the cast has been completed,
3594 * freeing any old buffers.
3595 */
3596 fr_value_box_copy_shallow(NULL, &tmp, vb);
3597
3598 if (fr_value_box_cast(ctx, vb, dst_type, dst_enumv, &tmp) < 0) {
3599 /*
3600 * On error, make sure the original
3601 * box is left in a consistent state.
3602 */
3603 fr_value_box_copy_shallow(NULL, vb, &tmp);
3604 vb->entry = entry;
3605 return -1;
3606 }
3607 fr_value_box_clear_value(&tmp); /* Clear out any old buffers */
3608
3609 /*
3610 * Restore list pointers
3611 */
3612 vb->entry = entry;
3613
3614 return 0;
3615}
3616
3617/** Assign a #fr_value_box_t value from an #fr_ipaddr_t
3618 *
3619 * Automatically determines the type of the value box from the ipaddr address family
3620 * and the length of the prefix field.
3621 *
3622 * @param[in] dst to assign ipaddr to.
3623 * @param[in] enumv Aliases for values.
3624 * @param[in] ipaddr to copy address from.
3625 * @param[in] tainted Whether the value came from a trusted source.
3626 * @return
3627 * - 0 on success.
3628 * - -1 on failure.
3629 */
3630int fr_value_box_ipaddr(fr_value_box_t *dst, fr_dict_attr_t const *enumv, fr_ipaddr_t const *ipaddr, bool tainted)
3631{
3633
3634 switch (ipaddr->af) {
3635 case AF_INET:
3637 break;
3638
3639 case AF_INET6:
3641 break;
3642
3643 default:
3644 fr_strerror_printf("Invalid address family %i", ipaddr->af);
3645 return -1;
3646 }
3647
3648 fr_value_box_init(dst, type, enumv, tainted);
3649 memcpy(&dst->vb_ip, ipaddr, sizeof(dst->vb_ip));
3650
3651 return 0;
3652}
3653
3654/** Unbox an IP address performing a type check
3655 *
3656 * @param[out] dst Where to copy the IP address to.
3657 * @param[in] src Where to copy the IP address from.
3658 * @return
3659 * - 0 on success.
3660 * - -1 on type mismatch.
3661 */
3663{
3664 if (!fr_type_is_ip(src->type)) {
3665 fr_strerror_printf("Unboxing failed. Needed IPv4/6 addr/prefix, had type %s",
3666 fr_type_to_str(src->type));
3667 return -1;
3668 }
3669
3670 memcpy(dst, &src->vb_ip, sizeof(*dst));
3671
3672 return 0;
3673}
3674
3675/** Clear/free any existing value
3676 *
3677 * @note Do not use on uninitialised memory.
3678 *
3679 * @param[in] data to clear.
3680 */
3682{
3683 switch (data->type) {
3684 case FR_TYPE_OCTETS:
3685 case FR_TYPE_STRING:
3686 if (data->secret) memset_explicit(data->datum.ptr, 0, data->vb_length);
3687 talloc_free(data->datum.ptr);
3688 break;
3689
3690 case FR_TYPE_GROUP:
3691 /*
3692 * Depth first freeing of children
3693 *
3694 * This ensures orderly freeing, regardless
3695 * of talloc hierarchy.
3696 */
3697 {
3698 fr_value_box_t *vb = NULL;
3699
3700 while ((vb = fr_value_box_list_next(&data->vb_group, vb))) {
3702 talloc_free(vb);
3703 }
3704 }
3705 return;
3706
3707 case FR_TYPE_NULL:
3708 return;
3709
3710 default:
3711 break;
3712 }
3713
3714 memset(&data->datum, 0, sizeof(data->datum));
3715}
3716
3717/** Clear/free any existing value and metadata
3718 *
3719 * @note Do not use on uninitialised memory.
3720 *
3721 * @param[in] data to clear.
3722 */
3728
3729/** Copy value data verbatim duplicating any buffers
3730 *
3731 * @note Will free any exiting buffers associated with the dst #fr_value_box_t.
3732 *
3733 * @param ctx To allocate buffers in.
3734 * @param dst Where to copy value_box to.
3735 * @param src Where to copy value_box from.
3736 * @return
3737 * - 0 on success.
3738 * - -1 on failure.
3739 */
3740int fr_value_box_copy(TALLOC_CTX *ctx, fr_value_box_t *dst, const fr_value_box_t *src)
3741{
3742 switch (src->type) {
3743 default:
3744 fr_value_box_memcpy_out(fr_value_box_raw(dst, src->type), src);
3745 fr_value_box_copy_meta(dst, src);
3746 break;
3747
3748 case FR_TYPE_NULL:
3749 fr_value_box_copy_meta(dst, src);
3750 break;
3751
3752 case FR_TYPE_STRING:
3753 {
3754 char *str = NULL;
3755
3756 /*
3757 * Zero length strings still have a one uint8 buffer
3758 */
3759 str = talloc_bstrndup(ctx, src->vb_strvalue, src->vb_length);
3760 if (!str) {
3761 fr_strerror_const("Failed allocating string buffer");
3762 return -1;
3763 }
3764 dst->vb_strvalue = str;
3765 fr_value_box_copy_meta(dst, src);
3766 }
3767 break;
3768
3769 case FR_TYPE_OCTETS:
3770 {
3771 uint8_t *bin;
3772
3773 if (src->vb_length) {
3774 bin = talloc_memdup(ctx, src->vb_octets, src->vb_length);
3775 if (!bin) {
3776 fr_strerror_const("Failed allocating octets buffer");
3777 return -1;
3778 }
3779 talloc_set_type(bin, uint8_t);
3780 } else {
3781 bin = talloc_array(ctx, uint8_t, 0);
3782 }
3783 dst->vb_octets = bin;
3784 fr_value_box_copy_meta(dst, src);
3785 }
3786 break;
3787
3788 case FR_TYPE_GROUP:
3789 {
3790 fr_value_box_t *child = NULL;
3791
3792 fr_value_box_copy_meta(dst, src); /* Initialises group child dlist */
3793
3794 while ((child = fr_value_box_list_next(&src->vb_group, child))) {
3795 fr_value_box_t *new;
3796
3797 /*
3798 * Build out the child
3799 */
3800 new = fr_value_box_alloc_null(ctx);
3801 if (unlikely(!new)) {
3802 group_error:
3803 fr_strerror_const("Failed duplicating group child");
3804 fr_value_box_list_talloc_free(&dst->vb_group);
3805 return -1;
3806 }
3807
3808 /*
3809 * Populate it with the
3810 * data from the original
3811 * child.
3812 */
3813 if (unlikely(fr_value_box_copy(new, new, child) < 0)) goto group_error;
3814 fr_value_box_list_insert_tail(&dst->vb_group, new);
3815 }
3816 }
3817 break;
3818 }
3819
3820 return 0;
3821}
3822
3823/** Perform a shallow copy of a value_box
3824 *
3825 * Like #fr_value_box_copy, but does not duplicate the buffers of the src value_box.
3826 *
3827 * For #FR_TYPE_STRING and #FR_TYPE_OCTETS adds a reference from ctx so that the
3828 * buffer cannot be freed until the ctx is freed.
3829 *
3830 * @param[in] ctx to add reference from. If NULL no reference will be added.
3831 * @param[in] dst to copy value to.
3832 * @param[in] src to copy value from.
3833 */
3834void fr_value_box_copy_shallow(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_value_box_t const *src)
3835{
3836 switch (src->type) {
3837 default:
3838 fr_value_box_copy(NULL, dst, src);
3839 break;
3840
3841 case FR_TYPE_STRING:
3842 case FR_TYPE_OCTETS:
3843 dst->datum.ptr = ctx ? talloc_reference(ctx, src->datum.ptr) : src->datum.ptr;
3844 fr_value_box_copy_meta(dst, src);
3845 break;
3846 }
3847}
3848
3849/** Copy value data verbatim moving any buffers to the specified context
3850 *
3851 * @param[in] ctx to allocate any new buffers in.
3852 * @param[in] dst to copy value to.
3853 * @param[in] src to copy value from.
3854 * @return
3855 * - 0 on success.
3856 * - -1 on failure.
3857 */
3858int fr_value_box_steal(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_value_box_t *src)
3859{
3860 if (!fr_cond_assert(src->type != FR_TYPE_NULL)) return -1;
3861
3862 switch (src->type) {
3863 default:
3864 return fr_value_box_copy(ctx, dst, src);
3865
3866 case FR_TYPE_STRING:
3867 {
3868 char const *str;
3869
3870 str = talloc_steal(ctx, src->vb_strvalue);
3871 if (!str) {
3872 fr_strerror_const("Failed stealing string buffer");
3873 return -1;
3874 }
3875 talloc_set_type(str, char);
3876 dst->vb_strvalue = str;
3877 fr_value_box_copy_meta(dst, src);
3878 memset(&src->datum, 0, sizeof(src->datum));
3879 }
3880 return 0;
3881
3882 case FR_TYPE_OCTETS:
3883 {
3884 uint8_t const *bin;
3885
3886 bin = talloc_steal(ctx, src->vb_octets);
3887 if (!bin) {
3888 fr_strerror_const("Failed stealing octets buffer");
3889 return -1;
3890 }
3891 talloc_set_type(bin, uint8_t);
3892
3893 dst->vb_octets = bin;
3894 fr_value_box_copy_meta(dst, src);
3895 memset(&src->datum, 0, sizeof(src->datum));
3896 }
3897 return 0;
3898
3899 case FR_TYPE_GROUP:
3900 {
3901 fr_value_box_t *child;
3902
3903 while ((child = fr_value_box_list_pop_head(&src->vb_group))) {
3904 child = talloc_steal(ctx, child);
3905 if (unlikely(!child)) {
3906 fr_strerror_const("Failed stealing child");
3907 return -1;
3908 }
3909 fr_value_box_list_insert_tail(&dst->vb_group, child);
3910 }
3911 }
3912 return 0;
3913 }
3914}
3915
3916/** Copy a nul terminated string to a #fr_value_box_t
3917 *
3918 * @param[in] ctx to allocate any new buffers in.
3919 * @param[in] dst to assign new buffer to.
3920 * @param[in] enumv Aliases for values.
3921 * @param[in] src a nul terminated buffer.
3922 * @param[in] tainted Whether the value came from a trusted source.
3923 * @return
3924 * - 0 on success.
3925 * - -1 on failure.
3926 */
3927int fr_value_box_strdup(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv,
3928 char const *src, bool tainted)
3929{
3930 char const *str;
3931
3932 str = talloc_typed_strdup(ctx, src);
3933 if (!str) {
3934 fr_strerror_const("Failed allocating string buffer");
3935 return -1;
3936 }
3937
3938 fr_value_box_init(dst, FR_TYPE_STRING, enumv, tainted);
3939 dst->vb_strvalue = str;
3940 dst->vb_length = talloc_array_length(str) - 1;
3941
3942 return 0;
3943}
3944
3945/** Trim the length of the string buffer to match the length of the C string
3946 *
3947 * @param[in] ctx to re-alloc the buffer in.
3948 * @param[in,out] vb to trim.
3949 * @return
3950 * - 0 on success.
3951 * - -1 on failure.
3952 */
3953int fr_value_box_strtrim(TALLOC_CTX *ctx, fr_value_box_t *vb)
3954{
3955 size_t len;
3956 char *str;
3957
3958 if (!fr_cond_assert(vb->type == FR_TYPE_STRING)) return -1;
3959
3960 len = strlen(vb->vb_strvalue);
3961 str = talloc_realloc(ctx, UNCONST(char *, vb->vb_strvalue), char, len + 1);
3962 if (!str) {
3963 fr_strerror_const("Failed re-allocing string buffer");
3964 return -1;
3965 }
3966 vb->vb_length = len;
3967
3968 return 0;
3969}
3970
3971/** Print a formatted string using our internal printf wrapper and assign it to a value box
3972 *
3973 * @param[in] ctx to allocate any new buffers in.
3974 * @param[in] dst to assign new buffer to.
3975 * @param[in] enumv Aliases for values.
3976 * @param[in] fmt The printf format string to process.
3977 * @param[in] tainted Whether the value came from a trusted source.
3978 * @param[in] ap Substitution arguments.
3979 * @return
3980 * - 0 on success.
3981 * - -1 on failure.
3982 */
3983int fr_value_box_vasprintf(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv, bool tainted,
3984 char const *fmt, va_list ap)
3985{
3986 va_list aq;
3987 char *str;
3988
3989 va_copy(aq, ap); /* See vlog_module_failure_msg for why */
3990 str = fr_vasprintf(ctx, fmt, aq);
3991 va_end(aq);
3992
3993 if (!str) return -1;
3994
3995 fr_value_box_init(dst, FR_TYPE_STRING, enumv, tainted);
3996 dst->vb_strvalue = str;
3997 dst->vb_length = talloc_array_length(str) - 1;
3998
3999 return 0;
4000}
4001
4002/** Print a formatted string using our internal printf wrapper and assign it to a value box
4003 *
4004 * @param[in] ctx to allocate any new buffers in.
4005 * @param[in] dst to assign new buffer to.
4006 * @param[in] enumv Aliases for values.
4007 * @param[in] tainted Whether the value came from a trusted source.
4008 * @param[in] fmt The printf format string to process.
4009 * @param[in] ... Substitution arguments.
4010 * @return
4011 * - 0 on success.
4012 * - -1 on failure.
4013 */
4014int fr_value_box_asprintf(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv, bool tainted,
4015 char const *fmt, ...)
4016{
4017 va_list ap;
4018 int ret;
4019
4020 va_start(ap, fmt);
4021 ret = fr_value_box_vasprintf(ctx, dst, enumv, tainted, fmt, ap);
4022 va_end(ap);
4023
4024 return ret;
4025}
4026
4027/** Assign a buffer containing a nul terminated string to a box, but don't copy it
4028 *
4029 * @note Input string will not be duplicated.
4030 *
4031 * @param[in] dst to assign string to.
4032 * @param[in] enumv Aliases for values.
4033 * @param[in] src to copy string from.
4034 * @param[in] tainted Whether the value came from a trusted source.
4035 */
4037 char const *src, bool tainted)
4038{
4039 fr_value_box_init(dst, FR_TYPE_STRING, enumv, tainted);
4040 dst->vb_strvalue = src;
4041 dst->vb_length = strlen(src);
4042}
4043
4044/** Free the existing buffer (if talloced) associated with the valuebox, and replace it with a new one
4045 *
4046 * @note Input string will not be duplicated.
4047 *
4048 * @param[in] vb to replace string in.
4049 * @param[in] src to assign string from.
4050 * @param[in] len of src.
4051 */
4053{
4055 vb->vb_strvalue = src;
4056 vb->vb_length = len < 0 ? strlen(src) : (size_t)len;
4057}
4058
4059/** Alloc and assign an empty \0 terminated string to a #fr_value_box_t
4060 *
4061 * @param[in] ctx to allocate any new buffers in.
4062 * @param[out] out if non-null where to write a pointer to the new buffer.
4063 * @param[in] dst to assign new buffer to.
4064 * @param[in] enumv Aliases for values.
4065 * @param[in] len of buffer to allocate.
4066 * @param[in] tainted Whether the value came from a trusted source.
4067 * @return
4068 * - 0 on success.
4069 * - -1 on failure.
4070 */
4071int fr_value_box_bstr_alloc(TALLOC_CTX *ctx, char **out, fr_value_box_t *dst, fr_dict_attr_t const *enumv,
4072 size_t len, bool tainted)
4073{
4074 char *str;
4075
4076 str = talloc_zero_array(ctx, char, len + 1);
4077 if (!str) {
4078 fr_strerror_const("Failed allocating string buffer");
4079 return -1;
4080 }
4081 str[len] = '\0';
4082
4083 fr_value_box_init(dst, FR_TYPE_STRING, enumv, tainted);
4084 dst->vb_strvalue = str;
4085 dst->vb_length = talloc_array_length(str) - 1;
4086
4087 if (out) *out = str;
4088
4089 return 0;
4090}
4091
4092/** Change the length of a buffer already allocated to a value box
4093 *
4094 * @note Do not use on an uninitialised box.
4095 *
4096 * @param[in] ctx to realloc buffer in.
4097 * @param[out] out if non-null where to write a pointer to the new buffer.
4098 * @param[in] dst to realloc buffer for.
4099 * @param[in] len to realloc to (don't include nul byte).
4100 * @return
4101 * - 0 on success.
4102 * - -1 on failure.
4103 */
4104int fr_value_box_bstr_realloc(TALLOC_CTX *ctx, char **out, fr_value_box_t *dst, size_t len)
4105{
4106 size_t clen;
4107 char *cstr;
4108 char *str;
4109
4110 fr_assert(dst->type == FR_TYPE_STRING);
4111
4112 memcpy(&cstr, &dst->vb_strvalue, sizeof(cstr));
4113
4114 clen = talloc_array_length(dst->vb_strvalue) - 1;
4115 if (clen == len) return 0; /* No change */
4116
4117 str = talloc_realloc(ctx, cstr, char, len + 1);
4118 if (!str) {
4119 fr_strerror_printf("Failed reallocing value box buffer to %zu bytes", len + 1);
4120 return -1;
4121 }
4122
4123 /*
4124 * Zero out the additional bytes
4125 */
4126 if (clen < len) {
4127 memset(str + clen, '\0', (len - clen) + 1);
4128 } else {
4129 cstr[len] = '\0';
4130 }
4131 dst->vb_strvalue = str;
4132 dst->vb_length = len;
4133
4134 if (out) *out = str;
4135
4136 return 0;
4137}
4138
4139/** Copy a string to to a #fr_value_box_t
4140 *
4141 * @param[in] ctx to allocate any new buffers in.
4142 * @param[in] dst to assign buffer to.
4143 * @param[in] enumv Aliases for values.
4144 * @param[in] src a string. May be NULL only if len == 0.
4145 * @param[in] len of src.
4146 * @param[in] tainted Whether the value came from a trusted source.
4147 */
4148int fr_value_box_bstrndup(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv,
4149 char const *src, size_t len, bool tainted)
4150{
4151 char const *str;
4152
4153 if (unlikely((len > 0) && !src)) {
4154 fr_strerror_printf("Invalid arguments to %s. Len > 0 (%zu) but src string was NULL",
4155 __FUNCTION__, len);
4156 return -1;
4157 }
4158
4159 str = talloc_bstrndup(ctx, src, len);
4160 if (!str) {
4161 fr_strerror_const("Failed allocating string buffer");
4162 return -1;
4163 }
4164
4165 fr_value_box_init(dst, FR_TYPE_STRING, enumv, tainted);
4166 dst->vb_strvalue = str;
4167 dst->vb_length = len;
4168
4169 return 0;
4170}
4171
4172int fr_value_box_bstrndup_dbuff(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv,
4173 fr_dbuff_t *dbuff, size_t len, bool tainted)
4174{
4175 char *str;
4176
4177 str = talloc_array(ctx, char, len + 1);
4178 if (!str) {
4179 fr_strerror_printf("Failed allocating string buffer");
4180 return -1;
4181 }
4182
4183 if (fr_dbuff_out_memcpy((uint8_t *)str, dbuff, len) < 0) return -1;
4184 str[len] = '\0';
4185
4186 fr_value_box_init(dst, FR_TYPE_STRING, enumv, tainted);
4187 dst->vb_strvalue = str;
4188 dst->vb_length = len;
4189
4190 return 0;
4191}
4192
4193/** Copy a nul terminated talloced buffer to a #fr_value_box_t
4194 *
4195 * Copy a talloced nul terminated buffer, setting fields in the dst value box appropriately.
