The FreeRADIUS server $Id: 15bac2a4c627c01d1aa2047687b3418955ac7f00 $
Loading...
Searching...
No Matches
dict_util.c
Go to the documentation of this file.
1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2 of the License, or
5 * (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
15 */
16
17/** Multi-protocol AVP dictionary API
18 *
19 * @file src/lib/util/dict_util.c
20 *
21 * @copyright 2000,2006 The FreeRADIUS server project
22 * @copyright 2024 Arran Cudbard-Bell (a.cudbardb@freeradius.org)
23 */
24RCSID("$Id: e7432bd1894490d7fcbd5d98c9cb4aaa704ee29d $")
25
26#define _DICT_PRIVATE 1
27
28#include <freeradius-devel/util/atexit.h>
29#include <freeradius-devel/util/conf.h>
30#include <freeradius-devel/util/dict.h>
31#include <freeradius-devel/util/dict_ext_priv.h>
32#include <freeradius-devel/util/dict_fixup_priv.h>
33#include <freeradius-devel/util/hash.h>
34#include <freeradius-devel/util/proto.h>
35#include <freeradius-devel/util/rand.h>
36#include <freeradius-devel/util/syserror.h>
37
38#ifdef HAVE_SYS_STAT_H
39# include <sys/stat.h>
40#endif
41
42fr_dict_gctx_t *dict_gctx = NULL; //!< Top level structure containing global dictionary state.
43
44#define DICT_ATTR_ALLOWED_CHARS \
45 ['-'] = true, ['/'] = true, ['_'] = true, \
46 ['0'] = true, ['1'] = true, ['2'] = true, ['3'] = true, ['4'] = true, \
47 ['5'] = true, ['6'] = true, ['7'] = true, ['8'] = true, ['9'] = true, \
48 ['A'] = true, ['B'] = true, ['C'] = true, ['D'] = true, ['E'] = true, \
49 ['F'] = true, ['G'] = true, ['H'] = true, ['I'] = true, ['J'] = true, \
50 ['K'] = true, ['L'] = true, ['M'] = true, ['N'] = true, ['O'] = true, \
51 ['P'] = true, ['Q'] = true, ['R'] = true, ['S'] = true, ['T'] = true, \
52 ['U'] = true, ['V'] = true, ['W'] = true, ['X'] = true, ['Y'] = true, \
53 ['Z'] = true, \
54 ['a'] = true, ['b'] = true, ['c'] = true, ['d'] = true, ['e'] = true, \
55 ['f'] = true, ['g'] = true, ['h'] = true, ['i'] = true, ['j'] = true, \
56 ['k'] = true, ['l'] = true, ['m'] = true, ['n'] = true, ['o'] = true, \
57 ['p'] = true, ['q'] = true, ['r'] = true, ['s'] = true, ['t'] = true, \
58 ['u'] = true, ['v'] = true, ['w'] = true, ['x'] = true, ['y'] = true, \
59 ['z'] = true
60
61/** Characters allowed in a single dictionary attribute name
62 *
63 */
67
68/** Characters allowed in a nested dictionary attribute name
69 *
70 */
73 [ '.' ] = true
74};
75
76/** Characters allowed in enumeration value names
77 *
78 */
80 ['+'] = true, ['-'] = true, ['.'] = true, ['/'] = true, ['_'] = true,
81 ['0'] = true, ['1'] = true, ['2'] = true, ['3'] = true, ['4'] = true,
82 ['5'] = true, ['6'] = true, ['7'] = true, ['8'] = true, ['9'] = true,
83 ['A'] = true, ['B'] = true, ['C'] = true, ['D'] = true, ['E'] = true,
84 ['F'] = true, ['G'] = true, ['H'] = true, ['I'] = true, ['J'] = true,
85 ['K'] = true, ['L'] = true, ['M'] = true, ['N'] = true, ['O'] = true,
86 ['P'] = true, ['Q'] = true, ['R'] = true, ['S'] = true, ['T'] = true,
87 ['U'] = true, ['V'] = true, ['W'] = true, ['X'] = true, ['Y'] = true,
88 ['Z'] = true,
89 ['a'] = true, ['b'] = true, ['c'] = true, ['d'] = true, ['e'] = true,
90 ['f'] = true, ['g'] = true, ['h'] = true, ['i'] = true, ['j'] = true,
91 ['k'] = true, ['l'] = true, ['m'] = true, ['n'] = true, ['o'] = true,
92 ['p'] = true, ['q'] = true, ['r'] = true, ['s'] = true, ['t'] = true,
93 ['u'] = true, ['v'] = true, ['w'] = true, ['x'] = true, ['y'] = true,
94 ['z'] = true
95};
96
97/** Default protocol rules set for every dictionary
98 *
99 * This is usually overriden by the public symbol from the protocol library
100 * associated with the dictionary
101 * e.g. libfreeradius-dhcpv6.so -> libfreeradius_dhcpv6_dict_protocol.
102 */
104 .name = "default",
105 .default_type_size = 2,
106 .default_type_length = 2,
107};
108
109/*
110 * Create the hash of the name.
111 *
112 * We copy the hash function here because it's substantially faster.
113 */
114#define FNV_MAGIC_INIT (0x811c9dc5)
115#define FNV_MAGIC_PRIME (0x01000193)
116
117static void hash_pool_free(void *to_free)
118{
119 talloc_free(to_free);
120}
121
122/** Apply a simple (case insensitive) hashing function to the name of an attribute, vendor or protocol
123 *
124 * @param[in] name of the attribute, vendor or protocol.
125 * @param[in] len length of the input string.
126 *
127 * @return the hashed derived from the name.
128 */
129static uint32_t dict_hash_name(char const *name, size_t len)
130{
132
133 char const *p = name, *q = name + len;
134
135 while (p < q) {
136 int c = *(unsigned char const *)p;
137 if (isalpha(c)) c = tolower(c);
138
139 /* coverity[overflow_const] */
141 hash ^= (uint32_t)(c & 0xff);
142 p++;
143 }
144
145 return hash;
146}
147
148/** Wrap name hash function for fr_dict_protocol_t
149 *
150 * @param[in] data fr_dict_attr_t to hash.
151 * @return the hash derived from the name of the attribute.
152 */
154{
155 char const *name;
156
157 name = ((fr_dict_t const *)data)->root->name;
158
159 return dict_hash_name(name, strlen(name));
160}
161
162/** Compare two protocol names
163 *
164 */
165static int8_t dict_protocol_name_cmp(void const *one, void const *two)
166{
167 fr_dict_t const *a = one;
168 fr_dict_t const *b = two;
169 int ret;
170
171 ret = strcasecmp(a->root->name, b->root->name);
172 return CMP(ret, 0);
173}
174
175/** Hash a protocol number
176 *
177 */
179{
180 return fr_hash(&(((fr_dict_t const *)data)->root->attr), sizeof(((fr_dict_t const *)data)->root->attr));
181}
182
183/** Compare two protocol numbers
184 *
185 */
186static int8_t dict_protocol_num_cmp(void const *one, void const *two)
187{
188 fr_dict_t const *a = one;
189 fr_dict_t const *b = two;
190
191 return CMP(a->root->attr, b->root->attr);
192}
193
194/** Wrap name hash function for fr_dict_attr_t
195 *
196 * @param data fr_dict_attr_t to hash.
197 * @return the hash derived from the name of the attribute.
198 */
200{
201 char const *name;
202
203 name = ((fr_dict_attr_t const *)data)->name;
204
205 return dict_hash_name(name, strlen(name));
206}
207
208/** Compare two attribute names
209 *
210 */
211static int8_t dict_attr_name_cmp(void const *one, void const *two)
212{
213 fr_dict_attr_t const *a = one, *b = two;
214 int ret;
215
216 ret = strcasecmp(a->name, b->name);
217 return CMP(ret, 0);
218}
219
220/** Compare two attributes by total order.
221 *
222 * This function is safe / ordered even when the attributes are in
223 * different dictionaries. This allows it to work for local
224 * variables, as those are in a different dictionary from the
225 * protocol ones.
226 *
227 * This function orders parents first, then their children.
228 */
230{
231 int8_t ret;
232
233 /*
234 * Order by parent first. If the parents are different,
235 * we order by parent numbers.
236 *
237 * If the attributes share the same parent at some point,
238 * then the deeper child is sorted later.
239 */
240 if (a->depth < b->depth) {
241 ret = fr_dict_attr_ordered_cmp(a, b->parent);
242 if (ret != 0) return ret;
243
244 return -1; /* order a before b */
245 }
246
247 if (a->depth > b->depth) {
248 ret = fr_dict_attr_ordered_cmp(a->parent, b);
249 if (ret != 0) return ret;
250
251 return +1; /* order b before a */
252 }
253
254 /*
255 * We're at the root (e.g. "RADIUS"). Compare by
256 * protocol number.
257 *
258 * Or, the parents are the same. We can then order by
259 * our (i.e. child) attribute number.
260 */
261 if ((a->depth == 0) || (a->parent == b->parent)) {
262 /*
263 * Order known attributes before unknown / raw ones.
264 */
265 ret = (b->flags.is_unknown | b->flags.is_raw) - (a->flags.is_unknown | a->flags.is_raw);
266 if (ret != 0) return 0;
267
268 return CMP(a->attr, b->attr);
269 }
270
271 /*
272 * The parents are different, we don't need to order by
273 * our attribute number. Instead, we order by the
274 * parent.
275 *
276 * Note that at this point, the call below will never
277 * return 0, because the parents are different.
278 */
279 return fr_dict_attr_ordered_cmp(a->parent, b->parent);
280}
281
282/** Wrap name hash function for fr_dict_vendor_t
283 *
284 * @param data fr_dict_vendor_t to hash.
285 * @return the hash derived from the name of the attribute.
286 */
288{
289 char const *name;
290
291 name = ((fr_dict_vendor_t const *)data)->name;
292
293 return dict_hash_name(name, strlen(name));
294}
295
296/** Compare two attribute names
297 *
298 */
299static int8_t dict_vendor_name_cmp(void const *one, void const *two)
300{
301 fr_dict_vendor_t const *a = one;
302 fr_dict_vendor_t const *b = two;
303 int ret;
304
305 ret = strcasecmp(a->name, b->name);
306 return CMP(ret, 0);
307}
308
309/** Hash a vendor number
310 *
311 */
313{
314 return fr_hash(&(((fr_dict_vendor_t const *)data)->pen),
315 sizeof(((fr_dict_vendor_t const *)data)->pen));
316}
317
318/** Compare two vendor numbers
319 *
320 */
321static int8_t dict_vendor_pen_cmp(void const *one, void const *two)
322{
323 fr_dict_vendor_t const *a = one;
324 fr_dict_vendor_t const *b = two;
325
326 return CMP(a->pen, b->pen);
327}
328
329/** Hash a enumeration name
330 *
331 */
333{
334 fr_dict_enum_value_t const *enumv = data;
335
336 return dict_hash_name((void const *)enumv->name, enumv->name_len);
337}
338
339/** Compare two dictionary attribute enum values
340 *
341 */
342static int8_t dict_enum_name_cmp(void const *one, void const *two)
343{
344 fr_dict_enum_value_t const *a = one;
345 fr_dict_enum_value_t const *b = two;
346 size_t len;
347 int ret;
348
349 if (a->name_len >= b->name_len) {
350 len = a->name_len;
351 } else {
352 len = b->name_len;
353 }
354
355 ret = strncasecmp(a->name, b->name, len);
356 return CMP(ret, 0);
357}
358
359/** Hash a dictionary enum value
360 *
361 */
363{
364 fr_dict_enum_value_t const *enumv = data;
365
366 return fr_value_box_hash(enumv->value);
367}
368
369/** Compare two dictionary enum values
370 *
371 */
372static int8_t dict_enum_value_cmp(void const *one, void const *two)
373{
374 fr_dict_enum_value_t const *a = one;
375 fr_dict_enum_value_t const *b = two;
376 int ret;
377
378 ret = fr_value_box_cmp(a->value, b->value); /* not yet int8_t! */
379 return CMP(ret, 0);
380}
381
382/** Resolve an alias attribute to the concrete attribute it points to
383 *
384 * @param[out] err where to write the error (if any).
385 * @param[in] da to resolve.
386 * @return
387 * - NULL on error.
388 * - The concrete attribute on success.