4196 *
4197 * The buffer must be \0 terminated, or an error will be returned.
4198 *
4199 * @param[in] ctx to allocate any new buffers in.
4200 * @param[in] dst to assign new buffer to.
4201 * @param[in] enumv Aliases for values.
4202 * @param[in] src a talloced nul terminated buffer.
4203 * @param[in] tainted Whether the value came from a trusted source.
4204 * @return
4205 * - 0 on success.
4206 * - -1 on failure.
4207 */
4208int fr_value_box_bstrdup_buffer(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv,
4209 char const *src, bool tainted)
4210{
4211 size_t len;
4212
4213 (void)talloc_get_type_abort_const(src, char);
4214
4215 len = talloc_array_length(src);
4216 if ((len == 0) || (src[len - 1] != '\0')) {
4217 fr_strerror_const("Input buffer not \\0 terminated");
4218 return -1;
4219 }
4220
4221 return fr_value_box_bstrndup(ctx, dst, enumv, src, len - 1, tainted);
4222}
4223
4224/** Assign a string to to a #fr_value_box_t
4225 *
4226 * @param[in] dst to assign new buffer to.
4227 * @param[in] enumv Aliases for values.
4228 * @param[in] src a string.
4229 * @param[in] len of src.
4230 * @param[in] tainted Whether the value came from a trusted source.
4231 */
4233 char const *src, size_t len, bool tainted)
4234{
4235 fr_value_box_init(dst, FR_TYPE_STRING, enumv, tainted);
4236 dst->vb_strvalue = src;
4237 dst->vb_length = len;
4238}
4239
4240/** Assign a talloced buffer containing a nul terminated string to a box, but don't copy it
4241 *
4242 * Adds a reference to the src buffer so that it cannot be freed until the ctx is freed.
4243 *
4244 * @param[in] ctx to add reference from. If NULL no reference will be added.
4245 * @param[in] dst to assign string to.
4246 * @param[in] enumv Aliases for values.
4247 * @param[in] src to copy string from.
4248 * @param[in] tainted Whether the value came from a trusted source.
4249 * @return
4250 * - 0 on success.
4251 * - -1 on failure.
4252 */
4254 char const *src, bool tainted)
4255{
4256 size_t len;
4257
4258 (void) talloc_get_type_abort_const(src, char);
4259
4260 len = talloc_array_length(src);
4261 if ((len == 0) || (src[len - 1] != '\0')) {
4262 fr_strerror_const("Input buffer not \\0 terminated");
4263 return -1;
4264 }
4265
4266 fr_value_box_init(dst, FR_TYPE_STRING, enumv, tainted);
4267 dst->vb_strvalue = ctx ? talloc_reference(ctx, src) : src;
4268 dst->vb_length = len - 1;
4269
4270 return 0;
4271}
4272
4273/** Append bytes from a buffer to an existing #fr_value_box_t
4274 *
4275 * @param[in] ctx Where to allocate any talloc buffers required.
4276 * @param[in] dst value box to append to.
4277 * @param[in] src octets data to append.
4278 * @param[in] len length of octets data.
4279 * @param[in] tainted Whether src is tainted.
4280 * @return
4281 * - 0 on success.
4282 * - -1 on failure.
4283 */
4284int fr_value_box_bstrn_append(TALLOC_CTX *ctx, fr_value_box_t *dst, char const *src, size_t len, bool tainted)
4285{
4286 char *ptr, *nptr;
4287 size_t nlen;
4288
4289 if (len == 0) return 0;
4290
4291 if (dst->type != FR_TYPE_STRING) {
4292 fr_strerror_printf("%s: Expected boxed value of type %s, got type %s", __FUNCTION__,
4294 fr_type_to_str(dst->type));
4295 return -1;
4296 }
4297
4298 ptr = dst->datum.ptr;
4299 if (!fr_cond_assert(ptr)) return -1;
4300
4301 if (talloc_reference_count(ptr) > 0) {
4302 fr_strerror_printf("%s: Boxed value has too many references", __FUNCTION__);
4303 return -1;
4304 }
4305
4306 nlen = dst->vb_length + len + 1;
4307 nptr = talloc_realloc(ctx, ptr, char, dst->vb_length + len + 1);
4308 if (!nptr) {
4309 fr_strerror_printf("%s: Realloc of %s array from %zu to %zu bytes failed",
4310 __FUNCTION__, talloc_get_name(ptr), talloc_array_length(ptr), nlen);
4311 return -1;
4312 }
4313 talloc_set_type(nptr, char);
4314 ptr = nptr;
4315
4316 memcpy(ptr + dst->vb_length, src, len); /* Copy data into the realloced buffer */
4317
4318 dst->tainted = dst->tainted || tainted;
4319 dst->datum.ptr = ptr;
4320 dst->vb_length += len;
4321
4322 ptr[dst->vb_length] = '\0';
4323
4324 return 0;
4325}
4326
4327/** Append a talloced buffer to an existing fr_value_box_t
4328 *
4329 * @param[in] ctx Where to allocate any talloc buffers required.
4330 * @param[in] dst value box to append to.
4331 * @param[in] src string data to append.
4332 * @param[in] tainted Whether src is tainted.
4333 * @return
4334 * - 0 on success.
4335 * - -1 on failure.
4336 */
4337int fr_value_box_bstr_append_buffer(TALLOC_CTX *ctx, fr_value_box_t *dst, char const *src, bool tainted)
4338{
4339 size_t len;
4340
4341 (void) talloc_get_type_abort_const(src, char);
4342
4343 len = talloc_array_length(src);
4344 if ((len == 0) || (src[len - 1] != '\0')) {
4345 fr_strerror_const("Input buffer not \\0 terminated");
4346 return -1;
4347 }
4348
4349 return fr_value_box_bstrn_append(ctx, dst, src, len - 1, tainted);
4350}
4351
4352/** Pre-allocate an octets buffer for filling by the caller
4353 *
4354 * @note Buffer will not be zeroed, as it's assumed the caller will be filling it.
4355 *
4356 * @param[in] ctx to allocate any new buffers in.
4357 * @param[out] out If non-null will be filled with a pointer to the
4358 * new buffer.
4359 * @param[in] dst to assign new buffer to.
4360 * @param[in] enumv Aliases for values.
4361 * @param[in] len of data in the buffer. If 0, a zero length
4362 * talloc buffer will be alloced. dst->vb_octets
4363 * will *NOT* be NULL. You should use the length
4364 * field of the box to determine if any value
4365 * is assigned.
4366 * @param[in] tainted Whether the value came from a trusted source.
4367 * @return
4368 * - 0 on success.
4369 * - -1 on failure.
4370 */
4371int fr_value_box_mem_alloc(TALLOC_CTX *ctx, uint8_t **out, fr_value_box_t *dst, fr_dict_attr_t const *enumv,
4372 size_t len, bool tainted)
4373{
4374 uint8_t *bin;
4375
4376 bin = talloc_array(ctx, uint8_t, len);
4377 if (!bin) {
4378 fr_strerror_const("Failed allocating octets buffer");
4379 return -1;
4380 }
4381 talloc_set_type(bin, uint8_t);
4382
4383 fr_value_box_init(dst, FR_TYPE_OCTETS, enumv, tainted);
4384 dst->vb_octets = bin;
4385 dst->vb_length = len;
4386
4387 if (out) *out = bin;
4388
4389 return 0;
4390}
4391
4392/** Change the length of a buffer already allocated to a value box
4393 *
4394 * @note Do not use on an uninitialised box.
4395 *
4396 * @param[in] ctx to realloc buffer in.
4397 * @param[out] out if non-null where to write a pointer to the new buffer.
4398 * @param[in] dst to realloc buffer for.
4399 * @param[in] len to realloc to.
4400 * @return
4401 * - 0 on success.
4402 * - -1 on failure.
4403 */
4404int fr_value_box_mem_realloc(TALLOC_CTX *ctx, uint8_t **out, fr_value_box_t *dst, size_t len)
4405{
4406 size_t clen;
4407 uint8_t *cbin;
4408 uint8_t *bin;
4409
4410 fr_assert(dst->type == FR_TYPE_OCTETS);
4411
4412 memcpy(&cbin, &dst->vb_octets, sizeof(cbin));
4413
4414 clen = talloc_array_length(dst->vb_octets);
4415 if (clen == len) return 0; /* No change */
4416
4417 /*
4418 * Realloc the buffer. If the new length is 0, we
4419 * need to call talloc_array() instead of talloc_realloc()
4420 * as talloc_realloc() will fail.
4421 */
4422 if (len > 0) {
4423 bin = talloc_realloc(ctx, cbin, uint8_t, len);
4424 } else {
4425 bin = talloc_array(ctx, uint8_t, 0);
4426 }
4427 if (!bin) {
4428 fr_strerror_printf("Failed reallocing value box buffer to %zu bytes", len);
4429 return -1;
4430 }
4431
4432 /*
4433 * Only free the original buffer once we've allocated
4434 * a new empty array.
4435 */
4436 if (len == 0) talloc_free(cbin);
4437
4438 /*
4439 * Zero out the additional bytes
4440 */
4441 if (clen < len) memset(bin + clen, 0x00, len - clen);
4442 dst->vb_octets = bin;
4443 dst->vb_length = len;
4444
4445 if (out) *out = bin;
4446
4447 return 0;
4448}
4449
4450/** Copy a buffer to a fr_value_box_t
4451 *
4452 * Copy a buffer containing binary data, setting fields in the dst value box appropriately.
4453 *
4454 * @param[in] ctx to allocate any new buffers in.
4455 * @param[in] dst to assign new buffer to.
4456 * @param[in] enumv Aliases for values.
4457 * @param[in] src a buffer.
4458 * @param[in] len of data in the buffer. If 0, a zero length
4459 * talloc buffer will be alloced. dst->vb_octets
4460 * will *NOT* be NULL. You should use the length
4461 * field of the box to determine if any value
4462 * is assigned.
4463 * @param[in] tainted Whether the value came from a trusted source.
4464 * @return
4465 * - 0 on success.
4466 * - -1 on failure.
4467 */
4468int fr_value_box_memdup(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv,
4469 uint8_t const *src, size_t len, bool tainted)
4470{
4471 uint8_t *bin;
4472
4473 if (unlikely((len > 0) && !src)) {
4474 fr_strerror_printf("Invalid arguments to %s. Len > 0 (%zu) but src was NULL",
4475 __FUNCTION__, len);
4476 return -1;
4477 }
4478
4479 bin = talloc_memdup(ctx, src, len);
4480 if (!bin) {
4481 fr_strerror_const("Failed allocating octets buffer");
4482 return -1;
4483 }
4484 talloc_set_type(bin, uint8_t);
4485
4486 fr_value_box_init(dst, FR_TYPE_OCTETS, enumv, tainted);
4487 dst->vb_octets = bin;
4488 dst->vb_length = len;
4489
4490 return 0;
4491}
4492
4493int fr_value_box_memdup_dbuff(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv,
4494 fr_dbuff_t *dbuff, size_t len, bool tainted)
4495{
4496 uint8_t *bin;
4497
4498 bin = talloc_size(ctx, len);
4499 if (!bin) {
4500 fr_strerror_printf("Failed allocating octets buffer");
4501 return -1;
4502 }
4503 if (fr_dbuff_out_memcpy(bin, dbuff, len) < (ssize_t) len) return -1;
4504 talloc_set_type(bin, uint8_t);
4505
4506 fr_value_box_init(dst, FR_TYPE_OCTETS, enumv, tainted);
4507 dst->vb_octets = bin;
4508 dst->vb_length = len;
4509
4510 return 0;
4511}
4512
4513/** Copy a talloced buffer to a fr_value_box_t
4514 *
4515 * Copy a buffer containing binary data, setting fields in the dst value box appropriately.
4516 *
4517 * @param[in] ctx to allocate any new buffers in.
4518 * @param[in] dst to assign new buffer to.
4519 * @param[in] enumv Aliases for values.
4520 * @param[in] src a buffer.
4521 * @param[in] tainted Whether the value came from a trusted source.
4522 * @return
4523 * - 0 on success.
4524 * - -1 on failure.
4525 */
4526int fr_value_box_memdup_buffer(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv,
4527 uint8_t const *src, bool tainted)
4528{
4530
4531 return fr_value_box_memdup(ctx, dst, enumv, src, talloc_array_length(src), tainted);
4532}
4533
4534/** Assign a buffer to a box, but don't copy it
4535 *
4536 * Adds a reference to the src buffer so that it cannot be freed until the ctx is freed.
4537 *
4538 * Caller should set dst->taint = true, where the value was acquired from an untrusted source.
4539 *
4540 * @note Will free any exiting buffers associated with the value box.
4541 *
4542 * @param[in] dst to assign buffer to.
4543 * @param[in] enumv Aliases for values.
4544 * @param[in] src a talloced buffer.
4545 * @param[in] len of buffer.
4546 * @param[in] tainted Whether the value came from a trusted source.
4547 */
4549 uint8_t const *src, size_t len, bool tainted)
4550{
4551 fr_value_box_init(dst, FR_TYPE_OCTETS, enumv, tainted);
4552 dst->vb_octets = src;
4553 dst->vb_length = len;
4554}
4555
4556/** Assign a talloced buffer to a box, but don't copy it
4557 *
4558 * Adds a reference to the src buffer so that it cannot be freed until the ctx is freed.
4559 *
4560 * @param[in] ctx to allocate any new buffers in.
4561 * @param[in] dst to assign buffer to.
4562 * @param[in] enumv Aliases for values.
4563 * @param[in] src a talloced buffer.
4564 * @param[in] tainted Whether the value came from a trusted source.
4565 */
4567 uint8_t const *src, bool tainted)
4568{
4570
4571 fr_value_box_init(dst, FR_TYPE_OCTETS, enumv, tainted);
4572 dst->vb_octets = ctx ? talloc_reference(ctx, src) : src;
4573 dst->vb_length = talloc_array_length(src);
4574}
4575
4576/** Append data to an existing fr_value_box_t
4577 *
4578 * @param[in] ctx Where to allocate any talloc buffers required.
4579 * @param[in] dst value box to append to.
4580 * @param[in] src octets data to append.
4581 * @param[in] len length of octets data.
4582 * @param[in] tainted Whether src is tainted.
4583 * @return
4584 * - 0 on success.
4585 * - -1 on failure.
4586 */
4587int fr_value_box_mem_append(TALLOC_CTX *ctx, fr_value_box_t *dst, uint8_t const *src, size_t len, bool tainted)
4588{
4589 uint8_t *nptr;
4590 size_t nlen;
4591
4592 if (len == 0) return 0;
4593
4594 if (dst->type != FR_TYPE_OCTETS) {
4595 fr_strerror_printf("%s: Expected boxed value of type %s, got type %s", __FUNCTION__,
4597 fr_type_to_str(dst->type));
4598 return -1;
4599 }
4600
4601 if (!fr_cond_assert(dst->datum.ptr)) return -1;
4602
4603 if (talloc_reference_count(dst->datum.ptr) > 0) {
4604 fr_strerror_printf("%s: Boxed value has too many references", __FUNCTION__);
4605 return -1;
4606 }
4607
4608 nlen = dst->vb_length + len;
4609 nptr = talloc_realloc(ctx, dst->datum.ptr, uint8_t, dst->vb_length + len);
4610 if (!nptr) {
4611 fr_strerror_printf("%s: Realloc of %s array from %zu to %zu bytes failed",
4612 __FUNCTION__,
4613 talloc_get_name(dst->datum.ptr),
4614 talloc_array_length((uint8_t const *)dst->datum.ptr), nlen);
4615 return -1;
4616 }
4617
4618 memcpy(nptr + dst->vb_length, src, len); /* Copy data into the realloced buffer */
4619
4620 dst->tainted = dst->tainted || tainted;
4621 dst->datum.ptr = nptr;
4622 dst->vb_length += len;
4623
4624 return 0;
4625}
4626
4627/** Append a talloc buffer to an existing fr_value_box_t
4628 *
4629 * @param[in] ctx Where to allocate any talloc buffers required.
4630 * @param[in] dst value box to append to.
4631 * @param[in] src octets data to append.
4632 * @param[in] tainted Whether src is tainted.
4633 * @return
4634 * - 0 on success.
4635 * - -1 on failure.
4636 */
4637int fr_value_box_mem_append_buffer(TALLOC_CTX *ctx, fr_value_box_t *dst, uint8_t const *src, bool tainted)
4638{
4639 return fr_value_box_mem_append(ctx, dst, src, talloc_array_length(src), tainted);
4640}
4641
4642/** Increment a boxed value
4643 *
4644 * Implements safe integer overflow.
4645 *
4646 * @param[in] vb to increment.
4647 */
4649{
4650 switch (vb->type) {
4651 case FR_TYPE_UINT8:
4652 vb->vb_uint8 = vb->vb_uint8 == UINT8_MAX ? 0 : vb->vb_uint8 + 1;
4653 return;
4654
4655 case FR_TYPE_UINT16:
4656 vb->vb_uint16 = vb->vb_uint16 == UINT16_MAX ? 0 : vb->vb_uint16 + 1;
4657 return;
4658
4659 case FR_TYPE_UINT32:
4660 vb->vb_uint32 = vb->vb_uint32 == UINT32_MAX ? 0 : vb->vb_uint32 + 1;
4661 return;
4662
4663 case FR_TYPE_UINT64:
4664 vb->vb_uint64 = vb->vb_uint64 == UINT64_MAX ? 0 : vb->vb_uint64 + 1;
4665 return;
4666
4667 case FR_TYPE_INT8:
4668 vb->vb_int8 = vb->vb_int8 == INT8_MAX ? INT8_MIN : vb->vb_int8 + 1;
4669 return;
4670
4671 case FR_TYPE_INT16:
4672 vb->vb_int16 = vb->vb_int16 == INT16_MAX ? INT16_MIN : vb->vb_int16 + 1;
4673 return;
4674
4675 case FR_TYPE_INT32:
4676 vb->vb_int32 = vb->vb_int32 == INT32_MAX ? INT32_MIN : vb->vb_int32 + 1;
4677 return;
4678
4679 case FR_TYPE_INT64:
4680 vb->vb_int64 = vb->vb_int64 == INT64_MAX ? INT64_MIN : vb->vb_int64 + 1;
4681 return;
4682
4683 default:
4684 return;
4685 }
4686}
4687
4688/** Convert integer encoded as string to a fr_value_box_t type
4689 *
4690 * @param[out] dst where to write parsed value.
4691 * @param[in] dst_type type of integer to convert string to.
4692 * @param[in] dst_enumv Enumeration values.
4693 * @param[in] in String to convert to integer.
4694 * @param[in] rules for parsing string.
4695 * @param[in] tainted Whether the value came from a trusted source.
4696 * @return
4697 * - >= 0 on success (number of bytes parsed).
4698 * - < 0 on error (where the parse error occurred).
4699 */
4700static inline CC_HINT(always_inline)
4702 fr_dict_attr_t const *dst_enumv,
4703 fr_sbuff_t *in, fr_sbuff_parse_rules_t const *rules, bool tainted)
4704{
4705 fr_slen_t slen;
4707
4708 fr_value_box_init(dst, dst_type, dst_enumv, tainted);
4709
4710 switch (dst_type) {
4711 case FR_TYPE_UINT8:
4712 slen = fr_sbuff_out(&err, &dst->vb_uint8, in);
4713 break;
4714
4715 case FR_TYPE_UINT16:
4716 slen = fr_sbuff_out(&err, &dst->vb_uint16, in);
4717 break;
4718
4719 case FR_TYPE_UINT32:
4720 slen = fr_sbuff_out(&err, &dst->vb_uint32, in);
4721 break;
4722
4723 case FR_TYPE_UINT64:
4724 slen = fr_sbuff_out(&err, &dst->vb_uint64, in);
4725 break;
4726
4727 case FR_TYPE_INT8:
4728 slen = fr_sbuff_out(&err, &dst->vb_int8, in);
4729 break;
4730
4731 case FR_TYPE_INT16:
4732 slen = fr_sbuff_out(&err, &dst->vb_int16, in);
4733 break;
4734
4735 case FR_TYPE_INT32:
4736 slen = fr_sbuff_out(&err, &dst->vb_int32, in);
4737 break;
4738
4739 case FR_TYPE_INT64:
4740 slen = fr_sbuff_out(&err, &dst->vb_int64, in);
4741 break;
4742
4743 case FR_TYPE_SIZE:
4744 slen = fr_sbuff_out(&err, &dst->vb_size, in);
4745 break;
4746
4747 case FR_TYPE_FLOAT32:
4748 slen = fr_sbuff_out(&err, &dst->vb_float32, in);
4749 break;
4750
4751 case FR_TYPE_FLOAT64:
4752 slen = fr_sbuff_out(&err, &dst->vb_float64, in);
4753 break;
4754
4755 default:
4756 fr_assert_fail(NULL);
4757 return -1;
4758 }
4759
4760 if (slen < 0) {
4761 /*
4762 * If an enumeration attribute is provided and we
4763 * don't find an integer, assume this is an enumv
4764 * lookup fail, and produce a better error.
4765 */
4766 if (dst_enumv && dst_enumv->flags.has_value && (err == FR_SBUFF_PARSE_ERROR_NOT_FOUND)) {
4767 fr_sbuff_t our_in = FR_SBUFF(in);
4768 fr_sbuff_adv_until(&our_in, SIZE_MAX, rules->terminals,
4769 rules->escapes ? rules->escapes->chr : '\0');
4770
4771 fr_strerror_printf("Invalid enumeration value \"%pV\" for attribute %s",
4773 dst_enumv->name);
4774 return -1;
4775 }
4776
4778 fr_strerror_printf("Failed parsing string as type '%s'",
4779 fr_type_to_str(dst_type));
4780 } else {
4781 fr_sbuff_parse_error_to_strerror(err);
4782 }
4783 }
4784
4785
4786 return slen;
4787}
4788
4789/** Convert string value to a fr_value_box_t type
4790 *
4791 * @param[in] ctx to alloc strings in.
4792 * @param[out] dst where to write parsed value.
4793 * @param[in,out] dst_type of value data to create/dst_type of value created.
4794 * @param[in] dst_enumv fr_dict_attr_t with string names for uint32 values.
4795 * @param[in] in sbuff to read data from.
4796 * @param[in] rules unescape and termination rules.
4797 * @param[in] tainted Whether the value came from a trusted source.
4798 * @return
4799 * - >0 on success.
4800 * - <= 0 on parse error.
4801 */
4803 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv,
4804 fr_sbuff_t *in, fr_sbuff_parse_rules_t const *rules, bool tainted)
4805{
4806 static fr_sbuff_parse_rules_t default_rules;
4807 fr_sbuff_t *unescaped = NULL;
4808 fr_sbuff_t our_in = FR_SBUFF(in);
4809 fr_ipaddr_t addr;
4810 fr_slen_t slen;
4811 char buffer[256];
4812
4813 if (!rules) rules = &default_rules;
4814
4816
4817 /*
4818 * Lookup any names before continuing
4819 */
4820 if (dst_enumv && dst_enumv->flags.has_value) {
4821 size_t name_len;
4822 fr_dict_enum_value_t *enumv;
4823
4824 (void) fr_sbuff_adv_past_str_literal(&our_in, "::");
4825
4826 /*
4827 * Create a thread-local extensible buffer to
4828 * store unescaped data.
4829 *
4830 * This is created once per-thread (the first time
4831 * this function is called), and freed when the
4832 * thread exits.
4833 */
4834 FR_SBUFF_TALLOC_THREAD_LOCAL(&unescaped, 256, 4096);
4835
4836 name_len = fr_sbuff_out_unescape_until(unescaped, &our_in, SIZE_MAX,
4837 rules->terminals, rules->escapes);
4838 if (!name_len) {
4839 fr_sbuff_set_to_start(&our_in);
4840 goto parse; /* Zero length name can't match enum */
4841 }
4842
4843 enumv = fr_dict_enum_by_name(dst_enumv, fr_sbuff_start(unescaped), fr_sbuff_used(unescaped));
4844 if (!enumv) {
4845 fr_sbuff_set_to_start(&our_in);
4846 goto parse; /* No enumeration matches escaped string */
4847 }
4848
4849 /*
4850 * dst_type may not match enumv type
4851 */
4852 if (fr_value_box_cast(ctx, dst, dst_type, dst_enumv, enumv->value) < 0) return -1;
4853
4854 FR_SBUFF_SET_RETURN(in, &our_in);
4855 }
4856
4857parse:
4858 /*
4859 * It's a variable ret src->dst_type so we just alloc a new buffer
4860 * of size len and copy.
4861 */
4862 switch (dst_type) {
4863 case FR_TYPE_STRING:
4864 /*
4865 * We've not unescaped the string yet, produce an unescaped version
4866 */
4867 if (!dst_enumv || !unescaped) {
4868 char *buff;
4869
4870 if (unlikely(fr_sbuff_out_aunescape_until(ctx, &buff, &our_in, SIZE_MAX,
4871 rules->terminals, rules->escapes) < 0)) {
4872 return -1;
4873 }
4874 fr_value_box_bstrdup_buffer_shallow(NULL, dst, dst_enumv, buff, tainted);
4875 /*
4876 * We already have an unescaped version, just use that
4877 */
4878 } else {
4879 fr_value_box_bstrndup(ctx, dst, dst_enumv,
4880 fr_sbuff_start(unescaped), fr_sbuff_used(unescaped), tainted);
4881 }
4882 FR_SBUFF_SET_RETURN(in, &our_in);
4883
4884 /* raw octets: 0x01020304... */
4885 case FR_TYPE_OCTETS:
4886 {
4887 fr_sbuff_marker_t hex_start;
4888 size_t hex_len;
4889 uint8_t *bin_buff;
4890
4891 /*
4892 * If there's escape sequences that need to be processed
4893 * or the string doesn't start with 0x, then assume this
4894 * is literal data, not hex encoded data.
4895 */
4896 if (rules->escapes || !fr_sbuff_adv_past_strcase_literal(&our_in, "0x")) {
4897 if (!dst_enumv || !unescaped) {
4898 char *buff = NULL;
4899 uint8_t *bin;
4900
4901 if (fr_sbuff_extend(&our_in)) {
4902 fr_sbuff_out_aunescape_until(ctx, &buff, &our_in, SIZE_MAX,
4903 rules->terminals, rules->escapes);
4904
4905 if (talloc_array_length(buff) == 1) {
4907 goto zero;
4908 }
4909
4910 bin = talloc_realloc(ctx, buff, uint8_t, talloc_array_length(buff) - 1);
4911 if (unlikely(!bin)) {
4912 fr_strerror_const("Failed trimming string buffer");
4914 return -1;
4915 }
4916 talloc_set_type(bin, uint8_t); /* talloc_realloc doesn't do this */
4917 /*
4918 * Input data is zero
4919 *
4920 * talloc realloc will refuse to realloc to
4921 * a zero length buffer. This is probably
4922 * a bug, because we can create zero length
4923 * arrays normally
4924 */
4925 } else {
4926 zero:
4927 bin = talloc_zero_array(ctx, uint8_t, 0);
4928 }
4929
4930 fr_value_box_memdup_buffer_shallow(NULL, dst, dst_enumv, bin, tainted);
4931 /*
4932 * We already have an unescaped version, just use that
4933 */
4934 } else {
4935 fr_value_box_memdup(ctx, dst, dst_enumv,
4936 (uint8_t *)fr_sbuff_start(unescaped),
4937 fr_sbuff_used(unescaped), tainted);
4938 }
4939 FR_SBUFF_SET_RETURN(in, &our_in);
4940 }
4941
4942 fr_sbuff_marker(&hex_start, &our_in); /* Record where the hexits start */
4943
4944 /*
4945 * Find the end of the hex sequence.
4946 *
4947 * We don't technically need to do this, fr_base16_decode
4948 * will find the end on its own.
4949 *
4950 * We do this so we can alloc the correct sized
4951 * output buffer.
4952 */
4953 hex_len = fr_sbuff_adv_past_allowed(&our_in, SIZE_MAX, sbuff_char_class_hex, rules->terminals);
4954 if (hex_len == 0) {
4955 if (fr_value_box_memdup(ctx, dst, dst_enumv, (uint8_t[]){ 0x00 }, 0, tainted) < 0) return -1;
4956 FR_SBUFF_SET_RETURN(in, &our_in);
4957 }
4958
4959 if ((hex_len & 0x01) != 0) {
4960 fr_strerror_printf("Length of hex string is not even, got %zu bytes", hex_len);
4961 FR_SBUFF_ERROR_RETURN(&our_in);
4962 }
4963
4964 /*
4965 * Pre-allocate the bin buff and initialise the box
4966 */
4967 if (fr_value_box_mem_alloc(ctx, &bin_buff, dst, dst_enumv, (hex_len >> 1), tainted) < 0) return -1;
4968
4969 /*
4970 * Reset to the start of the hex string
4971 */
4972 fr_sbuff_set(&our_in, &hex_start);
4973
4974 if (unlikely(fr_base16_decode(NULL, &FR_DBUFF_TMP(bin_buff, hex_len), &our_in, false) < 0)) {
4975 talloc_free(bin_buff);
4976 FR_SBUFF_ERROR_RETURN(&our_in);
4977 }
4978
4979 FR_SBUFF_SET_RETURN(in, &our_in);
4980 }
4981
4982 case FR_TYPE_IPV4_ADDR:
4983 {
4984 size_t name_len = fr_sbuff_adv_past_allowed(&our_in, fr_sbuff_remaining(&our_in), sbuff_char_class_hostname, rules->terminals);
4985 if (!name_len) return 0;
4986
4987 if (fr_inet_pton4(&addr, fr_sbuff_current(in), name_len,
4988 fr_hostname_lookups, false, true) < 0) return -1;
4989
4990 /*
4991 * We allow v4 addresses to have a /32 suffix as some databases (PostgreSQL)
4992 * print them this way.
4993 */
4994 if (addr.prefix != 32) {
4995 fail_ipv4_prefix:
4996 fr_strerror_printf("Invalid IPv4 mask length \"/%i\". Only \"/32\" permitted "
4997 "for non-prefix types", addr.prefix);
4998 return -1;
4999 }
5000
5001 memcpy(&dst->vb_ip, &addr, sizeof(dst->vb_ip));
5002 }
5003 goto finish;
5004
5006 {
5007 size_t name_len = fr_sbuff_adv_past_allowed(&our_in, fr_sbuff_remaining(&our_in), sbuff_char_class_hostname, rules->terminals);
5008 if (!name_len) return 0;
5009
5010 if (fr_inet_pton4(&dst->vb_ip, fr_sbuff_current(in), name_len,
5011 fr_hostname_lookups, false, true) < 0) return -1;
5012 }
5013 goto finish;
5014
5015 case FR_TYPE_IPV6_ADDR:
5016 {
5017 size_t name_len = fr_sbuff_adv_past_allowed(&our_in, fr_sbuff_remaining(&our_in), sbuff_char_class_hostname, rules->terminals);
5018 if (!name_len) return 0;
5019
5020 /*
5021 * Parse scope, too.
5022 */
5023 if (fr_sbuff_next_if_char(&our_in, '%')) {
5024 name_len += fr_sbuff_adv_past_allowed(&our_in, fr_sbuff_remaining(&our_in), sbuff_char_class_uint, rules->terminals);
5025 }
5026
5027 if (fr_inet_pton6(&addr, fr_sbuff_current(in), name_len,
5028 fr_hostname_lookups, false, true) < 0) return -1;
5029
5030 /*
5031 * We allow v6 addresses to have a /128 suffix as some databases (PostgreSQL)
5032 * print them this way.
5033 */
5034 if (addr.prefix != 128) {
5035 fail_ipv6_prefix:
5036 fr_strerror_printf("Invalid IPv6 mask length \"/%i\". Only \"/128\" permitted "
5037 "for non-prefix types", addr.prefix);
5038 return -1;
5039 }
5040
5041 memcpy(&dst->vb_ip, &addr, sizeof(dst->vb_ip));
5042 }
5043 goto finish;
5044
5046 {
5047 size_t name_len = fr_sbuff_adv_past_allowed(&our_in, fr_sbuff_remaining(&our_in), sbuff_char_class_hostname, rules->terminals);
5048 if (!name_len) return 0;
5049
5050 if (fr_inet_pton6(&dst->vb_ip, fr_sbuff_current(in), name_len,
5051 fr_hostname_lookups, false, true) < 0) return -1;
5052 }
5053 goto finish;
5054
5056 {
5057 size_t name_len = fr_sbuff_adv_past_allowed(&our_in, fr_sbuff_remaining(&our_in), sbuff_char_class_hostname, rules->terminals);
5058 if (!name_len) return 0;
5059
5060 /*
5061 * Parse scope, too.
5062 */
5063 if (fr_sbuff_next_if_char(&our_in, '%')) {
5064 name_len += fr_sbuff_adv_past_allowed(&our_in, fr_sbuff_remaining(&our_in), sbuff_char_class_uint, rules->terminals);
5065 }
5066
5067 if (fr_inet_pton(&addr, fr_sbuff_current(in), name_len, AF_UNSPEC,
5068 fr_hostname_lookups, true) < 0) return -1;
5069
5070 if ((addr.af == AF_INET) && (addr.prefix != 32)) {
5071 goto fail_ipv4_prefix;
5072 }
5073
5074 if ((addr.af == AF_INET6) && (addr.prefix != 128)) {
5075 goto fail_ipv6_prefix;
5076 }
5077
5078 memcpy(&dst->vb_ip, &addr, sizeof(dst->vb_ip));
5079 }
5080 goto finish;
5081
5083 {
5084 size_t name_len = fr_sbuff_adv_past_allowed(&our_in, fr_sbuff_remaining(&our_in), sbuff_char_class_hostname, rules->terminals);
5085 if (!name_len) return 0;
5086
5087 if (fr_inet_pton(&dst->vb_ip, fr_sbuff_current(in), name_len, AF_UNSPEC,
5088 fr_hostname_lookups, true) < 0) return -1;
5089 }
5090 goto finish;
5091
5092 case FR_TYPE_UINT8:
5093 case FR_TYPE_UINT16:
5094 case FR_TYPE_UINT32:
5095 case FR_TYPE_UINT64:
5096 case FR_TYPE_INT8:
5097 case FR_TYPE_INT16:
5098 case FR_TYPE_INT32:
5099 case FR_TYPE_INT64:
5100 case FR_TYPE_FLOAT32:
5101 case FR_TYPE_FLOAT64:
5102 return fr_value_box_from_numeric_substr(dst, dst_type, dst_enumv, in, rules, tainted);
5103
5104 case FR_TYPE_SIZE:
5105 if (fr_size_from_str(&dst->datum.size, &our_in) < 0) return -1;
5106 goto finish;
5107
5108 case FR_TYPE_BOOL:
5109 fr_value_box_init(dst, dst_type, dst_enumv, tainted);
5110
5111 /*
5112 * Quoted boolean values are "yes", "no", "true", "false"
5113 */
5114 slen = fr_sbuff_out(NULL, &dst->vb_bool, in);
5115 if (slen >= 0) return slen;
5116
5117 /*
5118 * For barewords we also allow 0 for false and any other
5119 * integer value for true.
5120 */
5121 if (!rules->escapes) {
5122 int64_t stmp;
5123 uint64_t utmp;
5124
5125 slen = fr_sbuff_out(NULL, &stmp, in);
5126 if (slen >= 0) {
5127 dst->vb_bool = (stmp != 0);
5128 return slen;
5129 }
5130
5131 slen = fr_sbuff_out(NULL, &utmp, in);
5132 if (slen >= 0) {
5133 dst->vb_bool = (utmp != 0);
5134 return slen;
5135 }
5136 }
5137
5138 fr_strerror_const("Invalid boolean value. Accepted values are "
5139 "\"yes\", \"no\", \"true\", \"false\" or any unquoted integer");
5140
5141 return slen; /* Just whatever the last error offset was */
5142
5143 case FR_TYPE_ETHERNET:
5144 {
5145 uint64_t num;
5146 fr_ethernet_t ether;
5147 fr_dbuff_t dbuff;
5149
5150 fr_dbuff_init(&dbuff, ether.addr, sizeof(ether.addr));
5151
5152 /*
5153 * Convert things which are obviously integers to Ethernet addresses
5154 *
5155 * We assume the number is the decimal
5156 * representation of the ethernet address.
5157 * i.e. the ethernet address converted to a
5158 * number, and printed.
5159 *
5160 * The string gets converted to a network-order
5161 * 8-byte number, and then the lower bytes of
5162 * that get copied to the ethernet address.
5163 *
5164 * Note: We need to check for a terminal sequence
5165 * after the number, else we may just end up
5166 * parsing the first hexit and returning.