389 */
391{
392 fr_dict_attr_t const *ref;
393
394 if (!da->flags.is_alias) return da;
395
396 ref = fr_dict_attr_ref(da);
397 if (unlikely(!ref)) {
398 fr_strerror_printf("ALIAS attribute '%s' missing reference", da->name);
400 return NULL;
401 } else {
402 if (err) *err = FR_DICT_ATTR_OK;
403 }
404
405 return ref;
406}
407
408/** Set a dictionary attribute's name
409 *
410 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
411 *
412 * @param[in] da_p to set name for.
413 * @param[in] name to set. If NULL a name will be automatically generated.
414 */
415static inline CC_HINT(always_inline) int dict_attr_name_set(fr_dict_attr_t **da_p, char const *name)
416{
418 size_t name_len;
419 char *name_start, *name_end;
420 fr_dict_attr_t *da = *da_p;
421
422 /*
423 * Generate a name if none is specified
424 */
425 if (!name) {
426 fr_sbuff_t unknown_name = FR_SBUFF_OUT(buffer, sizeof(buffer));
427
428
429 (void) fr_sbuff_in_sprintf(&unknown_name, "%u", da->attr);
430
431 name = fr_sbuff_buff(&unknown_name);
432 name_len = fr_sbuff_used(&unknown_name);
433 } else {
434 name_len = strlen(name);
435 }
436
437 /*
438 * Grow the structure to hold the name
439 *
440 * We add the name as an extension because it makes
441 * the code less complex, and means the name value
442 * is copied automatically when if the fr_dict_attr_t
443 * is copied.
444 *
445 * We do still need to fixup the da->name pointer
446 * though.
447 */
448 name_start = dict_attr_ext_alloc_size(da_p, FR_DICT_ATTR_EXT_NAME, name_len + 1);
449 if (!name_start) return -1;
450
451 name_end = name_start + name_len;
452
453 memcpy(name_start, name, name_len);
454 *name_end = '\0';
455
456 (*da_p)->name = name_start;
457 (*da_p)->name_len = name_len;
458
459 return 0;
460}
461
462/** Add a child/nesting extension to an attribute
463 *
464 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
465 *
466 * @param[in] da_p to set a group reference for.
467 */
468static inline CC_HINT(always_inline) int dict_attr_children_init(fr_dict_attr_t **da_p)
469{
471
473 if (unlikely(!ext)) return -1;
474
475 return 0;
476}
477
478/** Cache the vendor pointer for an attribute
479 *
480 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
481 *
482 * @param[in] da_p to set a group reference for.
483 * @param[in] vendor to set.
484 */
485static inline CC_HINT(always_inline) int dict_attr_vendor_set(fr_dict_attr_t **da_p, fr_dict_attr_t const *vendor)
486{
488
490 if (unlikely(!ext)) return -1;
491
492 ext->vendor = vendor;
493
494 return 0;
495}
496
497/** Initialise an attribute's da stack from its parent
498 *
499 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
500 *
501 * @param[in] da_p to populate the da_stack for.
502 */
503static inline CC_HINT(always_inline) int dict_attr_da_stack_set(fr_dict_attr_t **da_p)
504{
505 fr_dict_attr_ext_da_stack_t *ext, *p_ext;
506 fr_dict_attr_t *da = *da_p;
507 fr_dict_attr_t const *parent = da->parent;
508
509 if (!parent) return 1;
510 if (da->depth > FR_DICT_DA_STACK_CACHE_MAX) return 1;
512
514 if (!p_ext) return 1;
515
516 ext = dict_attr_ext_alloc_size(da_p, FR_DICT_ATTR_EXT_DA_STACK, sizeof(ext->da_stack[0]) * (da->depth + 1));
517 if (unlikely(!ext)) return -1;
518
519 memcpy(ext->da_stack, p_ext->da_stack, sizeof(ext->da_stack[0]) * parent->depth);
520
521 /*
522 * Always set the last stack entry to ourselves.
523 */
524 ext->da_stack[da->depth] = da;
525
526 return 0;
527}
528
529/** Initialise a per-attribute enumeration table
530 *
531 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
532 *
533 * @param[in] da_p to set a group reference for.
534 */
535static inline CC_HINT(always_inline) int dict_attr_enumv_init(fr_dict_attr_t **da_p)
536{
538
540 if (unlikely(!ext)) return -1;
541
542 return 0;
543}
544
545/** Initialise a per-attribute namespace
546 *
547 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
548 *
549 * @param[in] da_p to set a group reference for.
550 */
551static inline CC_HINT(always_inline) int dict_attr_namespace_init(fr_dict_attr_t **da_p)
552{
554
556 if (unlikely(!ext)) return -1;
557
558 /*
559 * Create the table of attributes by name.
560 * There MAY NOT be multiple attributes of the same name.
561 *
562 * If the attribute already has extensions
563 * then we don't want to leak the old
564 * namespace hash table.
565 */
566 if (!ext->namespace) {
567 ext->namespace = fr_hash_table_talloc_alloc(*da_p, fr_dict_attr_t,
569 if (!ext->namespace) {
570 fr_strerror_printf("Failed allocating \"namespace\" table");
571 return -1;
572 }
573 }
574
575 return 0;
576}
577
578/** Initialise type specific fields within the dictionary attribute
579 *
580 * Call when the type of the attribute is known.
581 *
582 * @param[in,out] da_p to set the type for.
583 * @param[in] type to set.
584 * @return
585 * - 0 on success.
586 * - < 0 on error.
587 */
589{
590 if (unlikely((*da_p)->type != FR_TYPE_NULL)) {
591 fr_strerror_const("Attribute type already set");
592 return -1;
593 }
594
595 if (unlikely((*da_p)->state.finalised == true)) {
596 fr_strerror_const("Can't perform type initialisation on finalised attribute");
597 return -1;
598 }
599
600 /*
601 * Structural types can have children
602 * so add the extension for them.
603 */
604 switch (type) {
606 /*
607 * Groups don't have children or namespaces. But
608 * they always have refs. Either to the root of
609 * the current dictionary, or to another dictionary,
610 * via its top-level TLV.
611 *
612 * Note that when multiple TLVs have the same
613 * children, the dictionary has to use "clone="
614 * instead of "ref=". That's because the
615 * children of the TLVs all require the correct
616 * parentage. Perhaps that can be changed when
617 * the encoders / decoders are updated. It would be good to just reference the DAs instead of cloning an entire subtree.
618 */
619 if (type == FR_TYPE_GROUP) {
620 if (dict_attr_ext_alloc(da_p, FR_DICT_ATTR_EXT_REF) == NULL) return -1;
621 break;
622 }
623
624 if (dict_attr_children_init(da_p) < 0) return -1;
625 if (dict_attr_namespace_init(da_p) < 0) return -1; /* Needed for all TLV style attributes */
626
627 (*da_p)->last_child_attr = (1 << 24); /* High enough not to conflict with protocol numbers */
628 break;
629
630 /*
631 * Leaf types
632 */
633 default:
634 if (dict_attr_enumv_init(da_p) < 0) return -1;
635 break;
636 }
637
638 (*da_p)->flags.is_known_width |= fr_type_fixed_size[type];
639
640 /*
641 * Set default type-based flags
642 */
643 switch (type) {
644 case FR_TYPE_DATE:
646 (*da_p)->flags.length = 4;
647 (*da_p)->flags.flag_time_res = FR_TIME_RES_SEC;
648 break;
649
650
651 case FR_TYPE_OCTETS:
652 case FR_TYPE_STRING:
653 (*da_p)->flags.is_known_width = ((*da_p)->flags.length != 0);
654 break;
655
656 default:
657 break;
658 }
659
660 (*da_p)->type = type;
661
662 return 0;
663}
664
665/** Initialise fields which depend on a parent attribute
666 *
667 * @param[in,out] da_p to initialise.
668 * @param[in] parent of the attribute.
669 * @return
670 * - 0 on success.
671 * - < 0 on error.
672 */
674{
675 fr_dict_attr_t *da = *da_p;
676 fr_dict_t const *dict = parent->dict;
678
679 if (unlikely((*da_p)->type == FR_TYPE_NULL)) {
680 fr_strerror_const("Attribute type must be set before initialising parent. Use dict_attr_type_init() first");
681 return -1;
682 }
683
684 if (unlikely(da->parent != NULL)) {
685 fr_strerror_printf("Attempting to set parent for '%s' to '%s', but parent already set to '%s'",
686 da->name, parent->name, da->parent->name);
687 return -1;
688 }
689
690 if (unlikely((*da_p)->state.finalised == true)) {
691 fr_strerror_printf("Attempting to set parent for '%s' to '%s', but attribute already finalised",
692 da->name, parent->name);
693 return -1;
694 }
695
696 da->parent = parent;
697 da->dict = parent->dict;
698 da->depth = parent->depth + 1;
699
700 /*
701 * Point to the vendor definition. Since ~90% of
702 * attributes are VSAs, caching this pointer will help.
703 */
704 if (da->type == FR_TYPE_VENDOR) {
705 da->flags.type_size = dict->root->flags.type_size;
706 da->flags.length = dict->root->flags.type_size;
707
708 if ((dict->root->attr == FR_DICT_PROTO_RADIUS) && (da->depth == 2)) {
709 fr_dict_vendor_t const *dv;
710
711 dv = fr_dict_vendor_by_num(dict, da->attr);
712 if (dv) {
713 da->flags.type_size = dv->type;
714 da->flags.length = dv->length;
715 }
716 }
717 ext = NULL;
718
719 } else if (da->type == FR_TYPE_TLV) {
720 da->flags.type_size = dict->root->flags.type_size;
721 da->flags.length = dict->root->flags.type_size;
722 }
723
724 if (parent->type == FR_TYPE_VENDOR) {
726 if (unlikely(!ext)) return -1;
727
728 ext->vendor = parent;
729
730 } else {
731 ext = dict_attr_ext_copy(da_p, parent, FR_DICT_ATTR_EXT_VENDOR); /* Noop if no vendor extension */
732 }
733
734 /*
735 * Cache the da_stack so we don't need
736 * to generate it at runtime.
737 */
739
740 da = *da_p;
741
742 if (!ext || ((da->type != FR_TYPE_TLV) && (da->type != FR_TYPE_VENDOR))) return 0;
743
744 da->flags.type_size = ext->vendor->flags.type_size;
745 da->flags.length = ext->vendor->flags.type_size;
746
747 return 0;
748}
749
750/** Set the attribute number (if any)
751 *
752 * @param[in] da to set the attribute number for.
753 * @param[in] num to set.
754 */
755int dict_attr_num_init(fr_dict_attr_t *da, unsigned int num)
756{
757 if (da->state.attr_set) {
758 fr_strerror_const("Attribute number already set");
759 return -1;
760 }
761 da->attr = num;
762 da->state.attr_set = true;
763
764 return 0;
765}
766
767/** Set the attribute number (if any)
768 *
769 * @note Must have a parent set.
770 *
771 * @param[in] da to set the attribute number for.
772 */
774{
775 if (!da->parent) {
776 fr_strerror_const("Attribute must have parent set before automatically setting attribute number");
777 return -1;
778 }
779 return dict_attr_num_init(da, ++fr_dict_attr_unconst(da->parent)->last_child_attr);
780}
781
782/** Set where the dictionary attribute was defined
783 *
784 */
785void dict_attr_location_init(fr_dict_attr_t *da, char const *filename, int line)
786{
787 da->filename = filename;
788 da->line = line;
789}
790
791/** Set remaining fields in a dictionary attribute before insertion
792 *
793 * @param[in] da_p to finalise.
794 * @param[in] name of the attribute.
795 * @return
796 * - 0 on success.
797 * - < 0 on error.
798 */
799int dict_attr_finalise(fr_dict_attr_t **da_p, char const *name)
800{
801 fr_dict_attr_t *da;
802
803 /*
804 * Finalising the attribute allocates its
805 * automatic number if its a name only attribute.
806 */
807 da = *da_p;
808
809 /*
810 * Initialize the length field automatically if it's not been set already
811 */
812 if (!da->flags.length && fr_type_is_leaf(da->type) && !fr_type_is_variable_size(da->type)) {
813 fr_value_box_t box;
814
815 fr_value_box_init(&box, da->type, NULL, false);
816 da->flags.length = fr_value_box_network_length(&box);
817 }
818
819 switch(da->type) {
820 case FR_TYPE_STRUCT:
821 da->flags.is_known_width |= da->flags.array;
822 break;
823
824 case FR_TYPE_GROUP:
825 {
827 /*
828 * If it's a group attribute, the default
829 * reference goes to the root of the
830 * dictionary as that's where the default
831 * name/numberspace is.
832 *
833 * This may be updated by the caller.
834 */
836 if (unlikely(ext == NULL)) {
837 fr_strerror_const("Missing ref extension");
838 return -1;
839 }
840
841 /*
842 * For groups, if a ref wasn't provided then
843 * set it to the dictionary root.
844 */
845 if ((ext->type == FR_DICT_ATTR_REF_NONE) &&
847 return -1;
848 }
849 }
850 break;
851
852 default:
853 break;
854 }
855
856 /*
857 * Name is a separate talloc chunk. We allocate
858 * it last because we cache the pointer value.
859 */
860 if (dict_attr_name_set(da_p, name) < 0) return -1;
861
862 DA_VERIFY(*da_p);
863
864 (*da_p)->state.finalised = true;
865
866 return 0;
867}
868
869static inline CC_HINT(always_inline)
870int dict_attr_init_common(char const *filename, int line,
871 fr_dict_attr_t **da_p,
872 fr_dict_attr_t const *parent,
874{
875 dict_attr_location_init((*da_p), filename, line);
876
877 if (unlikely(dict_attr_type_init(da_p, type) < 0)) return -1;
878
879 if (args->flags) (*da_p)->flags = *args->flags;
880
881 if (parent && (dict_attr_parent_init(da_p, parent) < 0)) return -1;
882
883 if (args->ref && (dict_attr_ref_aset(da_p, args->ref, FR_DICT_ATTR_REF_ALIAS) < 0)) return -1;
884
885 return 0;
886}
887
888/** Initialise fields in a dictionary attribute structure
889 *
890 * This function is a wrapper around the other initialisation functions.
891 *
892 * The reason for the separation, is that sometimes we're initialising a dictionary attribute
893 * by parsing an actual dictionary file, and other times we're copying attribute, or initialising
894 * them programatically.
895 *
896 * This function should only be used for the second case, where we have a complet attribute
897 * definition already.
898 *
899 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
900 *
901 * @param[in] filename file.
902 * @param[in] line number.
903 * @param[in] da_p to initialise.
904 * @param[in] parent of the attribute, if none, this attribute will
905 * be initialised as a dictionary root.
906 * @param[in] name of attribute. Pass NULL for auto-generated name.
907 * @param[in] attr number.
908 * @param[in] type of the attribute.
909 * @param[in] args optional initialisation arguments.
910 * @return
911 * - 0 on success.
912 * - <0 on error.
913 */
914int _dict_attr_init(char const *filename, int line,
915 fr_dict_attr_t **da_p,
916 fr_dict_attr_t const *parent,
917 char const *name, unsigned int attr,
919{
920 /*
921 * We initialize the number first, as doing that doesn't have any other side effects.
922 */
923 if (unlikely(dict_attr_num_init(*da_p, attr) < 0)) return -1;
924
925 /*
926 * This function then checks the number, for things like VSAs.
927 */
928 if (unlikely(dict_attr_init_common(filename, line, da_p, parent, type, args) < 0)) return -1;
929
930 if (unlikely(dict_attr_finalise(da_p, name) < 0)) return -1;
931
932 return 0;
933}
934
935/** Initialise fields in a dictionary attribute structure
936 *
937 * This function is a wrapper around the other initialisation functions.
938 *
939 * The reason for the separation, is that sometimes we're initialising a dictionary attribute
940 * by parsing an actual dictionary file, and other times we're copying attribute, or initialising
941 * them programatically.
942 *
943 * This function should only be used for the second case, where we have a complet attribute
944 * definition already.
945 *
946 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
947 *
948 * @param[in] filename file.
949 * @param[in] line number.
950 * @param[in] da_p to initialise.
951 * @param[in] parent of the attribute, if none, this attribute will
952 * be initialised as a dictionary root.
953 * @param[in] name of attribute. Pass NULL for auto-generated name.
954 * automatically generated.
955 * @param[in] type of the attribute.
956 * @param[in] args optional initialisation arguments.
957 * @return
958 * - 0 on success.
959 * - <0 on error.
960 */
961int _dict_attr_init_name_only(char const *filename, int line,
962 fr_dict_attr_t **da_p,
963 fr_dict_attr_t const *parent,
964 char const *name,
966{
967 if (unlikely(dict_attr_init_common(filename, line, da_p, parent, type, args) < 0)) return -1;
968
969 /*
970 * Automatically generate the attribute number when the attribut is added.
971 */
972 (*da_p)->flags.name_only = true;
973
974 if (unlikely(dict_attr_finalise(da_p, name) < 0)) return -1;
975
976 return 0;
977}
978
980{
982
983#if 0
984#ifdef WITH_VERIFY_PTR
985 /*
986 * Check that any attribute we reference is still valid
987 * when we're being freed.
988 */
989 fr_dict_attr_t const *ref = fr_dict_attr_ref(da);
990
991 if (ref) (void)talloc_get_type_abort_const(ref, fr_dict_attr_t);
992#endif
993#endif
994
996 if (ext) talloc_free(ext->value_by_name); /* Ensure this is freed before the enumvs */
997
998 return 0;
999}
1000
1001/** Allocate a partially completed attribute
1002 *
1003 * This is useful in some instances where we need to pre-allocate the attribute
1004 * for talloc hierarchy reasons, but want to finish initialising it
1005 * with #dict_attr_init later.
1006 *
1007 * @param[in] ctx to allocate attribute in.
1008 * @param[in] proto protocol specific extensions.
1009 * @return
1010 * - A new, partially completed, fr_dict_attr_t on success.
1011 * - NULL on failure (memory allocation error).
1012 */
1014{
1015 fr_dict_attr_t *da;
1016
1017 /*
1018 * Do not use talloc zero, the caller
1019 * always initialises memory allocated
1020 * here.
1021 */
1022 da = talloc_zero(ctx, fr_dict_attr_t);
1023 if (unlikely(!da)) return NULL;
1024
1025 /*
1026 * Allocate room for the protocol specific flags
1027 */
1028 if (proto->attr.flags.len > 0) {
1030 proto->attr.flags.len) == NULL)) {
1031 talloc_free(da);
1032 return NULL;
1033 }
1034 }
1035 talloc_set_destructor(da, _dict_attr_free);
1036
1037 return da;
1038}
1039
1040/** Allocate a dictionary root attribute on the heap
1041 *
1042 * @param[in] filename file.
1043 * @param[in] line number.
1044 * @param[in] ctx to allocate the attribute in.
1045 * @param[in] dict the attribute will be used in.
1046 * @param[in] name of the attribute. If NULL an OID string
1047 * will be created and set as the name.
1048 * @param[in] proto_number number. This should be
1049 * @param[in] args optional initialisation arguments.
1050 * @return
1051 * - A new fr_dict_attr_t on success.
1052 * - NULL on failure.
1053 */
1054fr_dict_attr_t *_dict_attr_alloc_root(char const *filename, int line,
1055 TALLOC_CTX *ctx,
1056 fr_dict_t const *dict,
1057 char const *name, int proto_number,
1058 dict_attr_args_t const *args)
1059{
1061
1062 n = dict_attr_alloc_null(ctx, dict->proto);
1063 if (unlikely(!n)) return NULL;
1064
1065 if (_dict_attr_init(filename, line, &n, NULL, name, proto_number, FR_TYPE_TLV, args) < 0) {
1066 talloc_free(n);
1067 return NULL;
1068 }
1069
1070 return n;
1071}
1072
1073/** Allocate a dictionary attribute on the heap
1074 *
1075 * @param[in] filename file.
1076 * @param[in] line number.
1077 * @param[in] ctx to allocate the attribute in.
1078 * @param[in] parent of the attribute.
1079 * @param[in] name of the attribute. If NULL an OID string
1080 * will be created and set as the name.
1081 * @param[in] attr number.
1082 * @param[in] type of the attribute.
1083 * @param[in] args optional initialisation arguments.
1084 * @return
1085 * - A new fr_dict_attr_t on success.
1086 * - NULL on failure.
1087 */
1088fr_dict_attr_t *_dict_attr_alloc(char const *filename, int line,
1089 TALLOC_CTX *ctx,
1090 fr_dict_attr_t const *parent,
1091 char const *name, int attr,
1093{
1095
1096 n = dict_attr_alloc_null(ctx, parent->dict->proto);
1097 if (unlikely(!n)) return NULL;
1098
1099 if (_dict_attr_init(filename, line, &n, parent, name, attr, type, args) < 0) {
1100 talloc_free(n);
1101 return NULL;
1102 }
1103
1104 return n;
1105}
1106
1107/** Copy a an existing attribute, possibly to a new location
1108 *
1109 * @param[in] ctx to allocate new attribute in.
1110 * @param[in] parent where to parent the copy from. If NULL, in->parent is used.
1111 * @param[in] in attribute to copy.
1112 * @param[in] name to assign to the attribute. If NULL, in->name is used.
1113 * @return
1114 * - A copy of the input fr_dict_attr_t on success.
1115 * - NULL on failure.
1116 */
1118 char const *name)
1119{
1121
1122 if (in->flags.has_fixup) {
1123 fr_strerror_printf("Cannot copy from %s - source attribute is waiting for additional definitions",
1124 in->name);
1125 return NULL;
1126 }
1127
1128 fr_assert(parent || name);
1129
1130 n = dict_attr_alloc(ctx, parent ? parent : in->parent, name ? name : in->name,
1131 in->attr, in->type, &(dict_attr_args_t){ .flags = &in->flags });
1132 if (unlikely(!n)) return NULL;
1133
1134 /*
1135 * This newly allocated attribute is not the target of a ref.
1136 */
1137 n->flags.is_ref_target = false;
1138
1139 if (dict_attr_ext_copy_all(&n, in) < 0) {
1140 error:
1141 talloc_free(n);
1142 return NULL;
1143 }
1144 DA_VERIFY(n);
1145
1146 if (fr_type_is_structural(in->type) && in->flags.has_alias) {
1147 if (dict_attr_acopy_aliases(n, in) < 0) goto error;
1148 }
1149
1150 return n;
1151}
1152
1154{
1155 if (!dst->flags.local) {
1156 fr_strerror_const("Cannot copy attributes to a non-local dictionary");
1157 return -1;
1158 }
1159
1160 if (src->flags.has_fixup) {
1161 fr_strerror_printf("Cannot copy from %s to %s - source attribute is waiting for additional definitions",
1162 src->name, dst->name);
1163 return -1;
1164 }
1165
1166 /*
1167 * Why not? @todo - check and fix
1168 */
1169 if (src->flags.local) {
1170 fr_strerror_const("Cannot copy a local attribute");
1171 return -1;
1172 }
1173
1174 return dict_attr_acopy_children(dst->dict, UNCONST(fr_dict_attr_t *, dst), src);
1175}
1176
1178 fr_dict_attr_t const *child)
1179{
1180 fr_dict_attr_t *copy;
1181
1182 copy = dict_attr_acopy(dict->pool, dst, child, child->name);
1183 if (!copy) return -1;
1184
1185 fr_assert(copy->parent == dst);
1186 copy->depth = copy->parent->depth + 1;
1187
1188 if (dict_attr_child_add(dst, copy) < 0) return -1;
1189
1190 if (dict_attr_add_to_namespace(dst, copy) < 0) return -1;
1191
1192 if (!dict_attr_children(child)) return 0;
1193
1194 if (dict_attr_acopy_children(dict, copy, child) < 0) return -1;
1195
1196 /*
1197 * Children of a UNION get an ALIAS added to the parent of the UNION. This allows the UNION
1198 * attribute to be omitted from parsing and printing.
1199 */
1200 if (src->type != FR_TYPE_UNION) return 0;
1201
1202 return dict_attr_alias_add(dst->parent, copy->name, copy);
1203}
1204
1205
1206/** Copy the children of an existing attribute
1207 *
1208 * @param[in] dict to allocate the children in
1209 * @param[in] dst where to copy the children to
1210 * @param[in] src where to copy the children from
1211 * @return
1212 * - 0 on success
1213 * - <0 on error
1214 */
1216{
1217 uint child_num;
1218 fr_dict_attr_t const *child = NULL, *src_key = NULL;
1219 fr_dict_attr_t *dst_key;
1220
1222 fr_assert(dst->type == src->type);
1224
1225 /*
1226 * For non-struct parents, we can copy their children in any order.