5167 *
5168 * i.e. 1c:00:00:00:00 -> 1
5169 */
5170 if ((fr_sbuff_out(NULL, &num, &our_in) > 0) && fr_sbuff_is_terminal(&our_in, rules->terminals)) {
5171 num = htonll(num);
5172
5173 FR_DBUFF_IN_MEMCPY_RETURN(&dbuff, ((uint8_t *) &num) + 2, sizeof(dst->vb_ether));
5174 fr_value_box_ethernet_addr(dst, dst_enumv, &ether, tainted);
5175
5176 FR_SBUFF_SET_RETURN(in, &our_in);
5177 }
5178
5179 fr_sbuff_set_to_start(&our_in);
5180
5181 fr_base16_decode(&err, &dbuff, &our_in, true);
5182 if (err != FR_SBUFF_PARSE_OK) {
5183 ether_error:
5184 fr_sbuff_parse_error_to_strerror(err);
5185 FR_SBUFF_ERROR_RETURN(&our_in);
5186 }
5187
5188 if (!fr_sbuff_next_if_char(&our_in, ':')) {
5189 ether_sep_error:
5190 fr_strerror_const("Missing separator, expected ':'");
5191 FR_SBUFF_ERROR_RETURN(&our_in);
5192 }
5193
5194 fr_base16_decode(&err, &dbuff, &our_in, true);
5195 if (err != FR_SBUFF_PARSE_OK) goto ether_error;
5196
5197 if (!fr_sbuff_next_if_char(&our_in, ':')) goto ether_sep_error;
5198
5199 fr_base16_decode(&err, &dbuff, &our_in, true);
5200 if (err != FR_SBUFF_PARSE_OK) goto ether_error;
5201
5202 if (!fr_sbuff_next_if_char(&our_in, ':')) goto ether_sep_error;
5203
5204 fr_base16_decode(&err, &dbuff, &our_in, true);
5205 if (err != FR_SBUFF_PARSE_OK) goto ether_error;
5206
5207 if (!fr_sbuff_next_if_char(&our_in, ':')) goto ether_sep_error;
5208
5209 fr_base16_decode(&err, &dbuff, &our_in, true);
5210 if (err != FR_SBUFF_PARSE_OK) goto ether_error;
5211
5212 if (!fr_sbuff_next_if_char(&our_in, ':')) goto ether_sep_error;
5213
5214 fr_base16_decode(&err, &dbuff, &our_in, true);
5215 if (err != FR_SBUFF_PARSE_OK) goto ether_error;
5216
5217 fr_value_box_ethernet_addr(dst, dst_enumv, (fr_ethernet_t * const)fr_dbuff_start(&dbuff), tainted);
5218
5219 FR_SBUFF_SET_RETURN(in, &our_in);
5220 }
5221
5222 case FR_TYPE_TIME_DELTA:
5223 fr_value_box_init(dst, FR_TYPE_TIME_DELTA, dst_enumv, tainted);
5224
5225 slen = fr_time_delta_from_substr(&dst->datum.time_delta, &our_in,
5226 dst_enumv ? dst_enumv->flags.flag_time_res : FR_TIME_RES_SEC,
5227 false, rules->terminals);
5228 if (slen < 0) return slen;
5229 FR_SBUFF_SET_RETURN(in, &our_in);
5230
5231 case FR_TYPE_NULL:
5232 if (!rules->escapes && fr_sbuff_adv_past_str_literal(&our_in, "NULL")) {
5233 fr_value_box_init(dst, dst_type, dst_enumv, tainted);
5234 FR_SBUFF_SET_RETURN(in, &our_in);
5235 }
5236
5237 fr_strerror_const("String value was not NULL");
5238 return -1;
5239
5240 /*
5241 * Dealt with below
5242 */
5243 default:
5244 break;
5245 }
5246
5247 /*
5248 * We may have terminals. If so, respect them.
5249 */
5250 if (rules && rules->terminals) {
5251 size_t len;
5252
5253 len = fr_sbuff_out_unescape_until(&FR_SBUFF_OUT(buffer, sizeof(buffer)), &our_in, SIZE_MAX,
5254 rules->terminals, rules->escapes);
5255 if (len >= sizeof(buffer)) goto too_small;
5256
5257 buffer[len] = '\0';
5258
5259 } else {
5260 /*
5261 * It's a fixed size src->dst_type, copy to a temporary buffer and
5262 * \0 terminate.
5263 *
5264 * @todo - note that this brute-force copy means that the input sbuff
5265 * is NOT advanced, and this function will return 0, even though it parsed data!
5266 */
5267 if (fr_sbuff_remaining(in) >= sizeof(buffer)) {
5268 too_small:
5269 fr_strerror_const("Temporary buffer too small");
5270 return -1;
5271 }
5272
5274 buffer[fr_sbuff_remaining(in)] = '\0';
5275 }
5276
5277 switch (dst_type) {
5278 case FR_TYPE_DATE:
5279 {
5280 if (dst_enumv) {
5281 if (fr_unix_time_from_str(&dst->vb_date, buffer, dst_enumv->flags.flag_time_res) < 0) return -1;
5282 } else {
5283 if (fr_unix_time_from_str(&dst->vb_date, buffer, FR_TIME_RES_SEC) < 0) return -1;
5284 }
5285
5286 dst->enumv = dst_enumv;
5287 }
5288 break;
5289
5290 case FR_TYPE_IFID:
5291 if (fr_inet_ifid_pton((void *) dst->vb_ifid, buffer) == NULL) {
5292 fr_strerror_printf("Failed to parse interface-id string \"%s\"", buffer);
5293 return -1;
5294 }
5295 break;
5296
5297 default:
5298 fr_strerror_printf("Cannot parse input as data type %s", fr_type_to_str(dst_type));
5299 return -1;
5300 }
5301
5302finish:
5303 dst->type = dst_type;
5304 dst->tainted = tainted;
5305
5306 /*
5307 * Fixup enumvs
5308 */
5309 dst->enumv = dst_enumv;
5310 fr_value_box_list_entry_init(dst);
5311
5312 FR_SBUFF_SET_RETURN(in, &our_in);
5313}
5314
5316 fr_type_t dst_type, fr_dict_attr_t const *dst_enumv,
5317 char const *in, size_t inlen,
5318 fr_sbuff_unescape_rules_t const *erules, bool tainted)
5319{
5320 ssize_t slen;
5321 fr_sbuff_parse_rules_t prules = { .escapes = erules };
5322
5323 slen = fr_value_box_from_substr(ctx, dst, dst_type, dst_enumv, &FR_SBUFF_IN(in, inlen), &prules, tainted);
5324 if (slen <= 0) return slen;
5325
5326 if (slen != (ssize_t)inlen) {
5327 fr_strerror_printf("Failed parsing '%s'. %zu bytes of trailing data after string value \"%pV\"",
5328 fr_type_to_str(dst_type),
5329 inlen - slen,
5330 fr_box_strvalue_len(in + slen, inlen - slen));
5331 return (slen - inlen) - 1;
5332 }
5333
5334 return slen;
5335}
5336
5337/** Print one boxed value to a string
5338 *
5339 * This function should primarily be used when a #fr_value_box_t is being
5340 * serialized in some non-standard way, i.e. as a value for a field
5341 * in a database, in all other instances it's better to use
5342 * #fr_value_box_print_quoted.
5343 *
5344 * @note - this function does NOT respect tainting! The escaping rules
5345 * are ONLY for escaping quotation characters, CR, LF, etc.
5346 *
5347 * @param[in] out Where to write the printed string.
5348 * @param[in] data Value box to print.
5349 * @param[in] e_rules To apply to FR_TYPE_STRING types, for escaping quotation characters _only_.
5350 * Is not currently applied to any other box type.
5351 */
5353{
5354 fr_sbuff_t our_out = FR_SBUFF(out);
5355
5356 char buf[1024]; /* Interim buffer to use with poorly behaved printing functions */
5357
5358 if (data->enumv && data->enumv->flags.has_value) {
5359 char const *name;
5360
5362 if (name) {
5363 FR_SBUFF_IN_ESCAPE_BUFFER_RETURN(&our_out, name, NULL);
5364 goto done;
5365 }
5366 }
5367
5368 switch (data->type) {
5369 case FR_TYPE_STRING:
5370 if (data->vb_length) FR_SBUFF_IN_ESCAPE_RETURN(&our_out,
5371 data->vb_strvalue, data->vb_length, e_rules);
5372 break;
5373
5374 case FR_TYPE_OCTETS:
5375 FR_SBUFF_IN_CHAR_RETURN(&our_out, '0', 'x');
5376 if (data->vb_length) FR_SBUFF_RETURN(fr_base16_encode, &our_out,
5377 &FR_DBUFF_TMP(data->vb_octets, data->vb_length));
5378 break;
5379
5380 /*
5381 * We need to use the proper inet_ntop functions for IP
5382 * addresses, else the output might not match output of
5383 * other functions, which makes testing difficult.
5384 *
5385 * An example is tunneled ipv4 in ipv6 addresses.
5386 */
5387 case FR_TYPE_IPV4_ADDR:
5388 case FR_TYPE_IPV6_ADDR:
5390 if (!fr_inet_ntop(buf, sizeof(buf), &data->vb_ip)) return 0;
5391 FR_SBUFF_IN_STRCPY_RETURN(&our_out, buf);
5392 break;
5393
5397 if (!fr_inet_ntop_prefix(buf, sizeof(buf), &data->vb_ip)) return 0;
5398 FR_SBUFF_IN_STRCPY_RETURN(&our_out, buf);
5399 break;
5400
5401 case FR_TYPE_IFID:
5402 if (!fr_inet_ifid_ntop(buf, sizeof(buf), data->vb_ifid)) return 0;
5403 FR_SBUFF_IN_STRCPY_RETURN(&our_out, buf);
5404 break;
5405
5406 case FR_TYPE_ETHERNET:
5407 FR_SBUFF_IN_SPRINTF_RETURN(&our_out, "%02x:%02x:%02x:%02x:%02x:%02x",
5408 data->vb_ether[0], data->vb_ether[1],
5409 data->vb_ether[2], data->vb_ether[3],
5410 data->vb_ether[4], data->vb_ether[5]);
5411 break;
5412
5413 case FR_TYPE_BOOL:
5414 FR_SBUFF_IN_STRCPY_RETURN(&our_out, data->vb_uint8 ? "yes" : "no");
5415 break;
5416
5417 case FR_TYPE_UINT8:
5418 FR_SBUFF_IN_SPRINTF_RETURN(&our_out, "%u", data->vb_uint8);
5419 break;
5420
5421 case FR_TYPE_UINT16:
5422 FR_SBUFF_IN_SPRINTF_RETURN(&our_out, "%u", data->vb_uint16);
5423 break;
5424
5425 case FR_TYPE_UINT32:
5426 FR_SBUFF_IN_SPRINTF_RETURN(&our_out, "%u", data->vb_uint32);
5427 break;
5428
5429 case FR_TYPE_UINT64:
5430 FR_SBUFF_IN_SPRINTF_RETURN(&our_out, "%" PRIu64, data->vb_uint64);
5431 break;
5432
5433 case FR_TYPE_INT8:
5434 FR_SBUFF_IN_SPRINTF_RETURN(&our_out, "%d", data->vb_int8);
5435 break;
5436
5437 case FR_TYPE_INT16:
5438 FR_SBUFF_IN_SPRINTF_RETURN(&our_out, "%d", data->vb_int16);
5439 break;
5440
5441 case FR_TYPE_INT32:
5442 FR_SBUFF_IN_SPRINTF_RETURN(&our_out, "%d", data->vb_int32);
5443 break;
5444
5445 case FR_TYPE_INT64:
5446 FR_SBUFF_IN_SPRINTF_RETURN(&our_out, "%" PRId64, data->vb_int64);
5447 break;
5448
5449 case FR_TYPE_FLOAT32:
5450 FR_SBUFF_IN_SPRINTF_RETURN(&our_out, "%f", (double) data->vb_float32);
5451 break;
5452
5453 case FR_TYPE_FLOAT64:
5454 FR_SBUFF_IN_SPRINTF_RETURN(&our_out, "%g", data->vb_float64);
5455 break;
5456
5457 case FR_TYPE_DATE:
5458 {
5460
5461 if (data->enumv) res = data->enumv->flags.flag_time_res;
5462
5463 FR_SBUFF_RETURN(fr_unix_time_to_str, &our_out, data->vb_date, res, true);
5464 break;
5465 }
5466
5467 case FR_TYPE_SIZE:
5468 FR_SBUFF_RETURN(fr_size_to_str, &our_out, data->datum.size);
5469 break;
5470
5471 case FR_TYPE_TIME_DELTA:
5472 {
5474 bool is_unsigned = false;
5475
5476 if (data->enumv) {
5477 res = data->enumv->flags.flag_time_res;
5478 is_unsigned = data->enumv->flags.is_unsigned;
5479 }
5480
5481
5482 FR_SBUFF_RETURN(fr_time_delta_to_str, &our_out, data->vb_time_delta, res, is_unsigned);
5483 }
5484 break;
5485
5486 case FR_TYPE_GROUP:
5487 /*
5488 * If the caller didn't ask to escape binary data
5489 * in 'octets' types, then we force that now.
5490 * Otherwise any 'octets' type which is buried
5491 * inside of a 'group' will get copied verbatim
5492 * from input to output, with no escaping!
5493 */
5494 if (!e_rules || (!e_rules->do_oct && !e_rules->do_hex)) {
5495 e_rules = &fr_value_escape_double;
5496 }
5497
5498 /*
5499 * Represent groups as:
5500 *
5501 * { <value0>, <value1>, { <sub-value0>, <sub-value1>, <sub-valueN> }}
5502 */
5503 FR_SBUFF_IN_CHAR_RETURN(&our_out, '{');
5505 NULL, NULL, &our_out, UNCONST(fr_value_box_list_t *, &data->vb_group),
5506 ", ", (sizeof(", ") - 1), e_rules,
5507 0, 0, false);
5508 FR_SBUFF_IN_CHAR_RETURN(&our_out, '}');
5509 break;
5510
5511 case FR_TYPE_NULL:
5512 FR_SBUFF_IN_STRCPY_LITERAL_RETURN(&our_out, "NULL");
5513 break;
5514 /*
5515 * Don't add default here
5516 */
5517 case FR_TYPE_TLV: /* Not a box type */
5518 case FR_TYPE_STRUCT: /* Not a box type */
5519 case FR_TYPE_VSA: /* Not a box type */
5520 case FR_TYPE_VENDOR: /* Not a box type */
5521 case FR_TYPE_VALUE_BOX:
5522 case FR_TYPE_VOID:
5523 case FR_TYPE_MAX:
5524 (void)fr_cond_assert(0);
5525 return 0;
5526 }
5527
5528done:
5529 FR_SBUFF_SET_RETURN(out, &our_out);
5530}
5531
5532/** Print one boxed value to a string with quotes (where needed)
5533 *
5534 * @param[in] out Where to write the printed string.
5535 * @param[in] data Value box to print.
5536 * @param[in] quote To apply to FR_TYPE_STRING types.
5537 * Is not currently applied to any
5538 * other box type.
5539 */
5541{
5542 fr_sbuff_t our_out = FR_SBUFF(out);
5543
5544 if (quote == T_BARE_WORD) return fr_value_box_print(out, data, NULL);
5545
5546 switch (data->type) {
5547 case FR_TYPE_QUOTED:
5548 FR_SBUFF_IN_CHAR_RETURN(&our_out, fr_token_quote[quote]);
5550 FR_SBUFF_IN_CHAR_RETURN(&our_out, fr_token_quote[quote]);
5551 break;
5552
5553 default:
5554 return fr_value_box_print(out, data, NULL);
5555 }
5556
5557 FR_SBUFF_SET_RETURN(out, &our_out);
5558}
5559
5560/** Concatenate a list of value boxes together
5561 *
5562 * All boxes will be removed from the list.
5563 *
5564 * @param[out] tainted If nonnull, will be set to true if any input boxes are tainted.
5565 * bool pointed to must be initialised.
5566 * @param[out] secret If nonnull, will be set to true if any input boxes are secret.
5567 * @param[out] sbuff to write the result of the concatenation to.
5568 * @param[in] list to concatenate.
5569 * @param[in] sep Insert a separator between the values.
5570 * @param[in] sep_len Length of the separator.
5571 * @param[in] e_rules To apply to FR_TYPE_STRING types.
5572 * Is not currently applied to any other box type.
5573 * @param[in] proc_action What to do with the boxes in the list once
5574 * they've been processed.
5575 * @param[in] safe_for if value has this safe_for value, don't apply the escape rules.
5576 * @param[in] flatten If true and we encounter a #FR_TYPE_GROUP,
5577 * we concat the contents of its children together.
5578 * If false, the contents will be cast to #FR_TYPE_STRING.
5579 * @return
5580 * - >=0 the number of bytes written to the sbuff.
5581 * - <0 how many additional bytes we would have needed to
5582 * concat the next box.
5583 */
5584ssize_t fr_value_box_list_concat_as_string(bool *tainted, bool *secret, fr_sbuff_t *sbuff, fr_value_box_list_t *list,
5585 char const *sep, size_t sep_len, fr_sbuff_escape_rules_t const *e_rules,
5586 fr_value_box_list_action_t proc_action, fr_value_box_safe_for_t safe_for, bool flatten)
5587{
5588 fr_sbuff_t our_sbuff = FR_SBUFF(sbuff);
5589 ssize_t slen;
5590
5591 if (fr_value_box_list_empty(list)) return 0;
5592
5593 fr_value_box_list_foreach(list, vb) {
5594 switch (vb->type) {
5595 case FR_TYPE_GROUP:
5596 if (!flatten) goto print;
5597 slen = fr_value_box_list_concat_as_string(tainted, secret, &our_sbuff, &vb->vb_group,
5598 sep, sep_len, e_rules,
5599 proc_action, safe_for, flatten);
5600 break;
5601
5602 case FR_TYPE_OCTETS:
5603
5604 /*
5605 * Copy the raw string over, if necessary with escaping.
5606 */
5607 if (e_rules && (!fr_value_box_is_safe_for(vb, safe_for) || e_rules->do_oct || e_rules->do_hex)) {
5608 slen = fr_sbuff_in_escape(&our_sbuff, (char const *)vb->vb_strvalue, vb->vb_length, e_rules);
5609 } else {
5610 slen = fr_sbuff_in_bstrncpy(&our_sbuff, (char const *)vb->vb_strvalue, vb->vb_length);
5611 }
5612 break;
5613
5614 case FR_TYPE_STRING:
5615 if (!fr_value_box_is_safe_for(vb, safe_for) && e_rules) goto print;
5616
5617 slen = fr_sbuff_in_bstrncpy(&our_sbuff, vb->vb_strvalue, vb->vb_length);
5618 break;
5619
5620 case FR_TYPE_NULL: /* Skip null */
5621 continue;
5622
5623 default:
5624 print:
5625 slen = fr_value_box_print(&our_sbuff, vb, e_rules);
5626 break;
5627 }
5628 if (slen < 0) {
5629 error:
5630 return slen;
5631 }
5632
5633 if (sep && fr_value_box_list_next(list, vb)) {
5634 slen = fr_sbuff_in_bstrncpy(&our_sbuff, sep, sep_len);
5635 if (slen < 0) goto error;
5636 }
5637 }
5638
5639 /*
5640 * Free the boxes last so if there's
5641 * an issue concatenating them, everything
5642 * is still in a known state.
5643 */
5645 if (tainted && vb->tainted) *tainted = true;
5646 if (secret && vb->secret) *secret = true;
5647
5648 if (vb_should_remove(proc_action)) fr_value_box_list_remove(list, vb);
5649 if (vb_should_free_value(proc_action)) fr_value_box_clear_value(vb);
5650 if (vb_should_free(proc_action)) talloc_free(vb);
5651 }}
5652
5653 FR_SBUFF_SET_RETURN(sbuff, &our_sbuff);
5654}
5655
5656/** Concatenate a list of value boxes together
5657 *
5658 * All boxes will be removed from the list.
5659 *
5660 * @param[out] tainted If nonnull, will be set to true if any input boxes are tainted.
5661 * bool pointed to must be initialised.
5662 * @param[out] secret If nonnull, will be set to true if any input boxes are secret.
5663 * @param[out] dbuff to write the result of the concatenation to.
5664 * @param[in] list to concatenate.
5665 * @param[in] sep Insert a separator between the values.
5666 * @param[in] sep_len Length of the separator.
5667 * @param[in] proc_action What to do with the boxes in the list once
5668 * they've been processed.
5669 * @param[in] flatten If true and we encounter a #FR_TYPE_GROUP,
5670 * we concat the contents of its children together.
5671 * If false, the contents will be cast to #FR_TYPE_OCTETS.
5672 * @return
5673 * - >=0 the number of bytes written to the sbuff.
5674 * - <0 how many additional bytes we would have needed to
5675 * concat the next box.
5676 */
5677ssize_t fr_value_box_list_concat_as_octets(bool *tainted, bool *secret, fr_dbuff_t *dbuff, fr_value_box_list_t *list,
5678 uint8_t const *sep, size_t sep_len,
5679 fr_value_box_list_action_t proc_action, bool flatten)
5680{
5681 fr_dbuff_t our_dbuff = FR_DBUFF(dbuff);
5682 TALLOC_CTX *tmp_ctx = NULL;
5683 ssize_t slen;
5684
5685 if (fr_value_box_list_empty(list)) return 0;
5686
5687 fr_value_box_list_foreach(list, vb) {
5688 switch (vb->type) {
5689 case FR_TYPE_GROUP:
5690 if (!flatten) goto cast;
5691 slen = fr_value_box_list_concat_as_octets(tainted, secret, &our_dbuff, &vb->vb_group,
5692 sep, sep_len,
5693 proc_action, flatten);
5694 break;
5695
5696 case FR_TYPE_OCTETS:
5697 slen = fr_dbuff_in_memcpy(&our_dbuff, vb->vb_octets, vb->vb_length);
5698 break;
5699
5700 case FR_TYPE_STRING:
5701 slen = fr_dbuff_in_memcpy(&our_dbuff, (uint8_t const *)vb->vb_strvalue, vb->vb_length);
5702 break;
5703
5704 case FR_TYPE_NULL: /* Skip null */
5705 continue;
5706
5707 default:
5708 cast:
5709 {
5710 fr_value_box_t tmp_vb;
5711
5712 if (!tmp_ctx) tmp_ctx = talloc_pool(NULL, 1024);
5713 /*
5714 * Not equivalent to fr_value_box_to_network
5715 */
5716 if (fr_value_box_cast_to_octets(tmp_ctx, &tmp_vb, FR_TYPE_OCTETS, NULL, vb) < 0) {
5717 slen = -1;
5718 goto error;
5719 }
5720
5721 slen = fr_dbuff_in_memcpy(&our_dbuff, tmp_vb.vb_octets, tmp_vb.vb_length);
5722 fr_value_box_clear_value(&tmp_vb);
5723 break;
5724 }
5725 }
5726
5727 if (slen < 0) {
5728 error:
5729 talloc_free(tmp_ctx);
5730 return slen;
5731 }
5732
5733 if (sep && fr_value_box_list_next(list, vb)) {
5734 slen = fr_dbuff_in_memcpy(&our_dbuff, sep, sep_len);
5735 if (slen < 0) goto error;
5736 }
5737 }
5738
5739 talloc_free(tmp_ctx);
5740
5741 /*
5742 * Free the boxes last so if there's
5743 * an issue concatenating them, everything
5744 * is still in a known state.
5745 */
5747 if (tainted && vb->tainted) *tainted = true;
5748 if (secret && vb->secret) *secret = true;
5749
5750 if (vb_should_remove(proc_action)) fr_value_box_list_remove(list, vb);
5751 if (vb_should_free_value(proc_action)) fr_value_box_clear_value(vb);
5752 if (vb_should_free(proc_action)) talloc_free(vb);
5753 }}
5754
5755 return fr_dbuff_set(dbuff, &our_dbuff);
5756}
5757
5758/** Concatenate a list of value boxes
5759 *
5760 * @note Will automatically cast all #fr_value_box_t to type specified.
5761 *
5762 * @param[in] ctx to allocate new value buffer in.
5763 * @param[out] out Where to write the resulting box.
5764 * @param[in] list to concatenate together.
5765 * @param[in] type May be #FR_TYPE_STRING or #FR_TYPE_OCTETS, no other types are
5766 * supported.
5767 * @param[in] proc_action What to do with the boxes in the list once
5768 * they've been processed.
5769 * @param[in] flatten If true and we encounter a #FR_TYPE_GROUP,
5770 * we concat the contents of its children together.
5771 * If false, the contents will be cast to the given type.
5772 * @param[in] max_size of the value.
5773 * @return
5774 * - 0 on success.
5775 * - -1 on failure.
5776 */
5778 fr_value_box_t *out, fr_value_box_list_t *list, fr_type_t type,
5779 fr_value_box_list_action_t proc_action, bool flatten,
5780 size_t max_size)
5781{
5782 fr_dbuff_t dbuff; /* FR_TYPE_OCTETS */
5783 fr_dbuff_uctx_talloc_t dbuff_tctx;
5784
5785 fr_sbuff_t sbuff; /* FR_TYPE_STRING */
5786 fr_sbuff_uctx_talloc_t sbuff_tctx;
5787
5788 fr_value_box_t *head_vb = fr_value_box_list_head(list);
5789 bool tainted = false;
5790 bool secret = false;
5791
5792 fr_value_box_entry_t entry;
5793
5794 if (fr_value_box_list_empty(list)) {
5795 fr_strerror_const("Invalid arguments. List contains no elements");
5796 return -1;
5797 }
5798
5799 switch (type) {
5800 case FR_TYPE_STRING:
5801 if (unlikely(!fr_sbuff_init_talloc(ctx, &sbuff, &sbuff_tctx, 256, max_size))) return -1;
5802 break;
5803
5804 case FR_TYPE_OCTETS:
5805 if (unlikely(!fr_dbuff_init_talloc(ctx, &dbuff, &dbuff_tctx, 256, max_size))) return -1;
5806 break;
5807
5808 default:
5809 fr_strerror_printf("Invalid argument. Can't concatenate boxes to type %s",
5811 return -1;
5812 }
5813
5814 /*
5815 * Merge all siblings into list head.
5816 *
5817 * This is where the first element in the
5818 * list is the output box.
5819 *
5820 * i.e. we want to merge all its siblings
5821 * into it.
5822 */
5823 if (out == head_vb) {
5824 out = head_vb; /* sync up out and head_vb */
5825
5826 switch (type) {
5827 case FR_TYPE_STRING:
5828 /*
5829 * Head gets dealt with specially as we don't
5830 * want to free it, and we don't want to free
5831 * the buffer associated with it (just yet).
5832 *
5833 * Note that we don't convert 'octets' to a printable string
5834 * here. Doing so breaks the keyword tests.
5835 */
5836 if (fr_value_box_list_concat_as_string(&tainted, &secret, &sbuff, list,
5837 NULL, 0, NULL,
5838 FR_VALUE_BOX_LIST_REMOVE, 0, flatten) < 0) {
5839 fr_strerror_printf("Concatenation exceeded max_size (%zu)", max_size);
5840 error:
5841 switch (type) {
5842 case FR_TYPE_STRING:
5843 talloc_free(fr_sbuff_buff(&sbuff));
5844 break;
5845
5846 case FR_TYPE_OCTETS:
5847 talloc_free(fr_dbuff_buff(&dbuff));
5848 break;
5849
5850 default:
5851 break;
5852 }
5853 return -1;
5854 }
5855
5856 /*
5857 * Concat the rest of the children...
5858 */
5859 if (fr_value_box_list_concat_as_string(&tainted, &secret, &sbuff, list,
5860 NULL, 0, NULL,
5861 proc_action, 0, flatten) < 0) {
5862 fr_value_box_list_insert_head(list, head_vb);
5863 goto error;
5864 }
5865 (void)fr_sbuff_trim_talloc(&sbuff, SIZE_MAX);
5867 if (fr_value_box_bstrndup(ctx, out, NULL, fr_sbuff_buff(&sbuff), fr_sbuff_used(&sbuff), tainted) < 0) goto error;
5868 break;
5869
5870 case FR_TYPE_OCTETS:
5871 if (fr_value_box_list_concat_as_octets(&tainted, &secret, &dbuff, list,
5872 NULL, 0,
5873 FR_VALUE_BOX_LIST_REMOVE, flatten) < 0) goto error;
5874
5875 if (fr_value_box_list_concat_as_octets(&tainted, &secret, &dbuff, list,
5876 NULL, 0,
5877 proc_action, flatten) < 0) {
5878 fr_value_box_list_insert_head(list, head_vb);
5879 goto error;
5880 }
5881 (void)fr_dbuff_trim_talloc(&dbuff, SIZE_MAX);
5883 if (fr_value_box_memdup(ctx, out, NULL, fr_dbuff_buff(&dbuff), fr_dbuff_used(&dbuff), tainted) < 0) goto error;
5884 break;
5885
5886 default:
5887 break;
5888 }
5889 fr_value_box_list_insert_head(list, out);
5890 /*
5891 * Merge all the boxes in the list into
5892 * a single contiguous buffer.
5893 *
5894 * This deals with an unrelated out and list
5895 * and also where list is the children of
5896 * out.
5897 */
5898 } else {
5899 switch (type) {
5900 case FR_TYPE_STRING:
5901 if (fr_value_box_list_concat_as_string(&tainted, &secret, &sbuff, list,
5902 NULL, 0, NULL,
5903 proc_action, 0, flatten) < 0) goto error;
5904 (void)fr_sbuff_trim_talloc(&sbuff, SIZE_MAX);
5905
5906 entry = out->entry;
5907 if (fr_value_box_bstrndup(ctx, out, NULL, fr_sbuff_buff(&sbuff), fr_sbuff_used(&sbuff), tainted) < 0) goto error;
5908 out->entry = entry;
5909 break;
5910
5911 case FR_TYPE_OCTETS:
5912 if (fr_value_box_list_concat_as_octets(&tainted, &secret, &dbuff, list,
5913 NULL, 0,
5914 proc_action, flatten) < 0) goto error;
5915 (void)fr_dbuff_trim_talloc(&dbuff, SIZE_MAX);
5916
5917 entry = out->entry;
5918 if (fr_value_box_memdup(ctx, out, NULL, fr_dbuff_buff(&dbuff), fr_dbuff_used(&dbuff), tainted) < 0) goto error;
5919 out->entry = entry;
5920 break;
5921
5922 default:
5923 break;
5924 }
5925 }
5927
5928 return 0;
5929}
5930
5931/** Escape a single value box in place
5932 *
5933 * @note Applies recursively to the children of group boxes.
5934 *
5935 * @param[in] vb to escape.
5936 * @param[in] escape function to apply to the value box.
5937 * @param[in] safe_for the escaped value to check value boxes again.
5938 * box has an escaped value that matches, it will
5939 * not be re-escaped.
5940 * @param[in] uctx user context to pass to the escape function.
5941 * @return
5942 * - 0 on success.
5943 * - -1 on failure.
5944 */
5946 fr_value_box_safe_for_t safe_for, void *uctx)
5947{
5948 int ret;
5949
5950 switch (vb->type) {
5951 case FR_TYPE_GROUP:
5952 return fr_value_box_list_escape_in_place(&vb->vb_group, escape, safe_for, uctx);
5953
5954 default:
5955 break;
5956 }
5957
5958 ret = escape(vb, uctx);
5959 if (unlikely(ret < 0)) return ret;
5960
5961 vb->safe_for = safe_for;
5962
5963 return 0;
5964}
5965
5966/** Escape a list of value boxes in place
5967 *
5968 * @note Applies recursively to the children of group boxes.
5969 *
5970 * @note on error, the list may be left in an inconsistent/partially escaped state.
5971 *
5972 * @param[in] list to escape.
5973 * @param[in] escape function to apply to the value box.
5974 * @param[in] safe_for the escaped value to check value boxes again.
5975 * box has an escaped value that matches, it will
5976 * not be re-escaped.
5977 * @param[in] uctx user context to pass to the escape function.
5978 * @return
5979 * - 0 on success.
5980 * - -1 on failure.
5981 */
5982int fr_value_box_list_escape_in_place(fr_value_box_list_t *list, fr_value_box_escape_t escape,
5983 fr_value_box_safe_for_t safe_for, void *uctx)
5984{
5985 int ret = 0;
5986
5987 fr_value_box_list_foreach(list, vb) {
5988 ret = fr_value_box_escape_in_place(vb, escape, safe_for, uctx);
5989 if (unlikely(ret < 0)) return ret;
5990 }
5991
5992 return ret;
5993}
5994
5995/** Removes a single layer of nesting, moving all children into the parent list
5996 *
5997 * @param[in] ctx to reparent children in if steal is true.
5998 * @param[in] list to flatten.
5999 * @param[in] steal whether to change the talloc ctx of children.
6000 * @param[in] free whether to free any group boxes which have had
6001 * their children removed.
6002 */
6003void fr_value_box_flatten(TALLOC_CTX *ctx, fr_value_box_list_t *list, bool steal, bool free)
6004{
6005 fr_value_box_list_foreach_safe(list, child) {
6006 if (!fr_type_is_structural(child->type)) continue;
6007
6008 fr_value_box_list_foreach_safe(&child->vb_group, grandchild) {
6009 fr_value_box_list_remove(&child->vb_group, grandchild);
6010 if (steal) talloc_steal(ctx, grandchild);
6011 fr_value_box_list_insert_before(list, child, grandchild);
6012 }}
6013
6014 if (free) talloc_free(child);
6015 }}
6016}
6017
6018/** Concatenate the string representations of a list of value boxes together
6019 *
6020 * @param[in] ctx to allocate the buffer in.
6021 * @param[in] list of value boxes.
6022 * @param[in] delim to insert between value box values.
6023 * @param[in] e_rules to control escaping of the concatenated elements.
6024 * @return
6025 * - NULL on error.
6026 * - The concatenation of the string values of the value box list on success.
6027 */
6028char *fr_value_box_list_aprint(TALLOC_CTX *ctx, fr_value_box_list_t const *list, char const *delim,
6029 fr_sbuff_escape_rules_t const *e_rules)
6030{
6031 fr_value_box_t const *vb = fr_value_box_list_head(list);
6032 char *aggr, *td = NULL;
6033 TALLOC_CTX *pool = NULL;
6034
6035 if (!vb) return NULL;
6036
6037 fr_value_box_aprint(ctx, &aggr, vb, e_rules);
6038 if (!aggr) return NULL;
6039 if (!fr_value_box_list_next(list, vb)) return aggr;
6040
6041 /*
6042 * If we're aggregating more values,
6043 * allocate a temporary pool.
6044 */
6045 pool = talloc_pool(NULL, 255);
6046 if (delim) td = talloc_typed_strdup(pool, delim);
6047
6048 while ((vb = fr_value_box_list_next(list, vb))) {
6049 char *str, *new_aggr;
6050
6051 fr_value_box_aprint(pool, &str, vb, e_rules);
6052 if (!str) continue;
6053
6054 new_aggr = talloc_buffer_append_variadic_buffer(ctx, aggr, 2, td, str);
6055 if (unlikely(!new_aggr)) {
6056 talloc_free(aggr);
6057 talloc_free(pool);
6058 return NULL;
6059 }
6060 aggr = new_aggr;
6061 talloc_free(str);
6062 }
6063 talloc_free(pool);
6064
6065 return aggr;
6066}
6067
6068/** Concatenate the string representations of a list of value boxes together hiding "secret" values
6069 *
6070 * @param[in] ctx to allocate the buffer in.
6071 * @param[in] list of value boxes.
6072 * @param[in] delim to insert between value box values.
6073 * @param[in] e_rules to control escaping of the concatenated elements.
6074 * @return
6075 * - NULL on error.
6076 * - The concatenation of the string values of the value box list on success.
6077 */
6078char *fr_value_box_list_aprint_secure(TALLOC_CTX *ctx, fr_value_box_list_t const *list, char const *delim,
6079 fr_sbuff_escape_rules_t const *e_rules)
6080{
6081 fr_value_box_t const *vb = fr_value_box_list_head(list);
6082 char *aggr, *td = NULL;
6083 TALLOC_CTX *pool = NULL;
6084
6085 if (!vb) return NULL;
6086
6088 aggr = talloc_typed_strdup(ctx, "<<< secret >>>");
6089 } else {
6090 fr_value_box_aprint(ctx, &aggr, vb, e_rules);
6091 }
6092 if (!aggr) return NULL;
6093 if (!fr_value_box_list_next(list, vb)) return aggr;
6094
6095 /*
6096 * If we're aggregating more values,
6097 * allocate a temporary pool.
6098 */
6099 pool = talloc_pool(NULL, 255);
6100 if (delim) td = talloc_typed_strdup(pool, delim);
6101
6102 while ((vb = fr_value_box_list_next(list, vb))) {
6103 char *str, *new_aggr;
6104
6106 str = talloc_typed_strdup(pool, "<<< secret >>>");
6107 } else {
6108 fr_value_box_aprint(pool, &str, vb, e_rules);
6109 }
6110 if (!str) continue;
6111
6112 new_aggr = talloc_buffer_append_variadic_buffer(ctx, aggr, 2, td, str);
6113 if (unlikely(!new_aggr)) {
6114 talloc_free(aggr);
6115 talloc_free(pool);
6116 return NULL;
6117 }
6118 aggr = new_aggr;
6119 talloc_free(str);
6120 }
6121 talloc_free(pool);
6122
6123 return aggr;
6124}
6125
6126/** Hash the contents of a value box
6127 *
6128 */
6130{
6131 switch (vb->type) {
6132 case FR_TYPE_FIXED_SIZE:
6133 return fr_hash(fr_value_box_raw(vb, vb->type),
6134 fr_value_box_field_sizes[vb->type]);
6135
6136 case FR_TYPE_STRING:
6137 return fr_hash(vb->vb_strvalue, vb->vb_length);
6138
6139 case FR_TYPE_OCTETS:
6140 return fr_hash(vb->vb_octets, vb->vb_length);
6141
6142 default:
6143 break;
6144 }
6145
6146 return 0;
6147}
6148
6149/** Do a full copy of a list of value boxes
6150 *
6151 * @param[in] ctx to allocate boxes in.