1227 */
1228 if (likely(src->type != FR_TYPE_STRUCT)) {
1229 for (child = fr_dict_attr_iterate_children(src, &child);
1230 child != NULL;
1231 child = fr_dict_attr_iterate_children(src, &child)) {
1232 if (dict_attr_acopy_child(dict, dst, src, child) < 0) return -1;
1233 }
1234
1235 return 0;
1236 }
1237
1238 /*
1239 * For structs, we copy the children in order. This allows "key" fields to be copied before
1240 * fields which depend on them.
1241 *
1242 * Note that due to the checks in the DEFINE and ATTRIBUTE parsers (but not the validate
1243 * routines), STRUCTs can only have children which are MEMBERs. And MEMBERs are allocated in
1244 * order.
1245 */
1246 for (child_num = 1, child = fr_dict_attr_child_by_num(src, child_num);
1247 child != NULL;
1248 child_num++, child = fr_dict_attr_child_by_num(src, child_num)) {
1249 /*
1250 * If the key field has enums, then delay copying the enums until after we've copied all
1251 * of the other children.
1252 *
1253 * For a UNION which is inside of a STRUCT, the UNION has a reference to the key field.
1254 * So the key field needs to be defined before we create the UNION.
1255 *
1256 * But the key field also has a set of ENUMs, each of which has a key ref to the UNION
1257 * member which is associated with that key value. This means that we have circular
1258 * dependencies.
1259 *
1260 * The loop is resolved by creating the key first, and allocating room for an ENUM
1261 * extension. This allows the UNION to reference the key. Once the UNION is created, we
1262 * go back and copy all of the ENUMs over. The ENUM copy routine will take care of
1263 * fixing up the refs.
1264 */
1265 if (unlikely(fr_dict_attr_is_key_field(child) && child->flags.has_value)) {
1266 src_key = child;
1267
1268 if (src_key->flags.has_fixup) {
1269 fr_strerror_printf("Cannot copy from %s - source attribute is waiting for additional definitions",
1270 src_key->name);
1271 return -1;
1272 }
1273
1274 dst_key = dict_attr_alloc(dict, dst, src_key->name,
1275 src_key->attr, src_key->type, &(dict_attr_args_t){ .flags = &src_key->flags });
1276 if (unlikely(!dst_key)) return -1;
1277
1278 if (!dict_attr_ext_alloc(&dst_key, FR_DICT_ATTR_EXT_ENUMV)) return -1;
1279
1280 fr_assert(dst_key->parent == dst);
1281 dst_key->depth = dst->depth + 1;
1282
1283 if (dict_attr_child_add(dst, dst_key) < 0) return -1;
1284
1285 if (dict_attr_add_to_namespace(dst, dst_key) < 0) return -1;
1286
1287 continue;
1288 }
1289
1290 if (dict_attr_acopy_child(dict, dst, src, child) < 0) return -1;
1291
1292 DA_VERIFY(child);
1293 }
1294
1295 DA_VERIFY(dst);
1296
1297 if (!src_key) return 0;
1298
1299 if (!dict_attr_ext_copy(&dst_key, src_key, FR_DICT_ATTR_EXT_ENUMV)) return -1;
1300
1301 return 0;
1302}
1303
1304/** Copy the VALUEs of an existing attribute, by casting them
1305 *
1306 * @param[in] dst where to cast the VALUEs to
1307 * @param[in] src where to cast the VALUEs from
1308 * @return
1309 * - 0 on success
1310 * - <0 on error
1311 */
1313{
1315
1316 fr_assert(!fr_type_is_non_leaf(dst->type));
1317 fr_assert(!fr_type_is_non_leaf(src->type));
1318
1321
1323 if (!ext) {
1324 fr_assert(0);
1325 return -1;
1326 }
1327
1328 if (!ext->name_by_value) {
1329 fr_strerror_printf("Reference enum %s does not have any VALUEs to copy", src->name);
1330 return -1;
1331 }
1332
1334
1335 return -1;
1336}
1337
1338
1339/** Copy aliases of an existing attribute to a new one.
1340 *
1341 * @param[in] dst where to copy the children to
1342 * @param[in] src where to copy the children from
1343 * @return
1344 * - 0 on success
1345 * - <0 on error
1346 */
1348{
1349 fr_hash_table_t *namespace;
1350 fr_hash_iter_t iter;
1351 fr_dict_attr_t const *da;
1352
1353 if (!src->flags.has_alias) return 0;
1354
1355 switch (src->type) {
1356 case FR_TYPE_TLV:
1357 case FR_TYPE_VENDOR:
1358 case FR_TYPE_VSA:
1359 break;
1360
1361 /*
1362 * Automatically added aliases are copied in dict_attr_acopy_child().
1363 */
1364 case FR_TYPE_STRUCT:
1365 return 0;
1366
1367 default:
1368 fr_strerror_printf("Cannot add ALIAS to parent attribute %s of data type '%s'", src->name, fr_type_to_str(src->type));
1369 return -1;
1370
1371 }
1372
1373 namespace = dict_attr_namespace(src);
1374 fr_assert(namespace != NULL);
1375
1376 for (da = fr_hash_table_iter_init(namespace, &iter);
1377 da != NULL;
1378 da = fr_hash_table_iter_next(namespace, &iter)) {
1379 if (!da->flags.is_alias) continue;
1380
1381#if 1
1382 fr_strerror_printf("Cannot clone ALIAS %s.%s to %s.%s", src->name, da->name, dst->name, da->name);
1383 return -1;
1384
1385#else
1386 fr_dict_attr_t const *parent, *ref;
1387 fr_dict_attr_t const *new_ref;
1388
1389 ref = fr_dict_attr_ref(da);
1390 fr_assert(ref != NULL);
1391
1392 /*
1393 * ALIASes are normally down the tree, to shorten sibling relationships.
1394 * e.g. Cisco-AVPAir -> Vendor-Specific.Cisco.AV-Pair.
1395 *
1396 * The question is to we want to allow aliases to create cross-tree links? I suspect
1397 * not.
1398 */
1399 parent = fr_dict_attr_common_parent(src, ref, true);
1400 if (!parent) {
1401 fr_strerror_printf("Cannot clone ALIAS %s.%s to %s.%s, the alias reference %s is outside of the shared tree",
1402 src->name, da->name, dst->name, da->name, ref->name);
1403 return -1;
1404 }
1405
1406 fr_assert(parent == src);
1407
1408 new_ref = fr_dict_attr_by_name(NULL, dst, da->name);
1409 fr_assert(new_ref == NULL);
1410
1411 /*
1412 * This function needs to walk back up from "ref" to "src", finding the intermediate DAs.
1413 * Once that's done, it needs to walk down from "dst" to create a new "ref".
1414 */
1415 new_ref = dict_alias_reref(dst, src, ref);
1416 fr_assert(new_ref != NULL);
1417
1418 if (dict_attr_alias_add(dst, da->name, new_ref) < 0) return -1;
1419#endif
1420 }
1421
1422 return 0;
1423}
1424
1425/** Add an alias to an existing attribute
1426 *
1427 */
1428int dict_attr_alias_add(fr_dict_attr_t const *parent, char const *alias, fr_dict_attr_t const *ref)
1429{
1430 fr_dict_attr_t const *da, *common;
1431 fr_dict_attr_t *self;
1432 fr_hash_table_t *namespace;
1433
1434 switch (parent->type) {
1435 case FR_TYPE_STRUCT:
1436 /*
1437 * If we are a STRUCT, the reference an only be to children of a UNION.
1438 */
1439 fr_assert(ref->parent->type == FR_TYPE_UNION);
1440
1441 /*
1442 * And the UNION must be a MEMBER of the STRUCT.
1443 */
1444 fr_assert(ref->parent->parent == parent);
1445 break;
1446
1447 case FR_TYPE_TLV:
1448 case FR_TYPE_VENDOR:
1449 case FR_TYPE_VSA:
1450 break;
1451
1452 default:
1453 fr_strerror_printf("Cannot add ALIAS to parent attribute %s of data type '%s'",
1454 parent->name, fr_type_to_str(parent->type));
1455 return -1;
1456 }
1457
1458 if ((ref->type == FR_TYPE_UNION) || fr_dict_attr_is_key_field(ref)) {
1459 fr_strerror_printf("Cannot add ALIAS to target attribute %s of data type '%s'",
1460 ref->name, fr_type_to_str(ref->type));
1461 return -1;
1462 }
1463
1464 da = dict_attr_by_name(NULL, parent, alias);
1465 if (da) {
1466 fr_strerror_printf("ALIAS '%s' conflicts with another attribute in namespace %s",
1467 alias, parent->name);
1468 return -1;
1469 }
1470
1471 /*
1472 * ALIASes can point across the tree and down, for the same parent. ALIASes cannot go back up
1473 * the tree.
1474 */
1475 common = fr_dict_attr_common_parent(parent, ref, true);
1476 if (!common) {
1477 fr_strerror_printf("Invalid ALIAS to target attribute %s of data type '%s' - the attributes do not share a parent",
1478 ref->name, fr_type_to_str(ref->type));
1479 return -1;
1480 }
1481
1482 /*
1483 * Note that we do NOT call fr_dict_attr_add() here.
1484 *
1485 * When that function adds two equivalent attributes, the
1486 * second one is prioritized for printing. For ALIASes,
1487 * we want the pre-existing one to be prioritized.
1488 *
1489 * i.e. you can lookup the ALIAS by "name", but you
1490 * actually get returned "ref".
1491 */
1492 {
1493 fr_dict_attr_flags_t flags = ref->flags;
1494
1495 flags.is_alias = 1; /* These get followed automatically by public functions */
1496
1497 self = dict_attr_alloc(parent->dict->pool, parent, alias, ref->attr, FR_TYPE_VOID, (&(dict_attr_args_t){ .flags = &flags, .ref = ref }));
1498 if (unlikely(!self)) return -1;
1499 }
1500
1501 self->dict = parent->dict;
1502 UNCONST(fr_dict_attr_t *, parent)->flags.has_alias = true;
1503
1504 fr_assert(fr_dict_attr_ref(self) == ref);
1505
1506 namespace = dict_attr_namespace(parent);
1507 if (!namespace) {
1508 fr_strerror_printf("Attribute '%s' does not contain a namespace", parent->name);
1509 error:
1510 talloc_free(self);
1511 return -1;
1512 }
1513
1514 if (!fr_hash_table_insert(namespace, self)) {
1515 fr_strerror_const("Internal error storing attribute");
1516 goto error;
1517 }
1518
1519 return 0;
1520}
1521
1522/** Add a protocol to the global protocol table
1523 *
1524 * Inserts a protocol into the global protocol table. Uses the root attributes
1525 * of the dictionary for comparisons.
1526 *
1527 * @param[in] dict of protocol we're inserting.
1528 * @return
1529 * - 0 on success.
1530 * - -1 on failure.
1531 */
1533{
1534 if (!dict->root) return -1; /* Should always have root */
1535
1537 fr_dict_t *old_proto;
1538
1539 old_proto = fr_hash_table_find(dict_gctx->protocol_by_name, dict);
1540 if (!old_proto) {
1541 fr_strerror_printf("%s: Failed inserting protocol name %s", __FUNCTION__, dict->root->name);
1542 return -1;
1543 }
1544
1545 if ((strcmp(old_proto->root->name, dict->root->name) == 0) &&
1546 (old_proto->root->name == dict->root->name)) {
1547 fr_strerror_printf("%s: Duplicate protocol name %s", __FUNCTION__, dict->root->name);
1548 return -1;
1549 }
1550
1551 return 0;
1552 }
1553 dict->in_protocol_by_name = true;
1554
1556 fr_strerror_printf("%s: Duplicate protocol number %u", __FUNCTION__, dict->root->attr);
1557 return -1;
1558 }
1559 dict->in_protocol_by_num = true;
1560
1561 dict_dependent_add(dict, "global");
1562
1563 /*
1564 * Create and add sub-attributes which allow other
1565 * protocols to be encapsulated in the internal
1566 * namespace.