6152 * @param[out] out Where to write the head of the new list.
6153 * @param[in] in boxes to copy.
6154 * @return
6155 * - A duplicate list of value boxes, allocated in the context of 'ctx'
6156 * - NULL on error, or empty input list.
6157 */
6158int fr_value_box_list_acopy(TALLOC_CTX *ctx, fr_value_box_list_t *out, fr_value_box_list_t const *in)
6159{
6160 fr_value_box_t const *in_p = NULL;
6161
6162 while ((in_p = fr_value_box_list_next(in, in_p))) {
6163 fr_value_box_t *n = NULL;
6164
6166 if (!n) {
6167 error:
6168 fr_value_box_list_talloc_free(out);
6169 return -1;
6170 }
6171
6172 if (fr_value_box_copy(n, n, in_p) < 0) goto error;
6173 fr_dlist_insert_tail(fr_value_box_list_dlist_head(out), n);
6174 }
6175
6176 return 0;
6177}
6178
6179/** Check to see if any list members (or their children) are tainted
6180 *
6181 * @param[in] head of list to check.
6182 * @return
6183 * - true if a list member is tainted.
6184 * - false if no list members are tainted.
6185 */
6186bool fr_value_box_list_tainted(fr_value_box_list_t const *head)
6187{
6188 fr_value_box_t *vb = NULL;
6189
6190 while ((vb = fr_value_box_list_next(head, vb))) {
6191 if (fr_type_is_group(vb->type) && fr_value_box_list_tainted(&vb->vb_group)) return true;
6192 if (vb->tainted) return true;
6193 }
6194
6195 return false;
6196}
6197
6198/** Taint every list member (and their children)
6199 *
6200 * @param[in] head of list.
6201 */
6202void fr_value_box_list_taint(fr_value_box_list_t *head)
6203{
6204 fr_value_box_t *vb = NULL;
6205
6206 while ((vb = fr_value_box_list_next(head, vb))) {
6207 if (fr_type_is_group(vb->type)) fr_value_box_list_taint(&vb->vb_group);
6208 vb->tainted = true;
6209 }
6210}
6211
6212/** Untaint every list member (and their children)
6213 *
6214 * @param[in] head of list.
6215 */
6216void fr_value_box_list_untaint(fr_value_box_list_t *head)
6217{
6218 fr_value_box_t *vb = NULL;
6219
6220 while ((vb = fr_value_box_list_next(head, vb))) {
6221 if (fr_type_is_group(vb->type)) fr_value_box_list_untaint(&vb->vb_group);
6222 vb->tainted = false;
6223 }
6224}
6225
6226/** Validation function to check that a fr_value_box_t is correctly initialised
6227 *
6228 */
6229void fr_value_box_verify(char const *file, int line, fr_value_box_t const *vb)
6230{
6231DIAG_OFF(nonnull-compare)
6232 /*
6233 * nonnull only does something if we're building
6234 * with ubsan... We still want to assert event
6235 * if we're building without sanitizers.
6236 */
6237 fr_fatal_assert_msg(vb, "CONSISTENCY CHECK FAILED %s[%i]: fr_value_box_t pointer was NULL", file, line);
6238DIAG_ON(nonnull-compare)
6239
6240 if (vb->talloced) vb = talloc_get_type_abort_const(vb, fr_value_box_t);
6241
6242#ifndef NDEBUG
6243 fr_fatal_assert_msg(vb->magic == FR_VALUE_BOX_MAGIC, "CONSISTENCY CHECK FAILED %s[%i]: fr_value_box_t magic "
6244 "incorrect, expected %" PRIx64 ", got %" PRIx64, file, line, FR_VALUE_BOX_MAGIC, vb->magic);
6245#endif
6246 switch (vb->type) {
6247 case FR_TYPE_STRING:
6248 fr_fatal_assert_msg(vb->vb_strvalue, "CONSISTENCY CHECK FAILED %s[%d]: fr_value_box_t strvalue field "
6249 "was NULL", file, line);
6250 fr_fatal_assert_msg(vb->vb_strvalue[vb->vb_length] == '\0',
6251 "CONSISTENCY CHECK FAILED %s[%i]: fr_value_box_t strvalue field "
6252 "not null terminated", file, line);
6253 if (vb->talloced) {
6254 size_t len = talloc_array_length(vb->vb_strvalue);
6255
6256 /* We always \0 terminate to be safe, even though most things should use the len field */
6257 if (len <= vb->vb_length) {
6258 fr_fatal_assert_fail("CONSISTENCY CHECK FAILED %s[%d]: Expected fr_value_box_t->vb_strvalue talloc buffer "
6259 "len >= %zu, got %zu",
6260 file, line, vb->vb_length + 1, len);
6261 }
6262 }
6263 break;
6264
6265 case FR_TYPE_OCTETS:
6266 fr_fatal_assert_msg(vb->vb_octets, "CONSISTENCY CHECK FAILED %s[%d]: fr_value_box_t octets field "
6267 "was NULL", file, line);
6268 break;
6269
6270 case FR_TYPE_VOID:
6271 fr_fatal_assert_msg(vb->vb_void, "CONSISTENCY CHECK FAILED %s[%d]: fr_value_box_t ptr field "
6272 "was NULL", file, line);
6273 break;
6274
6275 case FR_TYPE_GROUP:
6276 fr_value_box_list_verify(file, line, &vb->vb_group);
6277 break;
6278
6279 default:
6280 break;
6281 }
6282}
6283
6284void fr_value_box_list_verify(char const *file, int line, fr_value_box_list_t const *list)
6285{
6287}
6288
6289/** Mark a value-box as "safe", of a particular type.
6290 *
6291 */
6293{
6294 vb->safe_for = safe_for;
6295}
6296
6297/** Mark a value-box as "unsafe"
6298 *
6299 * This always succeeds, and there are no side effects.
6300 */
6302{
6303 vb->safe_for = 0;
6304}
6305
6306/** Set the escaped flag for all value boxes in a list
6307 *
6308 * @note Only operates on a single level.
6309 *
6310 * @param[in] list to operate on.
6311 * @param[in] safe_for value to set.
6312 */
6313void fr_value_box_list_mark_safe_for(fr_value_box_list_t *list, fr_value_box_safe_for_t safe_for)
6314{
6315 fr_value_box_list_foreach(list, vb) vb->safe_for = safe_for;
6316}
6317
6318/** Check truthiness of values.
6319 *
6320 * The casting rules for expressions / conditions are slightly
6321 * different than fr_value_box_cast(). Largely because that
6322 * function is used to parse configuration files, and parses "yes
6323 * / no" and "true / false" strings, even if there's no
6324 * fr_dict_attr_t passed to it.
6325 */
6327{
6328 fr_value_box_t box;
6329
6330 switch (in->type) {
6331 case FR_TYPE_NULL:
6333 return false;
6334
6335 case FR_TYPE_GROUP:
6336 return (fr_value_box_list_num_elements(&in->vb_group) > 0);
6337
6338 case FR_TYPE_BOOL:
6339 return in->vb_bool;
6340
6341 case FR_TYPE_STRING:
6342 case FR_TYPE_OCTETS:
6343 return (in->vb_length > 0);
6344
6345 case FR_TYPE_IPV4_ADDR:
6346 case FR_TYPE_IPV6_ADDR:
6347 return !fr_ipaddr_is_inaddr_any(&in->vb_ip);
6348
6351 return !((in->vb_ip.prefix == 0) && fr_ipaddr_is_inaddr_any(&in->vb_ip));
6352
6353 default:
6355 (void) fr_value_box_cast(NULL, &box, FR_TYPE_BOOL, NULL, in);
6356 return box.vb_bool;
6357 }
6358}
6359
6360#define INFO_INDENT(_fmt, ...) FR_FAULT_LOG("%*s"_fmt, depth * 2, " ", ## __VA_ARGS__)
6361
6362static void _fr_value_box_debug(fr_value_box_t const *vb, int depth, int idx);
6363static void _fr_value_box_list_debug(fr_value_box_list_t const *head, int depth)
6364{
6365 int i = 0;
6366
6367 INFO_INDENT("{");
6369 INFO_INDENT("}");
6370}
6371
6372/** Print a list of value boxes as info messages
6373 *
6374 * @note Call directly from the debugger
6375 */
6376void fr_value_box_list_debug(fr_value_box_list_t const *head)
6377{
6379}
6380
6381static void _fr_value_box_debug(fr_value_box_t const *vb, int depth, int idx)
6382{
6383 char *value;
6384
6385 if (fr_type_is_structural(vb->type)) {
6386 _fr_value_box_list_debug(&vb->vb_group, depth + 1);
6387 return;
6388 }
6389
6390 fr_value_box_aprint(NULL, &value, vb, NULL);
6391 if (idx >= 0) {
6392 INFO_INDENT("[%d] %s", idx, value);
6393 } else {
6394 INFO_INDENT("%s", value);
6395 }
6397}
6398
6399/** Print the value of a box as info messages
6400 *
6401 * @note Call directly from the debugger
6402 */
6404{
6405 _fr_value_box_debug(vb, 0, -1);
6406}
static int const char char buffer[256]
Definition acutest.h:576
int const char * file
Definition acutest.h:702
va_end(args)
int n
Definition acutest.h:577
static int const char * fmt
Definition acutest.h:573
int const char int line
Definition acutest.h:702
va_start(args, fmt)
#define fr_base16_encode(_out, _in)
Definition base16.h:57
#define fr_base16_decode(_err, _out, _in, _no_trailing)
Definition base16.h:95
#define UNCONST(_type, _ptr)
Remove const qualification from a pointer.
Definition build.h:167
#define RCSID(id)
Definition build.h:483
#define L(_str)
Helper for initialising arrays of string literals.
Definition build.h:209
#define FALL_THROUGH
clang 10 doesn't recognised the FALL-THROUGH comment anymore
Definition build.h:322
#define DIAG_ON(_x)
Definition build.h:458
#define SIZEOF_MEMBER(_t, _m)
Definition build.h:336
#define CMP(_a, _b)
Same as CMP_PREFER_SMALLER use when you don't really care about ordering, you just want an ordering.
Definition build.h:112
#define unlikely(_x)
Definition build.h:381
#define UNUSED
Definition build.h:315
#define DIAG_OFF(_x)
Definition build.h:457
static fr_atomic_queue_t * aq
static size_t min(size_t x, size_t y)
Definition dbuff.c:66
int fr_dbuff_trim_talloc(fr_dbuff_t *dbuff, size_t len)
Trim a talloced dbuff to the minimum length required to represent the contained string.
Definition dbuff.c:297
#define fr_dbuff_used(_dbuff_or_marker)
Return the number of bytes remaining between the start of the dbuff or marker and the current positio...
Definition dbuff.h:767
#define FR_DBUFF_OUT_UINT64V_RETURN(_num, _dbuff_or_marker, _len)
Read bytes from a dbuff or marker and interpret them as a network order unsigned integer.
Definition dbuff.h:1858
#define fr_dbuff_set(_dst, _src)
Set the 'current' position in a dbuff or marker using another dbuff or marker, a char pointer,...
Definition dbuff.h:1004
#define fr_dbuff_init(_out, _start, _len_or_end)
Initialise an dbuff for encoding or decoding.
Definition dbuff.h:354
#define fr_dbuff_start(_dbuff_or_marker)
Return the 'start' position of a dbuff or marker.
Definition dbuff.h:898
#define FR_DBUFF_OUT_INT64V_RETURN(_num, _dbuff_or_marker, _len)
Read bytes from a dbuff or marker and interpret them as a network order unsigned integer.
Definition dbuff.h:1898
#define fr_dbuff_buff(_dbuff_or_marker)
Return the underlying buffer in a dbuff or one of marker.
Definition dbuff.h:882
#define fr_dbuff_out_memcpy(_out, _dbuff_or_marker, _outlen)
Copy exactly _outlen bytes from the dbuff.
Definition dbuff.h:1732
#define FR_DBUFF_MEMSET_RETURN(_dbuff_or_marker, _c, _inlen)
Set _inlen bytes of a dbuff or marker to _c returning if there is insufficient space.
Definition dbuff.h:1508
#define FR_DBUFF_OUT_MEMCPY_RETURN(_out, _dbuff_or_marker, _outlen)
Copy outlen bytes from the dbuff returning if there's insufficient data in the dbuff.
Definition dbuff.h:1752
#define FR_DBUFF_IN_MEMCPY_RETURN(_dbuff_or_marker, _in, _inlen)
Copy exactly _inlen bytes into dbuff or marker returning if there's insufficient space.
Definition dbuff.h:1382
#define fr_dbuff_in_memcpy(_dbuff_or_marker, _in, _inlen)
Copy exactly _inlen bytes into a dbuff or marker.
Definition dbuff.h:1350
#define FR_DBUFF_IN_RETURN(_dbuff_or_marker, _in)
Copy data from a fixed sized C type into a dbuff returning if there is insufficient space.
Definition dbuff.h:1585
#define FR_DBUFF(_dbuff_or_marker)
Create a new dbuff pointing to the same underlying buffer.
Definition dbuff.h:222
#define FR_DBUFF_OUT_RETURN(_out, _dbuff_or_marker)
Copy data from a dbuff or marker to a fixed sized C type returning if there is insufficient data.
Definition dbuff.h:1818
static fr_dbuff_t * fr_dbuff_init_talloc(TALLOC_CTX *ctx, fr_dbuff_t *dbuff, fr_dbuff_uctx_talloc_t *tctx, size_t init, size_t max)
Initialise a special dbuff which automatically extends as additional data is written.
Definition dbuff.h:411
#define FR_DBUFF_IN_BYTES_RETURN(_dbuff_or_marker,...)
Copy a byte sequence into a dbuff or marker returning if there's insufficient space.
Definition dbuff.h:1472
#define FR_DBUFF_TMP(_start, _len_or_end)
Creates a compound literal to pass into functions which accept a dbuff.
Definition dbuff.h:514
#define fr_fatal_assert_fail(_msg,...)
Calls panic_action ifndef NDEBUG, else logs error and causes the server to exit immediately with code...
Definition debug.h:191
#define fr_cond_assert(_x)
Calls panic_action ifndef NDEBUG, else logs error and evaluates to value of _x.
Definition debug.h:139
#define fr_assert_fail(_msg,...)
Calls panic_action ifndef NDEBUG, else logs error.
Definition debug.h:216
#define fr_cond_assert_msg(_x, _fmt,...)
Calls panic_action ifndef NDEBUG, else logs error and evaluates to value of _x.
Definition debug.h:156
#define fr_fatal_assert_msg(_x, _fmt,...)
Calls panic_action ifndef NDEBUG, else logs error and causes the server to exit immediately with code...
Definition debug.h:184
@ FLAG_LENGTH_UINT8
string / octets type is prefixed by uint8 of length
Definition dict.h:149
@ FLAG_LENGTH_UINT16
string / octets type is prefixed by uint16 of length
Definition dict.h:150
static fr_slen_t err
Definition dict.h:824
fr_value_box_t const * value
Enum value (what name maps to).
Definition dict.h:231
char const * fr_dict_enum_name_by_value(fr_dict_attr_t const *da, fr_value_box_t const *value)
Lookup the name of an enum value in a fr_dict_attr_t.
Definition dict_util.c:3382
fr_dict_enum_value_t * fr_dict_enum_by_name(fr_dict_attr_t const *da, char const *name, ssize_t len)
Definition dict_util.c:3395
#define da_is_length_field(_da)
Definition dict.h:155
static fr_slen_t in
Definition dict.h:824
Value of an enumerated attribute.
Definition dict.h:227
Test enumeration values.
Definition dict_test.h:92
static int fr_dlist_insert_tail(fr_dlist_head_t *list_head, void *ptr)
Insert an item into the tail of a list.
Definition dlist.h:378
uint32_t fr_hash(void const *data, size_t size)
Definition hash.c:812
free(array)
int fr_ipaddr_is_prefix(fr_ipaddr_t const *ipaddr)
Determine if an address is a prefix.
Definition inet.c:125
char * fr_inet_ntop_prefix(char out[static FR_IPADDR_PREFIX_STRLEN], size_t outlen, fr_ipaddr_t const *addr)
Print a fr_ipaddr_t as a CIDR style network prefix.
Definition inet.c:1073
int fr_inet_pton6(fr_ipaddr_t *out, char const *value, ssize_t inlen, bool resolve, bool fallback, bool mask)
Parse an IPv6 address or IPv6 prefix in presentation format (and others)
Definition inet.c:629
bool fr_hostname_lookups
hostname -> IP lookups?
Definition inet.c:52
int fr_inet_pton(fr_ipaddr_t *out, char const *value, ssize_t inlen, int af, bool resolve, bool mask)
Simple wrapper to decide whether an IP value is v4 or v6 and call the appropriate parser.
Definition inet.c:778
int fr_ipaddr_is_inaddr_any(fr_ipaddr_t const *ipaddr)
Determine if an address is the INADDR_ANY address for its address family.
Definition inet.c:62
char * fr_inet_ntop(char out[static FR_IPADDR_STRLEN], size_t outlen, fr_ipaddr_t const *addr)
Print the address portion of a fr_ipaddr_t.
Definition inet.c:1018
int8_t fr_ipaddr_cmp(fr_ipaddr_t const *a, fr_ipaddr_t const *b)
Compare two ip addresses.
Definition inet.c:1346
char * fr_inet_ifid_ntop(char *out, size_t outlen, uint8_t const *ifid)
Print an interface-id in standard colon notation.
Definition inet.c:1099
uint8_t * fr_inet_ifid_pton(uint8_t out[static 8], char const *ifid_str)
Convert interface-id in colon notation to 8 byte binary form.
Definition inet.c:1113
uint8_t prefix
Prefix length - Between 0-32 for IPv4 and 0-128 for IPv6.
Definition inet.h:69
int af
Address family.
Definition inet.h:64
uint8_t addr[6]
Ethernet address.
Definition inet.h:46
Struct to represent an ethernet address.
Definition inet.h:45
IPv4/6 prefix.
talloc_free(reap)
#define fr_multiply(_out, _a, _b)
Multiplies two integers together.