1567 */
1568 if (dict_gctx->internal && (dict != dict_gctx->internal)) {
1569 fr_dict_attr_t const *da;
1570 fr_dict_attr_flags_t flags = { 0 };
1571
1574
1576 if (!da) {
1578 dict->root->name, dict->root->attr, FR_TYPE_GROUP, &flags) < 0) {
1579 return -1;
1580 }
1581
1583 fr_assert(da != NULL);
1584 }
1585
1587 }
1588
1589 return 0;
1590}
1591
1592/** Add a vendor to the dictionary
1593 *
1594 * Inserts a vendor entry into the vendor hash table. This must be done before adding
1595 * attributes under a VSA.
1596 *
1597 * @param[in] dict of protocol context we're operating in.
1598 * If NULL the internal dictionary will be used.
1599 * @param[in] name of the vendor.
1600 * @param[in] num Vendor's Private Enterprise Number.
1601 * @return
1602 * - 0 on success.
1603 * - -1 on failure.
1604 */
1605int dict_vendor_add(fr_dict_t *dict, char const *name, unsigned int num)
1606{
1607 size_t len;
1608 fr_dict_vendor_t *vendor;
1609
1610 INTERNAL_IF_NULL(dict, -1);
1611
1612 len = strlen(name);
1613 if (len >= FR_DICT_VENDOR_MAX_NAME_LEN) {
1614 fr_strerror_printf("%s: Vendor name too long", __FUNCTION__);
1615 return -1;
1616 }
1617
1618 vendor = talloc_zero(dict, fr_dict_vendor_t);
1619 if (!vendor) {
1620 oom:
1621 fr_strerror_const("Out of memory");
1622 return -1;
1623 }
1624
1625 vendor->name = talloc_typed_strdup(vendor, name);
1626 if (!vendor->name) {
1627 talloc_free(vendor);
1628 goto oom;
1629 }
1630 vendor->pen = num;
1631 vendor->type = vendor->length = 1; /* defaults */
1632
1633 if (!fr_hash_table_insert(dict->vendors_by_name, vendor)) {
1634 fr_dict_vendor_t const *old_vendor;
1635
1636 old_vendor = fr_hash_table_find(dict->vendors_by_name, vendor);
1637 if (!old_vendor) {
1638 fr_strerror_printf("%s: Failed inserting vendor name %s", __FUNCTION__, name);
1639 return -1;
1640 }
1641 if ((strcmp(old_vendor->name, vendor->name) == 0) && (old_vendor->pen != vendor->pen)) {
1642 fr_strerror_printf("%s: Duplicate vendor name %s", __FUNCTION__, name);
1643 return -1;
1644 }
1645
1646 /*
1647 * Already inserted. Discard the duplicate entry.
1648 */
1649 talloc_free(vendor);
1650
1651 return 0;
1652 }
1653
1654 /*
1655 * Insert the SAME pointer (not free'd when this table is
1656 * deleted), into another table.
1657 *
1658 * We want this behaviour because we want OLD names for
1659 * the attributes to be read from the configuration
1660 * files, but when we're printing them, (and looking up
1661 * by value) we want to use the NEW name.
1662 */
1663 if (fr_hash_table_replace(NULL, dict->vendors_by_num, vendor) < 0) {
1664 fr_strerror_printf("%s: Failed inserting vendor %s", __FUNCTION__, name);
1665 return -1;
1666 }
1667
1668 return 0;
1669}
1670
1671/** See if a #fr_dict_attr_t can have children
1672 *
1673 * The check for children is complicated by the need for "int" types
1674 * to have children, when they are `key` fields in a `struct`. This
1675 * situation occurs when a struct has multiple sub-structures, which
1676 * are selected based on a `key` field.
1677 *
1678 * There is no other place for the sub-structures to go. In the
1679 * future, we may extend the functionality of the `key` field, by
1680 * allowing non-integer data types. That would require storing keys
1681 * as #fr_dict_enum_value_t, and then placing the child (i.e. sub)
1682 * structures there. But that would involve adding children to
1683 * enums, which is currently not supported.
1684 *
1685 * @param da the dictionary attribute to check.
1686 */
1688{
1689 switch (da->type) {
1690 case FR_TYPE_TLV:
1691 case FR_TYPE_VENDOR:
1692 case FR_TYPE_VSA:
1693 case FR_TYPE_STRUCT:
1694 case FR_TYPE_UNION:
1695 return true;
1696
1697 default:
1698 break;
1699 }
1700
1701 return false;
1702}
1703
1704/** Add a child to a parent.
1705 *
1706 * @param[in] parent we're adding a child to.
1707 * @param[in] child to add to parent.
1708 * @return
1709 * - 0 on success.
1710 * - -1 on failure (memory allocation error).
1711 */
1713{
1714 fr_dict_attr_t const * const *bin;
1715 fr_dict_attr_t **this;
1716 fr_dict_attr_t const **children;
1717
1718 /*
1719 * Setup fields in the child
1720 */
1721 fr_assert(child->parent == parent);
1722
1723 DA_VERIFY(child);
1724
1725 if (fr_dict_attr_ref(parent)) {
1726 fr_strerror_printf("Cannot add children to attribute '%s' which has 'ref=%s'",
1728 return -1;
1729 }
1730
1732 fr_strerror_printf("Cannot add children to attribute '%s' of type %s",
1733 parent->name,
1734 fr_type_to_str(parent->type));
1735 return -1;
1736 }
1737
1738 if ((parent->type == FR_TYPE_VSA) && (child->type != FR_TYPE_VENDOR)) {
1739 fr_strerror_printf("Cannot add non-vendor children to attribute '%s' of type %s",
1740 parent->name,
1741 fr_type_to_str(parent->type));
1742 return -1;
1743 }
1744
1745 /*
1746 * The parent has children by name only, not by number. Don't even bother trying to track
1747 * numbers, except for VENDOR in root, and MEMBER of a struct.
1748 */
1749 if (!parent->flags.is_root && parent->flags.name_only &&
1750 (parent->type != FR_TYPE_STRUCT) && (parent->type != FR_TYPE_TLV)) {
1751 return 0;
1752 }
1753
1754 /*
1755 * We only allocate the pointer array *if* the parent has children.
1756 */
1757 children = dict_attr_children(parent);
1758 if (!children) {
1759 children = talloc_zero_array(parent, fr_dict_attr_t const *, UINT8_MAX + 1);
1760 if (!children) {
1761 fr_strerror_const("Out of memory");
1762 return -1;
1763 }
1764 if (dict_attr_children_set(parent, children) < 0) return -1;
1765 }
1766
1767 /*
1768 * Treat the array as a hash of 255 bins, with attributes
1769 * sorted into bins using num % 255.
1770 *
1771 * Although the various protocols may define numbers higher than 255:
1772 *
1773 * RADIUS/DHCPv4 - 1-255
1774 * Diameter/Internal - 1-4294967295
1775 * DHCPv6 - 1-65535
1776 *
1777 * In reality very few will ever use attribute numbers > 500, so for
1778 * the majority of lookups we get O(1) performance.
1779 *
1780 * Attributes are inserted into the bin in order of their attribute
1781 * numbers to allow slightly more efficient lookups.
1782 */
1783 for (bin = &children[child->attr & 0xff]; *bin; bin = &(*bin)->next) {
1784 /*
1785 * Workaround for vendors that overload the RFC space.
1786 * Structural attributes always take priority.
1787 */
1788 bool child_is_struct = fr_type_is_structural(child->type);
1789 bool bin_is_struct = fr_type_is_structural((*bin)->type);
1790
1791 if (child_is_struct && !bin_is_struct) break;
1792 if (fr_dict_vendor_num_by_da(child) <= fr_dict_vendor_num_by_da(*bin)) break; /* Prioritise RFC attributes */
1793 if (child->attr <= (*bin)->attr) break;
1794 }
1795
1796 memcpy(&this, &bin, sizeof(this));
1797 child->next = *this;
1798 *this = child;
1799
1800 return 0;
1801}
1802
1803/** Add an attribute to the name table for an attribute
1804 *
1805 * @param[in] parent containing the namespace to add this attribute to.
1806 * @param[in] da to add to the name lookup tables.
1807 * @return
1808 * - 0 on success.
1809 * - -1 on failure.
1810 */
1812{
1813 fr_hash_table_t *namespace;
1814
1815 namespace = dict_attr_namespace(parent);
1816 if (unlikely(!namespace)) {
1817 fr_strerror_printf("Parent \"%s\" has no namespace", parent->name);
1818 error:
1819 return -1;
1820 }
1821
1822 /*
1823 * Sanity check to stop children of vendors ending
1824 * up in the Vendor-Specific or root namespace.
1825 */
1826 if ((fr_dict_vendor_num_by_da(da) != 0) && (da->type != FR_TYPE_VENDOR) &&
1827 ((parent->type == FR_TYPE_VSA) || parent->flags.is_root)) {
1828 fr_strerror_printf("Cannot insert attribute '%s' of type %s into %s",
1829 da->name,
1830 fr_type_to_str(da->type),
1831 parent->name);
1832 goto error;
1833 }
1834
1835 /*
1836 * Insert the attribute, only if it's not a duplicate.
1837 */
1838 if (!fr_hash_table_insert(namespace, da)) {
1839 fr_dict_attr_t *a;
1840
1841 /*
1842 * Find the old name. If it's the same name and
1843 * but the parent, or number, or type are
1844 * different, that's an error.
1845 */
1846 a = fr_hash_table_find(namespace, da);
1847 if (a && (strcasecmp(a->name, da->name) == 0)) {
1848 if ((a->attr != da->attr) || (a->type != da->type) || (a->parent != da->parent)) {
1849 fr_strerror_printf("Duplicate attribute name '%s' in namespace '%s'. "
1850 "Originally defined %s[%d]",
1851 da->name, parent->name,
1852 a->filename, a->line);
1853 goto error;
1854 }
1855 }
1856
1857 /*
1858 * Otherwise the attribute has been redefined later
1859 * in the dictionary.
1860 *
1861 * The original fr_dict_attr_t remains in the
1862 * dictionary but entry in the name hash table is
1863 * updated to point to the new definition.
1864 */
1865 if (fr_hash_table_replace(NULL, namespace, da) < 0) {
1866 fr_strerror_const("Internal error storing attribute");
1867 goto error;
1868 }
1869 }
1870
1871 return 0;
1872}
1873
1874/** A variant of fr_dict_attr_t that allows a pre-allocated, populated fr_dict_attr_t to be added
1875 *
1876 */
1878{
1879 fr_dict_attr_t const *exists;
1880
1881 if (unlikely(da->dict->read_only)) {
1882 fr_strerror_printf("%s dictionary has been marked as read only", fr_dict_root(da->dict)->name);
1883 return -1;
1884 }
1885
1886 if (unlikely(da->state.finalised == false)) {
1887 fr_strerror_const("Attribute has not been finalised");
1888 return -1;
1889 }
1890
1891 /*
1892 * Check that the definition is valid.
1893 */
1894 if (!dict_attr_valid(da)) return -1;
1895
1896 /*
1897 * Don't allow duplicate names
1898 *
1899 * Previously we allowed duplicate names, but only if the
1900 * attributes were compatible (we'd just ignore the operation).
1901 *
1902 * But as attribute parsing may have generated fixups, which
1903 * we'd now need to unpick, it's easier just to error out
1904 * and have the user fix the duplicate.
1905 */
1906 exists = fr_dict_attr_by_name(NULL, da->parent, da->name);
1907 if (exists) {
1908 fr_strerror_printf("Duplicate attribute name '%s' in namespace '%s'. "
1909 "Originally defined %s[%d]", da->name, da->parent->name,
1910 exists->filename, exists->line);
1911 return -1;
1912 }
1913
1914 /*
1915 * In some cases name_only attributes may have explicitly
1916 * assigned numbers. Ensure that there are no conflicts
1917 * between auto-assigned and explkicitly assigned.
1918 */
1919 if (da->flags.name_only) {
1920 if (da->state.attr_set) {
1922
1923 if (da->attr > da->parent->last_child_attr) {
1924 parent->last_child_attr = da->attr;
1925
1926 /*
1927 * If the attribute is outside of the bounds of
1928 * the type size, then it MUST be an internal
1929 * attribute. Set the flag in this attribute, so
1930 * that the encoder doesn't have to do complex
1931 * checks.