Definition math.h:118
static const uint8_t * zero
Definition md4.c:358
unsigned short uint16_t
size_t fr_sbuff_out_unescape_until(fr_sbuff_t *out, fr_sbuff_t *in, size_t len, fr_sbuff_term_t const *tt, fr_sbuff_unescape_rules_t const *u_rules)
fr_type_t
@ FR_TYPE_TIME_DELTA
A period of time measured in nanoseconds.
@ FR_TYPE_FLOAT32
Single precision floating point.
@ FR_TYPE_IPV4_ADDR
32 Bit IPv4 Address.
@ FR_TYPE_INT8
8 Bit signed integer.
@ FR_TYPE_TLV
Contains nested attributes.
@ FR_TYPE_ETHERNET
48 Bit Mac-Address.
@ FR_TYPE_IPV6_PREFIX
IPv6 Prefix.
@ FR_TYPE_STRING
String of printable characters.
@ FR_TYPE_MAX
Number of defined data types.
@ FR_TYPE_NULL
Invalid (uninitialised) attribute type.
@ FR_TYPE_UINT16
16 Bit unsigned integer.
@ FR_TYPE_INT64
64 Bit signed integer.
@ FR_TYPE_INT16
16 Bit signed integer.
@ FR_TYPE_DATE
Unix time stamp, always has value >2^31.
@ FR_TYPE_COMBO_IP_PREFIX
IPv4 or IPv6 address prefix depending on length.
@ FR_TYPE_VALUE_BOX
A boxed value.
@ FR_TYPE_UINT8
8 Bit unsigned integer.
@ FR_TYPE_UINT32
32 Bit unsigned integer.
@ FR_TYPE_STRUCT
like TLV, but without T or L, and fixed-width children
@ FR_TYPE_INT32
32 Bit signed integer.
@ FR_TYPE_VENDOR
Attribute that represents a vendor in the attribute tree.
@ FR_TYPE_UINT64
64 Bit unsigned integer.
@ FR_TYPE_IPV6_ADDR
128 Bit IPv6 Address.
@ FR_TYPE_IPV4_PREFIX
IPv4 Prefix.
@ FR_TYPE_VOID
User data.
@ FR_TYPE_BOOL
A truth value.
@ FR_TYPE_SIZE
Unsigned integer capable of representing any memory address on the local system.
@ FR_TYPE_VSA
Vendor-Specific, for RADIUS attribute 26.
@ FR_TYPE_COMBO_IP_ADDR
IPv4 or IPv6 address depending on length.
@ FR_TYPE_IFID
Interface ID.
@ FR_TYPE_OCTETS
Raw octets.
@ FR_TYPE_GROUP
A grouping of other attributes.
@ FR_TYPE_FLOAT64
Double precision floating point.
unsigned int uint32_t
int fr_inet_pton4(fr_ipaddr_t *out, char const *value, ssize_t inlen, bool resolve, bool fallback, bool mask_bits)
long int ssize_t
unsigned char uint8_t
ssize_t fr_slen_t
unsigned long int size_t
#define UINT8_MAX
fr_sbuff_parse_error_t
@ FR_SBUFF_PARSE_ERROR_NOT_FOUND
String does not contain a token matching the output type.
@ FR_SBUFF_PARSE_OK
No error.
static uint8_t depth(fr_minmax_heap_index_t i)
Definition minmax_heap.c:83
int fr_digest_cmp(uint8_t const *a, uint8_t const *b, size_t length)
Do a comparison of two authentication digests by comparing the FULL data.
Definition misc.c:472
void * memset_explicit(void *ptr, int ch, size_t len)
Definition missing.c:620
static uint64_t fr_nbo_to_uint64(uint8_t const data[static sizeof(uint64_t)])
Read an unsigned 64bit integer from wire format (big endian)
Definition nbo.h:177
static void fr_nbo_from_uint64(uint8_t out[static sizeof(uint64_t)], uint64_t num)
Write out an unsigned 64bit integer in wire format (big endian)
Definition nbo.h:72
char * fr_vasprintf(TALLOC_CTX *ctx, char const *fmt, va_list ap)
Definition print.c:851
#define fr_assert(_expr)
Definition rad_assert.h:38
static char * secret
static bool done
Definition radclient.c:80
static uint32_t mask
Definition rbmonkey.c:39
static char const * name
int fr_sbuff_trim_talloc(fr_sbuff_t *sbuff, size_t len)
Trim a talloced sbuff to the minimum length required to represent the contained string.
Definition sbuff.c:419
size_t fr_sbuff_adv_past_allowed(fr_sbuff_t *sbuff, size_t len, bool const allowed[static UINT8_MAX+1], fr_sbuff_term_t const *tt)
Wind position past characters in the allowed set.
Definition sbuff.c:1777
ssize_t fr_sbuff_in_escape(fr_sbuff_t *sbuff, char const *in, size_t inlen, fr_sbuff_escape_rules_t const *e_rules)
Print an escaped string to an sbuff.
Definition sbuff.c:1620
bool const sbuff_char_class_hex[UINT8_MAX+1]
Definition sbuff.c:94
bool const sbuff_char_class_uint[UINT8_MAX+1]
Definition sbuff.c:60
bool const sbuff_char_class_hostname[UINT8_MAX+1]
Definition sbuff.c:82
bool fr_sbuff_is_terminal(fr_sbuff_t *in, fr_sbuff_term_t const *tt)
Efficient terminal string search.
Definition sbuff.c:2152
ssize_t fr_sbuff_in_bstrncpy(fr_sbuff_t *sbuff, char const *str, size_t len)
Copy bytes into the sbuff up to the first \0.
Definition sbuff.c:1480
size_t fr_sbuff_adv_until(fr_sbuff_t *sbuff, size_t len, fr_sbuff_term_t const *tt, char escape_chr)
Wind position until we hit a character in the terminal set.
Definition sbuff.c:1852
size_t fr_sbuff_out_bstrncpy(fr_sbuff_t *out, fr_sbuff_t *in, size_t len)
Copy as many bytes as possible from a sbuff to a sbuff.
Definition sbuff.c:723
bool fr_sbuff_next_if_char(fr_sbuff_t *sbuff, char c)
Return true if the current char matches, and if it does, advance.
Definition sbuff.c:2088
#define fr_sbuff_start(_sbuff_or_marker)
#define fr_sbuff_adv_past_str_literal(_sbuff, _needle)
#define FR_SBUFF_IN_CHAR_RETURN(_sbuff,...)
#define fr_sbuff_set(_dst, _src)
#define FR_SBUFF_IN(_start, _len_or_end)
#define fr_sbuff_adv_past_strcase_literal(_sbuff, _needle)
#define fr_sbuff_current(_sbuff_or_marker)
char chr
Character at the start of an escape sequence.
Definition sbuff.h:204
#define FR_SBUFF_IN_ESCAPE_BUFFER_RETURN(...)
#define FR_SBUFF_TERMS(...)
Initialise a terminal structure with a list of sorted strings.
Definition sbuff.h:192
char const * name
Name for rule set to aid we debugging.
Definition sbuff.h:202
#define FR_SBUFF_IN_STRCPY_LITERAL_RETURN(_sbuff, _str)
#define fr_sbuff_extend(_sbuff_or_marker)
#define fr_sbuff_buff(_sbuff_or_marker)
#define FR_SBUFF_RETURN(_func, _sbuff,...)
#define FR_SBUFF_ERROR_RETURN(_sbuff_or_marker)
#define FR_SBUFF_SET_RETURN(_dst, _src)
#define FR_SBUFF_IN_SPRINTF_RETURN(...)
#define SBUFF_CHAR_UNPRINTABLES_EXTENDED
#define FR_SBUFF(_sbuff_or_marker)
#define fr_sbuff_out(_err, _out, _in)
#define FR_SBUFF_IN_ESCAPE_RETURN(...)
#define fr_sbuff_remaining(_sbuff_or_marker)
#define FR_SBUFF_OUT(_start, _len_or_end)
#define SBUFF_CHAR_UNPRINTABLES_LOW
#define fr_sbuff_used(_sbuff_or_marker)
#define FR_SBUFF_TERM(_str)
Initialise a terminal structure with a single string.
Definition sbuff.h:180
#define FR_SBUFF_IN_STRCPY_RETURN(...)
#define FR_SBUFF_TALLOC_THREAD_LOCAL(_out, _init, _max)
Talloc sbuff extension structure.
Definition sbuff.h:139
Set of parsing rules for *unescape_until functions.
fr_slen_t fr_size_from_str(size_t *out, fr_sbuff_t *in)
Parse a size string with optional unit.
Definition size.c:40
fr_slen_t fr_size_to_str(fr_sbuff_t *out, size_t in)
Print a size string with unit.
Definition size.c:155
static char buff[sizeof("18446744073709551615")+3]
Definition size_tests.c:41
PRIVATE void float64()
fr_aka_sim_id_type_t type
char * talloc_buffer_append_variadic_buffer(TALLOC_CTX *ctx, char *to, int argc,...)
Concatenate to + ...
Definition talloc.c:696
char * talloc_bstrndup(TALLOC_CTX *ctx, char const *in, size_t inlen)
Binary safe strndup function.
Definition talloc.c:564
char * talloc_typed_strdup(TALLOC_CTX *ctx, char const *p)
Call talloc_strdup, setting the type on the new chunk correctly.
Definition talloc.c:445
#define talloc_get_type_abort_const
Definition talloc.h:282
fr_slen_t fr_time_delta_from_substr(fr_time_delta_t *out, fr_sbuff_t *in, fr_time_res_t hint, bool no_trailing, fr_sbuff_term_t const *tt)
Create fr_time_delta_t from a string.
Definition time.c:214
int fr_unix_time_from_str(fr_unix_time_t *date, char const *date_str, fr_time_res_t hint)
Convert string in various formats to a fr_unix_time_t.
Definition time.c:831
int64_t fr_time_scale(int64_t t, fr_time_res_t hint)
Scale an input time to NSEC, clamping it at max / min.
Definition time.c:720
fr_slen_t fr_time_delta_to_str(fr_sbuff_t *out, fr_time_delta_t delta, fr_time_res_t res, bool is_unsigned)
Print fr_time_delta_t to a string with an appropriate suffix.
Definition time.c:472
fr_slen_t fr_unix_time_to_str(fr_sbuff_t *out, fr_unix_time_t time, fr_time_res_t res, bool utc)
Convert unix time to string.
Definition time.c:1158
int64_t const fr_time_multiplier_by_res[]
Definition time.c:32
static fr_time_delta_t fr_time_delta_from_integer(bool *overflow, int64_t integer, fr_time_res_t res)
Definition time.h:548
static int64_t fr_time_delta_to_integer(fr_time_delta_t delta, fr_time_res_t res)
Definition time.h:627
static int64_t fr_time_delta_unwrap(fr_time_delta_t time)
Definition time.h:154
static int8_t fr_time_delta_cmp(fr_time_delta_t a, fr_time_delta_t b)
Compare two fr_time_delta_t values.
Definition time.h:930
#define fr_time_delta_isneg(_a)
Definition time.h:291
#define fr_time_delta_wrap(_time)
Definition time.h:152
#define fr_unix_time_wrap(_time)
Definition time.h:160
fr_time_res_t
The base resolution for print parse operations.
Definition time.h:48
@ FR_TIME_RES_SEC
Definition time.h:50
static fr_unix_time_t fr_unix_time_from_integer(bool *overflow, int64_t integer, fr_time_res_t res)
Definition time.h:411
#define NSEC
Definition time.h:379
static int8_t fr_unix_time_cmp(fr_unix_time_t a, fr_unix_time_t b)
Compare two fr_unix_time_t values.
Definition time.h:944
static uint64_t fr_unix_time_unwrap(fr_unix_time_t time)
Definition time.h:161
static int64_t fr_unix_time_to_integer(fr_unix_time_t delta, fr_time_res_t res)
Definition time.h:486
const char fr_token_quote[T_TOKEN_LAST]
Convert tokens back to a quoting character.
Definition token.c:156
enum fr_token fr_token_t
@ T_SINGLE_QUOTED_STRING
Definition token.h:122
@ T_BARE_WORD
Definition token.h:120
@ T_BACK_QUOTED_STRING
Definition token.h:123
@ T_OP_NE
Definition token.h:97
@ T_OP_REG_EQ
Definition token.h:102
@ T_DOUBLE_QUOTED_STRING
Definition token.h:121
@ T_OP_CMP_EQ
Definition token.h:106
@ T_OP_LE
Definition token.h:100
@ T_OP_GE
Definition token.h:98
@ T_OP_GT
Definition token.h:99
@ T_SOLIDUS_QUOTED_STRING
Definition token.h:124
@ T_OP_LT
Definition token.h:101
@ T_OP_REG_NE
Definition token.h:103
#define T_TOKEN_LAST
Definition token.h:129
static fr_slen_t head
Definition xlat.h:422
void fr_strerror_clear(void)
Clears all pending messages from the talloc pools.
Definition strerror.c:577
#define fr_strerror_printf(_fmt,...)
Log to thread local error buffer.
Definition strerror.h:64
#define fr_strerror_const(_msg)
Definition strerror.h:223
#define FR_TYPE_VARIABLE_SIZE
Definition types.h:291
#define FR_TYPE_QUOTED
Definition types.h:292
#define FR_TYPE_STRUCTURAL_EXCEPT_GROUP
Definition types.h:295
#define fr_type_is_non_leaf(_x)
Definition types.h:373
#define fr_type_is_group(_x)
Definition types.h:355
#define fr_type_is_variable_size(_x)
Definition types.h:367
#define fr_type_is_structural(_x)
Definition types.h:371
#define FR_TYPE_NON_LEAF
Definition types.h:298
#define fr_type_is_fixed_size(_x)
Definition types.h:366
#define FR_TYPE_STRUCTURAL
Definition types.h:296
#define fr_type_is_ip(_x)
Definition types.h:364
#define FR_TYPE_INTEGER_EXCEPT_BOOL
Definition types.h:283
#define FR_TYPE_IP
Definition types.h:288
#define FR_TYPE_INTEGER
Definition types.h:284
#define fr_type_is_leaf(_x)
Definition types.h:372
static char const * fr_type_to_str(fr_type_t type)
Return a static string containing the type name.
Definition types.h:433
#define FR_TYPE_NUMERIC
Definition types.h:286
#define FR_TYPE_FIXED_SIZE
Definition types.h:290
int fr_value_box_bstrndup_dbuff(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv, fr_dbuff_t *dbuff, size_t len, bool tainted)
Definition value.c:4172
void fr_value_box_list_verify(char const *file, int line, fr_value_box_list_t const *list)
Definition value.c:6284
static void _fr_value_box_list_debug(fr_value_box_list_t const *head, int depth)
Definition value.c:6363
static void _fr_value_box_debug(fr_value_box_t const *vb, int depth, int idx)
Definition value.c:6381
void fr_value_box_memdup_buffer_shallow(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv, uint8_t const *src, bool tainted)
Assign a talloced buffer to a box, but don't copy it.
Definition value.c:4566
size_t const fr_value_box_field_sizes[]
How many bytes wide each of the value data fields are.
Definition value.c:149
fr_sbuff_escape_rules_t fr_value_escape_double
Definition value.c:350
int fr_value_box_hton(fr_value_box_t *dst, fr_value_box_t const *src)
Performs byte order reversal for types that need it.
Definition value.c:1231
size_t fr_value_box_network_length(fr_value_box_t const *value)
Get the size of the value held by the fr_value_box_t.
Definition value.c:1325
int fr_value_box_vasprintf(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv, bool tainted, char const *fmt, va_list ap)
Print a formatted string using our internal printf wrapper and assign it to a value box.
Definition value.c:3983
ssize_t fr_value_box_from_substr(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_sbuff_t *in, fr_sbuff_parse_rules_t const *rules, bool tainted)
Convert string value to a fr_value_box_t type.
Definition value.c:4802
void fr_value_box_debug(fr_value_box_t const *vb)
Print the value of a box as info messages.
Definition value.c:6403
#define INFO_INDENT(_fmt,...)
Definition value.c:6360
int fr_value_box_bstrn_append(TALLOC_CTX *ctx, fr_value_box_t *dst, char const *src, size_t len, bool tainted)
Append bytes from a buffer to an existing fr_value_box_t.
Definition value.c:4284
void fr_value_box_mark_unsafe(fr_value_box_t *vb)
Mark a value-box as "unsafe".
Definition value.c:6301
fr_sbuff_escape_rules_t fr_value_escape_single
Definition value.c:388
ssize_t fr_value_box_from_str(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, char const *in, size_t inlen, fr_sbuff_unescape_rules_t const *erules, bool tainted)
Definition value.c:5315
int fr_value_box_strtrim(TALLOC_CTX *ctx, fr_value_box_t *vb)
Trim the length of the string buffer to match the length of the C string.
Definition value.c:3953
uint32_t fr_value_box_hash(fr_value_box_t const *vb)
Hash the contents of a value box.
Definition value.c:6129
ssize_t fr_value_box_print(fr_sbuff_t *out, fr_value_box_t const *data, fr_sbuff_escape_rules_t const *e_rules)
Print one boxed value to a string.
Definition value.c:5352
fr_sbuff_parse_rules_t const value_parse_rules_single_3quoted
Definition value.c:580
static fr_slen_t fr_value_box_from_numeric_substr(fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_sbuff_t *in, fr_sbuff_parse_rules_t const *rules, bool tainted)
Convert integer encoded as string to a fr_value_box_t type.
Definition value.c:4701
static int fr_value_box_cast_to_strvalue(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_value_box_t const *src)
Convert any supported type to a string.
Definition value.c:2209
int fr_value_box_mem_append_buffer(TALLOC_CTX *ctx, fr_value_box_t *dst, uint8_t const *src, bool tainted)
Append a talloc buffer to an existing fr_value_box_t.
Definition value.c:4637
fr_sbuff_parse_rules_t const value_parse_rules_double_unquoted
Definition value.c:484
char * fr_value_box_list_aprint_secure(TALLOC_CTX *ctx, fr_value_box_list_t const *list, char const *delim, fr_sbuff_escape_rules_t const *e_rules)
Concatenate the string representations of a list of value boxes together hiding "secret" values.
Definition value.c:6078
fr_sbuff_parse_rules_t const value_parse_rules_solidus_quoted
Definition value.c:559
ssize_t fr_value_box_list_concat_as_octets(bool *tainted, bool *secret, fr_dbuff_t *dbuff, fr_value_box_list_t *list, uint8_t const *sep, size_t sep_len, fr_value_box_list_action_t proc_action, bool flatten)
Concatenate a list of value boxes together.
Definition value.c:5677
ssize_t fr_value_box_from_network(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t type, fr_dict_attr_t const *enumv, fr_dbuff_t *dbuff, size_t len, bool tainted)
Decode a fr_value_box_t from serialized binary data.
Definition value.c:1754
int fr_value_box_mem_alloc(TALLOC_CTX *ctx, uint8_t **out, fr_value_box_t *dst, fr_dict_attr_t const *enumv, size_t len, bool tainted)
Pre-allocate an octets buffer for filling by the caller.
Definition value.c:4371
int fr_value_box_list_escape_in_place(fr_value_box_list_t *list, fr_value_box_escape_t escape, fr_value_box_safe_for_t safe_for, void *uctx)
Escape a list of value boxes in place.
Definition value.c:5982
int fr_value_box_memdup_buffer(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv, uint8_t const *src, bool tainted)
Copy a talloced buffer to a fr_value_box_t.
Definition value.c:4526
#define network_min_size(_x)
Sanity checks.
Definition value.c:107
int fr_value_box_bstrdup_buffer(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv, char const *src, bool tainted)
Copy a nul terminated talloced buffer to a fr_value_box_t.
Definition value.c:4208
int fr_value_box_cast(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_value_box_t const *src)
Convert one type of fr_value_box_t to another.
Definition value.c:3352
int fr_value_box_asprintf(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv, bool tainted, char const *fmt,...)
Print a formatted string using our internal printf wrapper and assign it to a value box.
Definition value.c:4014
fr_sbuff_parse_rules_t const * value_parse_rules_unquoted_char[UINT8_MAX]
Definition value.c:516
fr_sbuff_parse_rules_t const * value_parse_rules_quoted[T_TOKEN_LAST]
Parse rules for quoted strings.
Definition value.c:606
char * fr_value_box_list_aprint(TALLOC_CTX *ctx, fr_value_box_list_t const *list, char const *delim, fr_sbuff_escape_rules_t const *e_rules)
Concatenate the string representations of a list of value boxes together.
Definition value.c:6028
int fr_value_box_mem_realloc(TALLOC_CTX *ctx, uint8_t **out, fr_value_box_t *dst, size_t len)
Change the length of a buffer already allocated to a value box.
Definition value.c:4404
static size_t const fr_value_box_network_sizes[FR_TYPE_MAX+1][2]
Definition value.c:109
static int fr_value_box_cast_to_float(UNUSED TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_value_box_t const *src)
Convert any value to a floating point value.
Definition value.c:3230
int8_t fr_value_box_cmp(fr_value_box_t const *a, fr_value_box_t const *b)
Compare two values.
Definition value.c:676
#define SIGN_BIT_HIGH(_int, _len)
size_t const fr_value_box_offsets[]
Where the value starts in the fr_value_box_t.
Definition value.c:189
fr_sbuff_parse_rules_t const * value_parse_rules_quoted_char[UINT8_MAX]
Definition value.c:614
#define CAST_IP_FIX_COMBO
Definition value.c:2346
void fr_value_box_list_untaint(fr_value_box_list_t *head)
Untaint every list member (and their children)
Definition value.c:6216
fr_sbuff_parse_rules_t const value_parse_rules_bareword_unquoted
Default formatting rules.
Definition value.c:480
static int fr_value_box_cast_to_ipv4addr(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_value_box_t const *src)
Convert any supported type to an IPv4 address.
Definition value.c:2378
int fr_value_box_copy(TALLOC_CTX *ctx, fr_value_box_t *dst, const fr_value_box_t *src)
Copy value data verbatim duplicating any buffers.
Definition value.c:3740
fr_sbuff_parse_rules_t const value_parse_rules_single_unquoted
Definition value.c:488
int fr_value_box_cmp_op(fr_token_t op, fr_value_box_t const *a, fr_value_box_t const *b)
Compare two attributes using an operator.
Definition value.c:929
fr_sbuff_unescape_rules_t fr_value_unescape_solidus
Definition value.c:296
bool fr_value_box_is_truthy(fr_value_box_t const *in)
Check truthiness of values.
Definition value.c:6326
int fr_value_box_cast_in_place(TALLOC_CTX *ctx, fr_value_box_t *vb, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv)
Convert one type of fr_value_box_t to another in place.
Definition value.c:3572
fr_sbuff_parse_rules_t const value_parse_rules_single_quoted
Definition value.c:553
static uint8_t const v4_v6_map[]
v4 to v6 mapping prefix
Definition value.c:2195
int fr_value_box_mem_append(TALLOC_CTX *ctx, fr_value_box_t *dst, uint8_t const *src, size_t len, bool tainted)
Append data to an existing fr_value_box_t.
Definition value.c:4587
fr_sbuff_unescape_rules_t * fr_value_unescape_by_char[UINT8_MAX+1]
Definition value.c:343
void fr_value_box_list_debug(fr_value_box_list_t const *head)
Print a list of value boxes as info messages.
Definition value.c:6376
void fr_value_box_memdup_shallow(fr_value_box_t *dst, fr_dict_attr_t const *enumv, uint8_t const *src, size_t len, bool tainted)
Assign a buffer to a box, but don't copy it.
Definition value.c:4548
fr_sbuff_escape_rules_t fr_value_escape_solidus
Definition value.c:398
void fr_value_box_copy_shallow(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_value_box_t const *src)
Perform a shallow copy of a value_box.
Definition value.c:3834
static int fr_value_box_cast_to_octets(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_value_box_t const *src)
Convert any supported type to octets.
Definition value.c:2256
void fr_value_box_increment(fr_value_box_t *vb)
Increment a boxed value.
Definition value.c:4648
fr_sbuff_escape_rules_t * fr_value_escape_by_quote[T_TOKEN_LAST]
Definition value.c:441
void _fr_value_box_mark_safe_for(fr_value_box_t *vb, fr_value_box_safe_for_t safe_for)
Mark a value-box as "safe", of a particular type.
Definition value.c:6292
size_t fr_value_str_unescape(fr_sbuff_t *out, fr_sbuff_t *in, size_t inlen, char quote)
Convert a string value with escape sequences into its binary form.
Definition value.c:1128
void fr_value_box_clear_value(fr_value_box_t *data)
Clear/free any existing value.
Definition value.c:3681
void fr_value_box_verify(char const *file, int line, fr_value_box_t const *vb)
Validation function to check that a fr_value_box_t is correctly initialised.
Definition value.c:6229
fr_sbuff_parse_rules_t const * value_parse_rules_3quoted[T_TOKEN_LAST]
Definition value.c:622
int fr_value_box_strdup(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv, char const *src, bool tainted)
Copy a nul terminated string to a fr_value_box_t.
Definition value.c:3927
#define network_max_size(_x)
Definition value.c:108
#define COMPARE(_type)
void fr_value_box_strdup_shallow_replace(fr_value_box_t *vb, char const *src, ssize_t len)
Free the existing buffer (if talloced) associated with the valuebox, and replace it with a new one.
Definition value.c:4052
ssize_t fr_value_box_print_quoted(fr_sbuff_t *out, fr_value_box_t const *data, fr_token_t quote)
Print one boxed value to a string with quotes (where needed)
Definition value.c:5540
fr_sbuff_parse_rules_t const value_parse_rules_double_3quoted
Definition value.c:574
static int fr_value_box_cast_to_integer(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_value_box_t const *src)
Convert any value to a signed or unsigned integer.
Definition value.c:3129
fr_sbuff_escape_rules_t fr_value_escape_unprintables
Definition value.c:455
static int fr_value_box_cast_to_ipv6prefix(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_value_box_t const *src)
Convert any supported type to an IPv6 address.
Definition value.c:2725
fr_sbuff_escape_rules_t fr_value_escape_backtick
Definition value.c:419
int fr_value_box_bstr_append_buffer(TALLOC_CTX *ctx, fr_value_box_t *dst, char const *src, bool tainted)
Append a talloced buffer to an existing fr_value_box_t.
Definition value.c:4337
int fr_value_box_ipaddr(fr_value_box_t *dst, fr_dict_attr_t const *enumv, fr_ipaddr_t const *ipaddr, bool tainted)
Assign a fr_value_box_t value from an fr_ipaddr_t.
Definition value.c:3630
void fr_value_box_list_taint(fr_value_box_list_t *head)
Taint every list member (and their children)
Definition value.c:6202
static int fr_value_box_cidr_cmp_op(fr_token_t op, int bytes, uint8_t a_net, uint8_t const *a, uint8_t b_net, uint8_t const *b)
Definition value.c:807
static void fr_value_box_copy_meta(fr_value_box_t *dst, fr_value_box_t const *src)
Copy flags and type data from one value box to another.
Definition value.c:638
void fr_value_box_list_mark_safe_for(fr_value_box_list_t *list, fr_value_box_safe_for_t safe_for)
Set the escaped flag for all value boxes in a list.
Definition value.c:6313
fr_sbuff_escape_rules_t * fr_value_escape_by_char[UINT8_MAX+1]
Definition value.c:448
static int fr_value_box_fixed_size_from_octets(fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_value_box_t const *src)
Convert octets to a fixed size value box value.
Definition value.c:2147
static int fr_value_box_cast_to_bool(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_value_box_t const *src)
Convert any supported type to a bool.
Definition value.c:2885
fr_sbuff_unescape_rules_t fr_value_unescape_backtick
Definition value.c:317
int fr_value_unbox_ipaddr(fr_ipaddr_t *dst, fr_value_box_t *src)
Unbox an IP address performing a type check.
Definition value.c:3662
fr_sbuff_parse_rules_t const value_parse_rules_bareword_quoted
Definition value.c:524
fr_sbuff_parse_rules_t const value_parse_rules_backtick_3quoted
Definition value.c:592
static uint64_t const fr_value_box_integer_max[]
Definition value.c:226
void fr_value_box_strdup_shallow(fr_value_box_t *dst, fr_dict_attr_t const *enumv, char const *src, bool tainted)
Assign a buffer containing a nul terminated string to a box, but don't copy it.
Definition value.c:4036
fr_sbuff_parse_rules_t const value_parse_rules_solidus_unquoted
Definition value.c:492
#define RETURN(_type)
fr_sbuff_parse_rules_t const value_parse_rules_backtick_quoted
Definition value.c:565
fr_sbuff_parse_rules_t const * value_parse_rules_unquoted[T_TOKEN_LAST]
Parse rules for non-quoted strings.
Definition value.c:508
static int fr_value_box_cast_to_ipv4prefix(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_value_box_t const *src)
Convert any supported type to an IPv6 address.
Definition value.c:2494
static int fr_value_box_cast_to_ethernet(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_value_box_t const *src)
Convert any supported type to an ethernet address.
Definition value.c:2825
fr_sbuff_unescape_rules_t fr_value_unescape_single
Definition value.c:285
fr_sbuff_parse_rules_t const value_parse_rules_backtick_unquoted
Definition value.c:496
fr_sbuff_parse_rules_t const value_parse_rules_double_quoted
Definition value.c:547
int fr_value_box_bstr_alloc(TALLOC_CTX *ctx, char **out, fr_value_box_t *dst, fr_dict_attr_t const *enumv, size_t len, bool tainted)
Alloc and assign an empty \0 terminated string to a fr_value_box_t.
Definition value.c:4071
fr_sbuff_unescape_rules_t * fr_value_unescape_by_quote[T_TOKEN_LAST]
Definition value.c:336
#define SIGN_PROMOTE(_int, _len)
fr_sbuff_parse_rules_t const value_parse_rules_solidus_3quoted
Definition value.c:586
ssize_t fr_value_box_list_concat_as_string(bool *tainted, bool *secret, fr_sbuff_t *sbuff, fr_value_box_list_t *list, char const *sep, size_t sep_len, fr_sbuff_escape_rules_t const *e_rules, fr_value_box_list_action_t proc_action, fr_value_box_safe_for_t safe_for, bool flatten)
Concatenate a list of value boxes together.
Definition value.c:5584
int fr_value_box_steal(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_value_box_t *src)
Copy value data verbatim moving any buffers to the specified context.
Definition value.c:3858
int fr_value_box_to_key(uint8_t **out, size_t *outlen, fr_value_box_t const *value)
Get a key from a value box.
Definition value.c:2084
void fr_value_box_flatten(TALLOC_CTX *ctx, fr_value_box_list_t *list, bool steal, bool free)
Removes a single layer of nesting, moving all children into the parent list.
Definition value.c:6003
int fr_value_box_list_acopy(TALLOC_CTX *ctx, fr_value_box_list_t *out, fr_value_box_list_t const *in)
Do a full copy of a list of value boxes.
Definition value.c:6158
void fr_value_box_clear(fr_value_box_t *data)
Clear/free any existing value and metadata.
Definition value.c:3723
bool fr_value_box_list_tainted(fr_value_box_list_t const *head)
Check to see if any list members (or their children) are tainted.
Definition value.c:6186
ssize_t fr_value_box_to_network(fr_dbuff_t *dbuff, fr_value_box_t const *value)
Encode a single value box, serializing its contents in generic network format.
Definition value.c:1404
static int64_t const fr_value_box_integer_min[]
Definition value.c:246
int fr_value_box_bstr_realloc(TALLOC_CTX *ctx, char **out, fr_value_box_t *dst, size_t len)
Change the length of a buffer already allocated to a value box.
Definition value.c:4104
int fr_value_box_bstrndup(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv, char const *src, size_t len, bool tainted)
Copy a string to to a fr_value_box_t.
Definition value.c:4148
int fr_value_box_memdup_dbuff(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv, fr_dbuff_t *dbuff, size_t len, bool tainted)
Definition value.c:4493
int fr_regex_cmp_op(fr_token_t op, fr_value_box_t const *a, fr_value_box_t const *b)
Compare two boxes using an operator.
Definition regex.c:1360
fr_sbuff_unescape_rules_t fr_value_unescape_double
Definition value.c:266
int fr_value_box_bstrdup_buffer_shallow(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv, char const *src, bool tainted)
Assign a talloced buffer containing a nul terminated string to a box, but don't copy it.
Definition value.c:4253
int fr_value_box_escape_in_place(fr_value_box_t *vb, fr_value_box_escape_t escape, fr_value_box_safe_for_t safe_for, void *uctx)
Escape a single value box in place.
Definition value.c:5945
size_t fr_value_substr_unescape(fr_sbuff_t *out, fr_sbuff_t *in, size_t inlen, char quote)
Convert a string value with escape sequences into its binary form.
Definition value.c:1201
fr_sbuff_escape_rules_t fr_value_escape_secret
Escape secret fields by simply mashing all data to '.
Definition value.c:381
void fr_value_box_bstrndup_shallow(fr_value_box_t *dst, fr_dict_attr_t const *enumv, char const *src, size_t len, bool tainted)
Assign a string to to a fr_value_box_t.
Definition value.c:4232
static int fr_value_box_cast_to_ipv6addr(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_value_box_t const *src)
Convert any supported type to an IPv6 address.
Definition value.c:2610
int fr_value_box_memdup(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_dict_attr_t const *enumv, uint8_t const *src, size_t len, bool tainted)
Copy a buffer to a fr_value_box_t.
Definition value.c:4468
static int fr_value_box_cast_integer_to_integer(UNUSED TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_value_box_t const *src)
Convert any signed or unsigned integer type to any other signed or unsigned integer type.
Definition value.c:2974
int fr_value_box_list_concat_in_place(TALLOC_CTX *ctx, fr_value_box_t *out, fr_value_box_list_t *list, fr_type_t type, fr_value_box_list_action_t proc_action, bool flatten, size_t max_size)
Concatenate a list of value boxes.
Definition value.c:5777
fr_value_box_list_action_t
Actions to perform when we process a box in a list.
Definition value.h:215
@ FR_VALUE_BOX_LIST_NONE
Do nothing to processed boxes.
Definition value.h:216
@ FR_VALUE_BOX_LIST_REMOVE
Remove the box from the input list.
Definition value.h:217
#define vb_should_free(_action)
Definition value.h:224
#define fr_value_box_list_foreach_safe(_list_head, _iter)
Definition value.h:207
#define vb_ether
Definition value.h:249
#define vb_date
Definition value.h:266
#define vb_int64
Definition value.h:261
#define vb_octets
Definition value.h:242
#define vb_should_free_value(_action)
Definition value.h:225
#define vb_should_remove(_action)
Definition value.h:226
#define vb_int32
Definition value.h:260
static int fr_value_box_memcpy_out(void *out, fr_value_box_t const *vb)
Copy the value of a value box to a field in a C struct.
Definition value.h:764
#define vb_int16
Definition value.h:259
static fr_slen_t fr_value_box_aprint(TALLOC_CTX *ctx, char **out, fr_value_box_t const *data, fr_sbuff_escape_rules_t const *e_rules) 1(fr_value_box_print
#define vb_uint8
Definition value.h:252
#define vb_length
Definition value.h:272
#define vb_int8
Definition value.h:258
static fr_slen_t data
Definition value.h:1265
static bool fr_value_box_contains_secret(fr_value_box_t const *box)
Definition value.h:1066
#define vb_float64
Definition value.h:264
#define FR_VALUE_BOX_NET_ERROR
Special value to indicate fr_value_box_from_network experienced a general error.
Definition value.h:1014
static void fr_value_box_set_secret(fr_value_box_t *box, bool secret)
Definition value.h:1080
static uint8_t * fr_value_box_raw(fr_value_box_t const *vb, fr_type_t type)
Return a pointer to the "raw" value from a value-box.
Definition value.h:740
int(* fr_value_box_escape_t)(fr_value_box_t *vb, void *uctx)
Escape a value box.
Definition value.h:651
#define fr_box_strvalue_len(_val, _len)
Definition value.h:286
#define FR_VALUE_BOX_MAGIC
Definition value.h:91
#define fr_value_box_init_null(_vb)
Initialise an empty/null box that will be filled later.
Definition value.h:593
#define fr_value_box_is_safe_for(_box, _safe_for)
Definition value.h:1055
#define vb_ip
Definition value.h:246
static size_t char fr_sbuff_t size_t inlen
Definition value.h:997
#define vb_uint16
Definition value.h:253
#define vb_bool
Definition value.h:251
#define vb_size
Definition value.h:268
uintptr_t fr_value_box_safe_for_t
Escaping that's been applied to a value box.
Definition value.h:155
#define vb_strvalue
Definition value.h:241
#define vb_uint32
Definition value.h:254
int nonnull(2, 5))
#define fr_value_box_alloc_null(_ctx)
Allocate a value box for later use with a value assignment function.
Definition value.h:632
#define vb_ifid
Definition value.h:248
#define vb_time_delta
Definition value.h:270
static always_inline int fr_value_box_ethernet_addr(fr_value_box_t *dst, fr_dict_attr_t const *enumv, fr_ethernet_t const *src, bool tainted)
Definition value.h:823
#define vb_float32
Definition value.h:263
#define fr_value_box_init(_vb, _type, _enumv, _tainted)
Initialise a fr_value_box_t.
Definition value.h:587
#define fr_value_box_list_foreach(_list_head, _iter)
Definition value.h:206
#define FR_VALUE_BOX_NET_OOM
Special value to indicate fr_value_box_from_network hit an out of memory error.
Definition value.h:1018
#define vb_uint64
Definition value.h:255
static size_t char ** out
Definition value.h:997