1932 */
1933 if ((da->attr >= (((uint64_t)1) << (8 * parent->flags.type_size)))) da->flags.internal = true;
1934 }
1935 } else if (unlikely(dict_attr_num_init_name_only(da)) < 0) {
1936 return -1;
1937 }
1938 }
1939
1940 /*
1941 * Attributes can also be indexed by number. Ensure that
1942 * all attributes of the same number have the same
1943 * properties.
1944 */
1945 exists = fr_dict_attr_child_by_num(da->parent, da->attr);
1946 if (exists) {
1947 fr_strerror_printf("Duplicate attribute number %u in namespace '%s'. "
1948 "Originally defined by '%s' at %s[%d]",
1949 da->attr, da->parent->name, exists->name, exists->filename, exists->line);
1950 return -1;
1951 }
1952
1953 /*
1954 * Add in by number
1955 */
1956 if (dict_attr_child_add(UNCONST(fr_dict_attr_t *, da->parent), da) < 0) return -1;
1957
1958 /*
1959 * Add in by name
1960 */
1961 if (dict_attr_add_to_namespace(da->parent, da) < 0) return -1;
1962
1963#ifndef NDEBUG
1964 {
1965 fr_dict_attr_t const *found;
1966
1967 /*
1968 * Check if we added the attribute
1969 */
1970 found = dict_attr_child_by_num(da->parent, da->attr);
1971 if (!found) {
1972 fr_strerror_printf("FATAL - Failed to find attribute number %u we just added to namespace '%s'", da->attr, da->parent->name);
1973 return -1;
1974 }
1975
1976 if (!dict_attr_by_name(NULL, da->parent, da->name)) {
1977 fr_strerror_printf("FATAL - Failed to find attribute '%s' we just added to namespace '%s'", da->name, da->parent->name);
1978 return -1;
1979 }
1980 }
1981#endif
1982
1983 return 0;
1984}
1985
1986/** Add an attribute to the dictionary
1987 *
1988 * @param[in] dict of protocol context we're operating in.
1989 * If NULL the internal dictionary will be used.
1990 * @param[in] parent to add attribute under.
1991 * @param[in] name of the attribute.
1992 * @param[in] attr number.
1993 * @param[in] type of attribute.
1994 * @param[in] flags to set in the attribute.
1995 * @return
1996 * - 0 on success.
1997 * - -1 on failure.
1998 */
2000 char const *name, unsigned int attr, fr_type_t type, fr_dict_attr_flags_t const *flags)
2001{
2002 fr_dict_attr_t *da;
2003
2004 if (fr_dict_attr_ref(parent)) {
2005 fr_strerror_printf("Cannot add children to attribute '%s' which has 'ref=%s'",
2007 return -1;
2008 }
2009
2011 fr_strerror_printf("Cannot add children to attribute '%s' of type %s",
2012 parent->name,
2013 fr_type_to_str(parent->type));
2014 return -1;
2015 }
2016
2017 da = dict_attr_alloc_null(dict->pool, dict->proto);
2018 if (unlikely(!da)) return -1;
2019
2020 if (dict_attr_init(&da, parent, name,
2021 attr, type, &(dict_attr_args_t){ .flags = flags}) < 0) return -1;
2022
2024}
2025
2026/** Add an attribute to the dictionary
2027 *
2028 * @param[in] dict of protocol context we're operating in.
2029 * If NULL the internal dictionary will be used.
2030 * @param[in] parent to add attribute under.
2031 * @param[in] name of the attribute.
2032 * @param[in] type of attribute.
2033 * @param[in] flags to set in the attribute.
2034 * @return
2035 * - 0 on success.
2036 * - -1 on failure.
2037 */
2039 char const *name, fr_type_t type, fr_dict_attr_flags_t const *flags)
2040{
2041 fr_dict_attr_t *da;
2042
2043 da = dict_attr_alloc_null(dict->pool, dict->proto);
2044 if (unlikely(!da)) return -1;
2045
2046 if (dict_attr_init_name_only(&da, parent, name,type, &(dict_attr_args_t){ .flags = flags}) < 0) return -1;
2047
2049}
2050
2051
2053 fr_value_box_t const *value,
2054 bool coerce, bool takes_precedence,
2055 fr_dict_attr_t const *key_child_ref)
2056{
2057 size_t len;
2058 fr_dict_enum_value_t *enumv = NULL;
2059 fr_value_box_t *enum_value = NULL;
2061
2062 if (!da) {
2063 fr_strerror_printf("%s: Dictionary attribute not specified", __FUNCTION__);
2064 return -1;
2065 }
2066
2067 if (!*name) {
2068 fr_strerror_printf("%s: Empty names are not permitted", __FUNCTION__);
2069 return -1;
2070 }
2071
2072 len = strlen(name);
2073 if (len >= FR_DICT_ENUM_MAX_NAME_LEN) {
2074 fr_strerror_printf("VALUE name is too long");
2075 return -1;
2076 }
2077
2078 /*
2079 * If the parent isn't a key field, then we CANNOT add a child struct.
2080 */
2081 if (!fr_dict_attr_is_key_field(da) && key_child_ref) {
2082 fr_strerror_const("Child attributes cannot be defined for VALUEs which are not 'key' attributes");
2083 return -1;
2084 }
2085
2086 if (fr_type_is_structural(da->type) || (da->type == FR_TYPE_STRING)) {
2087 fr_strerror_printf("Enumeration names cannot be added for data type '%s'", fr_type_to_str(da->type));
2088 return -1;
2089 }
2090
2091 if (da->flags.is_alias) {
2092 fr_strerror_printf("Enumeration names cannot be added for ALIAS '%s'", da->name);
2093 return -1;
2094 }
2095
2097 if (!ext) {
2098 fr_strerror_printf("VALUE cannot be defined for %s", da->name);
2099 return -1;
2100 }
2101
2102 /*
2103 * Initialise enumv hash tables
2104 */
2105 if (!ext->value_by_name || !ext->name_by_value) {
2108 if (!ext->value_by_name) {
2109 fr_strerror_printf("Failed allocating \"value_by_name\" table");
2110 return -1;
2111 }
2112
2114 dict_enum_value_cmp, NULL);
2115 if (!ext->name_by_value) {
2116 fr_strerror_printf("Failed allocating \"name_by_value\" table");
2117 return -1;
2118 }
2119 }
2120
2121 /*
2122 * Allocate a structure to map between
2123 * the name and value.
2124 */
2125 enumv = talloc_zero_size(da, sizeof(fr_dict_enum_value_t));
2126 if (!enumv) {
2127 oom:
2128 fr_strerror_printf("%s: Out of memory", __FUNCTION__);
2129 return -1;
2130 }
2131 talloc_set_type(enumv, fr_dict_enum_value_t);
2132
2133 enumv->name = talloc_typed_strdup(enumv, name);
2134 enumv->name_len = len;
2135
2136 if (key_child_ref) {
2138
2140 if (!ref) goto oom;
2141
2142 ref->da = key_child_ref;
2143 }
2144
2145 enum_value = fr_value_box_alloc(enumv, da->type, NULL);
2146 if (!enum_value) goto oom;
2147
2148 if (da->type != value->type) {
2149 if (!coerce) {
2150 fr_strerror_printf("Type mismatch between attribute (%s) and enum (%s)",
2151 fr_type_to_str(da->type),
2152 fr_type_to_str(value->type));
2153 return -1;
2154 }
2155
2156 if (fr_value_box_cast(enumv, enum_value, da->type, NULL, value) < 0) {
2157 fr_strerror_printf_push("Failed coercing enum type (%s) to attribute type (%s)",
2158 fr_type_to_str(value->type),
2159 fr_type_to_str(da->type));
2160
2161 return -1;
2162 }
2163 } else {
2164 if (unlikely(fr_value_box_copy(enum_value, enum_value, value) < 0)) {
2165 fr_strerror_printf_push("%s: Failed copying value into enum", __FUNCTION__);
2166 return -1;
2167 }
2168 }
2169
2170 enumv->value = enum_value;
2171
2172 /*
2173 * Add the value into the dictionary.
2174 */
2175 {
2176 fr_dict_attr_t *tmp;
2177 memcpy(&tmp, &enumv, sizeof(tmp));
2178
2179 if (!fr_hash_table_insert(ext->value_by_name, tmp)) {
2180 fr_dict_enum_value_t const *old;
2181
2182 /*
2183 * Suppress duplicates with the same
2184 * name and value. There are lots in
2185 * dictionary.ascend.
2186 */
2187 old = fr_dict_enum_by_name(da, name, -1);
2188 if (!fr_cond_assert(old)) return -1;
2189
2190 if (fr_value_box_cmp(old->value, enumv->value) == 0) {
2191 talloc_free(enumv);
2192 return 0;
2193 }
2194
2195 fr_strerror_printf("Duplicate VALUE name \"%s\" for Attribute '%s'. "
2196 "Old value was \"%pV\", new value was \"%pV\"", name, da->name,
2197 old->value, enumv->value);
2198 talloc_free(enumv);
2199 return -1;
2200 }
2201
2202 if (enumv->name_len > ext->max_name_len) ext->max_name_len = enumv->name_len;
2203 }
2204
2205 /*
2206 * There are multiple VALUE's, keyed by attribute, so we
2207 * take care of that here.
2208 */
2209 if (takes_precedence) {
2210 if (fr_hash_table_replace(NULL, ext->name_by_value, enumv) < 0) {
2211 fr_strerror_printf("%s: Failed inserting value %s", __FUNCTION__, name);
2212 return -1;
2213 }
2214 } else {
2215 (void) fr_hash_table_insert(ext->name_by_value, enumv);
2216 }
2217
2218 /*
2219 * Mark the attribute up as having an enumv
2220 */
2221 UNCONST(fr_dict_attr_t *, da)->flags.has_value = 1;
2222
2223 return 0;
2224}
2225
2226/** Add a value name
2227 *
2228 * Aliases are textual (string) names for a given value.
2229 *
2230 * Value names are not limited to integers, and may be added for any non-structural
2231 * attribute type.
2232 *
2233 * @param[in] da to add enumeration value to.
2234 * @param[in] name Name of value name.
2235 * @param[in] value to associate with name.
2236 * @param[in] coerce if the type of the value does not match the
2237 * type of the da, attempt to cast it to match
2238 * the type of the da. If this is false and there's
2239 * a type mismatch, we fail.
2240 * We also fail if the value cannot be coerced to
2241 * the attribute type.
2242 * @param[in] takes_precedence This name should take precedence over previous
2243 * names for the same value, when resolving value
2244 * to name.
2245 * @return
2246 * - 0 on success.
2247 * - -1 on failure.
2248 */
2250 fr_value_box_t const *value,
2251 bool coerce, bool takes_precedence)
2252{
2253 return dict_attr_enum_add_name(da, name, value, coerce, takes_precedence, NULL);
2254}
2255
2256/** Add an name to an integer attribute hashing the name for the integer value
2257 *
2258 * If the integer value conflicts with an existing name, it's incremented
2259 * until we find a free value.
2260 */
2262{
2263 fr_value_box_t v = {
2264 .type = da->type
2265 };
2266 fr_value_box_t s = {
2267 .type = da->type
2268 };
2269
2270 if (fr_dict_enum_by_name(da, name, -1)) return 0;
2271
2272 switch (da->type) {
2273 case FR_TYPE_INT8:
2274 v.vb_int8 = s.vb_int8 = fr_hash_string(name) & INT8_MAX;
2275 break;
2276
2277 case FR_TYPE_INT16:
2278 v.vb_int16 = s.vb_int16 = fr_hash_string(name) & INT16_MAX;
2279 break;
2280
2281 case FR_TYPE_INT32:
2282 v.vb_int32 = s.vb_int32 = fr_hash_string(name) & INT32_MAX;
2283 break;
2284
2285 case FR_TYPE_INT64:
2286 v.vb_int64 = s.vb_int64 = fr_hash_string(name) & INT64_MAX;
2287 break;
2288
2289 case FR_TYPE_UINT8:
2290 v.vb_uint8 = s.vb_uint8 = fr_hash_string(name) & UINT8_MAX;
2291 break;
2292
2293 case FR_TYPE_UINT16:
2294 v.vb_uint16 = s.vb_uint16 = fr_hash_string(name) & UINT16_MAX;
2295 break;
2296
2297 case FR_TYPE_UINT32:
2298 v.vb_uint32 = s.vb_uint32 = fr_hash_string(name) & UINT32_MAX;
2299 break;
2300
2301 case FR_TYPE_UINT64:
2302 v.vb_uint64 = s.vb_uint64 = fr_hash_string(name) & UINT64_MAX;
2303 break;
2304
2305 default:
2306 fr_strerror_printf("Attribute is wrong type for auto-numbering, expected numeric type, got %s",
2307 fr_type_to_str(da->type));
2308 return -1;
2309 }
2310
2311 /*
2312 * If there's no existing value, add an enum
2313 * with the hash value of the name.
2314 *
2315 * This helps with debugging as the values
2316 * are consistent.
2317 */
2318 if (!fr_dict_enum_by_value(da, &v)) {
2319 add:
2320 return fr_dict_enum_add_name(da, name, &v, false, false);
2321 }
2322
2323 for (;;) {
2325
2326 if (fr_value_box_cmp_op(T_OP_CMP_EQ, &v, &s) == 0) {
2327 fr_strerror_const("No free integer values for enumeration");
2328 return -1;
2329 }
2330
2331 if (!fr_dict_enum_by_value(da, &v)) goto add;
2332 }
2333 /* NEVER REACHED */
2334}
2335
2336/** Find a common ancestor that two TLV type attributes share
2337 *
2338 * @param[in] a first TLV attribute.
2339 * @param[in] b second TLV attribute.
2340 * @param[in] is_ancestor Enforce a->b relationship (a is parent or ancestor of b).
2341 * @return
2342 * - Common ancestor if one exists.
2343 * - NULL if no common ancestor exists.
2344 */
2346{
2347 unsigned int i;
2348 fr_dict_attr_t const *p_a, *p_b;
2349
2350 if (!a || !b) return NULL;
2351
2352 if (is_ancestor && (b->depth <= a->depth)) return NULL; /* fast_path */
2353
2354 /*
2355 * Find a common depth to work back from
2356 */
2357 if (a->depth > b->depth) {
2358 p_b = b;
2359 for (p_a = a, i = a->depth - b->depth; p_a && (i > 0); p_a = p_a->parent, i--);
2360 if (is_ancestor && (p_a != p_b)) return NULL;
2361 } else if (a->depth < b->depth) {
2362 p_a = a;
2363 for (p_b = b, i = b->depth - a->depth; p_b && (i > 0); p_b = p_b->parent, i--);
2364 if (is_ancestor && (p_a != p_b)) return NULL;
2365 } else {
2366 p_a = a;
2367 p_b = b;
2368 }
2369
2370 while (p_a && p_b) {
2371 if (p_a == p_b) return p_a;
2372
2373 p_a = p_a->parent;
2374 p_b = p_b->parent;
2375 }
2376
2377 return NULL;
2378}
2379
2380/** Process a single OID component
2381 *
2382 * @param[out] out Value of component.
2383 * @param[in] oid string to parse.
2384 * @return
2385 * - 0 on success.
2386 * - -1 on format error.
2387 */
2388int fr_dict_oid_component_legacy(unsigned int *out, char const **oid)
2389{
2390 char const *p = *oid;
2391 char *q;
2392 unsigned long num;
2393
2394 *out = 0;
2395
2396 num = strtoul(p, &q, 10);
2397 if ((p == q) || (num == ULONG_MAX)) {
2398 fr_strerror_printf("Invalid OID component \"%s\" (%lu)", p, num);
2399 return -1;
2400 }
2401
2402 switch (*q) {
2403 case '\0':
2404 case '.':
2405 *oid = q;
2406 *out = (unsigned int)num;
2407
2408 return 0;
2409
2410 default:
2411 fr_strerror_const("Unexpected text after OID component");
2412 *out = 0;
2413 return -1;
2414 }
2415}
2416
2417/** Get the leaf attribute of an OID string
2418 *
2419 * @note On error, vendor will be set (if present), parent will be the
2420 * maximum depth we managed to resolve to, and attr will be the child
2421 * we failed to resolve.
2422 *
2423 * @param[in] dict of protocol context we're operating in.
2424 * If NULL the internal dictionary will be used.
2425 * @param[out] attr Number we parsed.
2426 * @param[in,out] parent attribute (or root of dictionary).
2427 * Will be updated to the parent directly beneath the leaf.
2428 * @param[in] oid string to parse.
2429 * @return
2430 * - > 0 on success (number of bytes parsed).
2431 * - <= 0 on parse error (negative offset of parse error).
2432 */
2433ssize_t fr_dict_attr_by_oid_legacy(fr_dict_t const *dict, fr_dict_attr_t const **parent, unsigned int *attr, char const *oid)
2434{
2435 char const *p = oid;
2436 unsigned int num = 0;
2437 ssize_t slen;
2438
2439 if (!*parent) return -1;
2440
2441 /*
2442 * It's a partial OID. Grab it, and skip to the next bit.
2443 */
2444 if (p[0] == '.') {
2445 p++;
2446 }
2447
2448 *attr = 0;
2449
2450 if (fr_dict_oid_component_legacy(&num, &p) < 0) return oid - p;
2451
2452 /*
2453 * Record progress even if we error out.
2454 *
2455 * Don't change this, you will break things.
2456 */
2457 *attr = num;
2458
2459 /*
2460 * Only a limited number of structural types can have children. Specifically, groups cannot.
2461 */
2463 fr_strerror_printf("Attribute %s (%u) cannot contain a child attribute. "
2464 "Error at sub OID \"%s\"", (*parent)->name, (*parent)->attr, oid);
2465 return 0; /* We parsed nothing */
2466 }
2467
2468 switch (p[0]) {
2469 /*
2470 * We've not hit the leaf yet, so the attribute must be
2471 * defined already.
2472 */
2473 case '.':
2474 {
2475 fr_dict_attr_t const *child;
2476 p++;
2477
2478 child = dict_attr_child_by_num(*parent, num);
2479 if (!child) {
2480 fr_strerror_printf("Unknown attribute '%u' in OID string \"%s\" for parent %s",
2481 num, oid, (*parent)->name);
2482 return 0; /* We parsed nothing */
2483 }
2484
2485 /*
2486 * Record progress even if we error out.
2487 *
2488 * Don't change this, you will break things.
2489 */
2490 *parent = child;
2491
2492 slen = fr_dict_attr_by_oid_legacy(dict, parent, attr, p);
2493 if (slen <= 0) return slen - (p - oid);
2494 return slen + (p - oid);
2495 }
2496
2497 /*
2498 * Hit the leaf, this is the attribute we need to define.
2499 */
2500 case '\0':
2501 *attr = num;
2502 return p - oid;
2503
2504 default:
2505 fr_strerror_printf("Malformed OID string, got trailing garbage '%s'", p);
2506 return oid - p;
2507 }
2508}
2509
2510/** Parse an OID component, resolving it to a defined attribute
2511 *
2512 * @note Will leave the sbuff pointing at the component the error occurred at
2513 * so that the caller can attempt to process the component in another way.
2514 *
2515 * @param[out] err The parsing error that occurred.
2516 * @param[out] out The deepest attribute we resolved.
2517 * @param[in] parent Where to resolve relative attributes from.
2518 * @param[in] in string to parse.
2519 * @param[in] tt Terminal strings.
2520 * @return
2521 * - >0 the number of bytes consumed.
2522 * - <0 Parse error occurred here.
2523 */
2525 fr_dict_attr_t const **out, fr_dict_attr_t const *parent,
2526 fr_sbuff_t *in, fr_sbuff_term_t const *tt)
2527{
2528 fr_sbuff_t our_in = FR_SBUFF(in);
2529 uint32_t num = 0;
2531 fr_dict_attr_t const *child;
2532
2533 if (err) *err = FR_DICT_ATTR_OK;
2534
2535 *out = NULL;
2536
2538 fr_strerror_printf("Attribute '%s' is type %s and cannot contain child attributes. "
2539 "Error at OID \"%.*s\"",
2540 parent->name,
2541 fr_type_to_str(parent->type),
2542 (int)fr_sbuff_remaining(&our_in),
2543 fr_sbuff_current(&our_in));
2545 FR_SBUFF_ERROR_RETURN(&our_in);
2546 }
2547
2548 fr_sbuff_out(&sberr, &num, &our_in);
2549 switch (sberr) {
2550 /*
2551 * Lookup by number
2552 */
2553 case FR_SBUFF_PARSE_OK:
2554 if (!fr_sbuff_is_char(&our_in, '.') && !fr_sbuff_is_terminal(&our_in, tt)) {
2555 fr_sbuff_set_to_start(&our_in);
2556 goto oid_str;
2557 }
2558
2559 child = dict_attr_child_by_num(parent, num);
2560 if (!child) {
2561 fr_strerror_printf("Failed resolving child %u in namespace '%s'",
2562 num, parent->name);
2564 FR_SBUFF_ERROR_RETURN(&our_in);
2565 }
2566 break;
2567
2568 /*
2569 * Lookup by name
2570 */
2573 {
2574 fr_dict_attr_err_t our_err;
2575 oid_str:
2576 /* Sets its own errors, don't override */
2577 if (fr_dict_attr_by_name_substr(&our_err, &child, parent, &our_in, tt) < 0) {
2578 if (err) *err = our_err;
2579 FR_SBUFF_ERROR_RETURN(&our_in);
2580 }
2581 }
2582 break;
2583
2584 default:
2585 fr_strerror_printf("Invalid OID component (%s) \"%.*s\"",
2587 (int)fr_sbuff_remaining(&our_in), fr_sbuff_current(&our_in));
2589 FR_SBUFF_ERROR_RETURN(&our_in);
2590 }
2591
2592 child = dict_attr_alias(err, child);
2593 if (unlikely(!child)) FR_SBUFF_ERROR_RETURN(&our_in);
2594
2595 *out = child;
2596
2597 FR_SBUFF_SET_RETURN(in, &our_in);
2598}
2599
2600/** Resolve an attribute using an OID string
2601 *
2602 * @note Will leave the sbuff pointing at the component the error occurred at
2603 * so that the caller can attempt to process the component in another way.
2604 * An err pointer should be provided in order to determine if an error
2605 * occurred.
2606 *
2607 * @param[out] err The parsing error that occurred.
2608 * @param[out] out The deepest attribute we resolved.
2609 * @param[in] parent Where to resolve relative attributes from.
2610 * @param[in] in string to parse.
2611 * @param[in] tt Terminal strings.
2612 * @return The number of bytes of name consumed.
2613 */
2615 fr_dict_attr_t const **out, fr_dict_attr_t const *parent,
2616 fr_sbuff_t *in, fr_sbuff_term_t const *tt)
2617{
2618 fr_sbuff_t our_in = FR_SBUFF(in);
2620 fr_dict_attr_t const *our_parent = parent;
2621
2622 fr_sbuff_marker(&m_c, &our_in);
2623
2624 /*
2625 * If the OID doesn't begin with '.' we
2626 * resolve it from the root.
2627 */
2628#if 0
2629 if (!fr_sbuff_next_if_char(&our_in, '.')) our_parent = fr_dict_root(fr_dict_by_da(parent));
2630#else
2631 (void) fr_sbuff_next_if_char(&our_in, '.');
2632#endif
2633 *out = NULL;
2634
2635 for (;;) {
2636 fr_dict_attr_t const *child;
2637
2638 if ((fr_dict_oid_component(err, &child, our_parent, &our_in, tt) < 0) || !child) {
2639 *out = our_parent;
2640 fr_sbuff_set(&our_in, &m_c); /* Reset to the start of the last component */
2641 break; /* Resolved as much as we can */
2642 }
2643
2644 our_parent = child;
2645 *out = child;
2646
2647 fr_sbuff_set(&m_c, &our_in);
2648 if (!fr_sbuff_next_if_char(&our_in, '.')) break;
2649 }
2650
2651 FR_SBUFF_SET_RETURN(in, &our_in);
2652}
2653
2654/** Resolve an attribute using an OID string
2655 *
2656 * @param[out] err The parsing error that occurred.
2657 * @param[in] parent Where to resolve relative attributes from.
2658 * @param[in] oid string to parse.
2659 * @return
2660 * - NULL if we couldn't resolve the attribute.
2661 * - The resolved attribute.
2662 */
2664{
2665 fr_sbuff_t sbuff = FR_SBUFF_IN(oid, strlen(oid));
2666 fr_dict_attr_t const *da;
2667
2668 if (fr_dict_attr_by_oid_substr(err, &da, parent, &sbuff, NULL) <= 0) return NULL;
2669 if (err && *err != FR_DICT_ATTR_OK) return NULL;
2670
2671 /*
2672 * If we didn't parse the entire string, then the parsing stopped at an unknown child.
2673 * e.g. Vendor-Specific.Cisco.Foo. In that case, the full attribute wasn't found.
2674 */
2675 if (fr_sbuff_remaining(&sbuff) > 0) {
2677 return NULL;
2678 }
2679
2680 return da;
2681}
2682
2683/** Return the root attribute of a dictionary
2684 *
2685 * @param dict to return root for.
2686 * @return the root attribute of the dictionary.
2687 *
2688 * @hidecallergraph
2689 */
2691{
2692 return dict->root;
2693}
2694
2696{
2697 return dict->read_only;
2698}
2699
2701{
2702 return dict->dl;
2703}
2704
2706 fr_dict_t **out, fr_sbuff_t *name, fr_dict_t const *dict_def)
2707{
2708 fr_dict_attr_t root;
2709
2710 fr_sbuff_t our_name;
2711 fr_dict_t *dict;
2712 fr_slen_t slen;
2713 char buffer[FR_DICT_ATTR_MAX_NAME_LEN + 1 + 1]; /* +1 \0 +1 for "too long" */
2714
2715 if (!dict_gctx || !name || !out) {
2716 if (err) *err = FR_DICT_ATTR_EINVAL;
2718 return 0;
2719 }
2720
2721 our_name = FR_SBUFF(name);
2722 memset(&root, 0, sizeof(root));
2723
2724 /*
2725 * Advance p until we get something that's not part of
2726 * the dictionary attribute name.
2727 */
2729 &our_name, SIZE_MAX,
2731 if (slen == 0) {
2732 fr_strerror_const("Zero length attribute name");
2734 FR_SBUFF_ERROR_RETURN(&our_name);
2735 }
2736 if (slen > FR_DICT_ATTR_MAX_NAME_LEN) {
2737 fr_strerror_const("Attribute name too long");
2739 FR_SBUFF_ERROR_RETURN(&our_name);
2740 }
2741
2742 /*
2743 * The remaining operations don't generate errors
2744 */
2745 if (err) *err = FR_DICT_ATTR_OK;
2746
2747 /*
2748 * If what we stopped at wasn't a '.', then there
2749 * can't be a protocol name in this string.
2750 */
2751 if (*(our_name.p) && (*(our_name.p) != '.')) {
2752 memcpy(out, &dict_def, sizeof(*out));
2753 return 0;
2754 }
2755
2756 root.name = buffer;
2757 dict = fr_hash_table_find(dict_gctx->protocol_by_name, &(fr_dict_t){ .root = &root });
2758
2759 if (!dict) {
2760 if (strcasecmp(root.name, "internal") != 0) {
2761 fr_strerror_printf("Unknown protocol '%s'", root.name);
2762 memcpy(out, &dict_def, sizeof(*out));
2763 fr_sbuff_set_to_start(&our_name);
2764 FR_SBUFF_ERROR_RETURN(&our_name);
2765 }
2766
2767 dict = dict_gctx->internal;
2768 }
2769
2770 *out = dict;
2771
2772 FR_SBUFF_SET_RETURN(name, &our_name);
2773}
2774
2775/** Look up a protocol name embedded in another string
2776 *
2777 * @param[out] err Parsing error.
2778 * @param[out] out the resolve dictionary or NULL if the dictionary
2779 * couldn't be resolved.
2780 * @param[in] name string start.
2781 * @param[in] dict_def The dictionary to return if no dictionary qualifier was found.
2782 * @return
2783 * - 0 and *out != NULL. Couldn't find a dictionary qualifier, so returned dict_def.
2784 * - < 0 on error and (*out == NULL) (offset as negative integer)
2785 * - > 0 on success (number of bytes parsed).
2786 */
2791
2792/** Internal version of #fr_dict_by_protocol_name
2793 *
2794 * @note For internal use by the dictionary API only.
2795 *
2796 * @copybrief fr_dict_by_protocol_name
2797 */
2799{
2800 if (!dict_gctx || !name) return NULL;
2801
2803 &(fr_dict_t){ .root = &(fr_dict_attr_t){ .name = name } });
2804}
2805
2806/** Internal version of #fr_dict_by_protocol_num
2807 *
2808 * @note For internal use by the dictionary API only.
2809 *
2810 * @copybrief fr_dict_by_protocol_num
2811 */
2813{
2814 if (!dict_gctx) return NULL;
2815
2817 &(fr_dict_t) { .root = &(fr_dict_attr_t){ .attr = num } });
2818}
2819
2820/** Internal version of #fr_dict_by_da
2821 *
2822 * @note For internal use by the dictionary API only.
2823 *
2824 * @copybrief fr_dict_by_da
2825 */
2827{
2828#ifndef NDEBUG
2829 {
2830 fr_dict_attr_t const *da_p = da;
2831 fr_dict_t const *dict;
2832
2833 dict = da->dict;
2834 while (da_p->parent) {
2835 da_p = da_p->parent;
2836 fr_cond_assert_msg(da_p->dict == dict, "Inconsistent dict membership. "
2837 "Expected %s, got %s",
2838 !da_p->dict ? "(null)" : fr_dict_root(da_p->dict)->name,
2839 !dict ? "(null)" : fr_dict_root(dict)->name);
2840 DA_VERIFY(da_p);
2841 }
2842
2843 if (!da_p->flags.is_root) {
2844 fr_strerror_printf("%s: Attribute %s has not been inserted into a dictionary",
2845 __FUNCTION__, da->name);
2846 return NULL;
2847 }
2848 }
2849#endif
2850
2851 /*
2852 * Parent of the root attribute must
2853 * be the dictionary.
2854 */
2855 return talloc_get_type_abort(da->dict, fr_dict_t);
2856}
2857
2858/** Lookup a protocol by its name
2859 *
2860 * @note For internal use by the dictionary API only.
2861 *
2862 * @param[in] name of the protocol to locate.
2863 * @return
2864 * - Attribute matching name.
2865 * - NULL if no matching protocol could be found.
2866 */
2868{
2870}
2871
2872/** Lookup a protocol by its number
2873 *
2874 * Returns the #fr_dict_t belonging to the protocol with the specified number
2875 * if any have been registered.
2876 *
2877 * @param[in] num to search for.
2878 * @return dictionary representing the protocol (if it exists).
2879 */
2880fr_dict_t const *fr_dict_by_protocol_num(unsigned int num)
2881{
2882 return dict_by_protocol_num(num);
2883}
2884
2885/** Attempt to locate the protocol dictionary containing an attribute
2886 *
2887 * @note Unlike fr_dict_by_attr_name, doesn't search through all the dictionaries,
2888 * just uses the fr_dict_attr_t hierarchy and the talloc hierarchy to locate
2889 * the dictionary (much much faster and more scalable).
2890 *
2891 * @param[in] da To get the containing dictionary for.
2892 * @return
2893 * - The dictionary containing da.
2894 * - NULL.
2895 */
2897{
2898 return dict_by_da(da);
2899}
2900
2901/** See if two dictionaries have the same end parent
2902 *
2903 * @param[in] dict1 one dictionary
2904 * @param[in] dict2 two dictionary
2905 * @return
2906 * - true the dictionaries have the same end parent
2907 * - false the dictionaries do not have the same end parent.
2908 */
2909bool fr_dict_compatible(fr_dict_t const *dict1, fr_dict_t const *dict2)
2910{
2911 while (dict1->next) dict1 = dict1->next;
2912
2913 while (dict2->next) dict2 = dict2->next;
2914
2915 return (dict1 == dict2);
2916}
2917
2918/** Look up a vendor by one of its child attributes
2919 *
2920 * @param[in] da The vendor attribute.
2921 * @return
2922 * - The vendor.
2923 * - NULL if no vendor with that number was registered for this protocol.
2924 */
2926{
2927 fr_dict_t *dict;
2929
2931 if (!dv.pen) return NULL;
2932
2933 dict = dict_by_da(da);
2934
2935 return fr_hash_table_find(dict->vendors_by_num, &dv);
2936}
2937
2938/** Look up a vendor by its name
2939 *
2940 * @param[in] dict of protocol context we're operating in.
2941 * If NULL the internal dictionary will be used.
2942 * @param[in] name to search for.
2943 * @return
2944 * - The vendor.
2945 * - NULL if no vendor with that name was registered for this protocol.
2946 */
2948{
2949 fr_dict_vendor_t *found;
2950
2951 INTERNAL_IF_NULL(dict, NULL);
2952
2953 if (!name) return 0;
2954
2955 found = fr_hash_table_find(dict->vendors_by_name, &(fr_dict_vendor_t) { .name = name });
2956 if (!found) return 0;
2957
2958 return found;
2959}
2960
2961/** Look up a vendor by its PEN
2962 *
2963 * @param[in] dict of protocol context we're operating in.
2964 * If NULL the internal dictionary will be used.
2965 * @param[in] vendor_pen to search for.
2966 * @return
2967 * - The vendor.
2968 * - NULL if no vendor with that number was registered for this protocol.
2969 */
2971{
2972 INTERNAL_IF_NULL(dict, NULL);
2973
2974 return fr_hash_table_find(dict->vendors_by_num, &(fr_dict_vendor_t) { .pen = vendor_pen });
2975}
2976
2977/** Return vendor attribute for the specified dictionary and pen
2978 *
2979 * @param[in] vendor_root of the vendor root attribute. Could be 26 (for example) in RADIUS.
2980 * @param[in] vendor_pen to find.
2981 * @return
2982 * - NULL if vendor does not exist.
2983 * - A fr_dict_attr_t representing the vendor in the dictionary hierarchy.
2984 */
2986{
2987 fr_dict_attr_t const *vendor;
2988
2989 switch (vendor_root->type) {
2990 case FR_TYPE_VSA: /* Vendor specific attribute */
2991 break;
2992
2993 default:
2994 fr_strerror_printf("Wrong type for vendor root, expected '%s', got '%s'",
2996 fr_type_to_str(vendor_root->type));
2997 return NULL;
2998 }
2999
3000 vendor = dict_attr_child_by_num(vendor_root, vendor_pen);
3001 if (!vendor) {
3002 fr_strerror_printf("Vendor %u not defined", vendor_pen);
3003 return NULL;
3004 }
3005
3006 if (vendor->type != FR_TYPE_VENDOR) {
3007 fr_strerror_printf("Wrong type for vendor, expected '%s' got '%s'",
3008 fr_type_to_str(vendor->type),
3010 return NULL;
3011 }
3012
3013 return vendor;
3014}
3015
3016/** Callback function for resolving dictionary attributes
3017 *
3018 * @param[out] err Where to write error codes. Any error
3019 * other than FR_DICT_ATTR_NOTFOUND will
3020 * prevent resolution from continuing.
3021 * @param[out] out Where to write resolved DA.
3022 * @param[in] parent The dictionary root or other attribute to search from.
3023 * @param[in] in Contains the string to resolve.
3024 * @param[in] tt Terminal sequences to use to determine the portion
3025 * of in to search.
3026 * @return
3027 * - < 0 on failure.
3028 * - The number of bytes of name consumed on success.
3029 */
3031 fr_dict_attr_t const **out, fr_dict_attr_t const *parent,
3032 fr_sbuff_t *in, fr_sbuff_term_t const *tt);
3033
3034/** Internal function for searching for attributes in multiple dictionaries
3035 *
3036 * @param[out] err Any errors that occurred searching.
3037 * @param[out] out The attribute we found.
3038 * @param[in] dict_def The default dictionary to search in.
3039 * @param[in] in string to resolve to an attribute.
3040 * @param[in] tt terminals that indicate the end of the string.
3041 * @param[in] internal Resolve the attribute in the internal dictionary.
3042 * @param[in] foreign Resolve attribute in a foreign dictionary,
3043 * i.e. one other than dict_def.
3044 * @param[in] func to use for resolution.
3045 * @return
3046 * - <=0 on error (the offset of the error).
3047 * - >0 on success.
3048 */
3049static inline CC_HINT(always_inline)
3051 fr_dict_t const *dict_def,
3052 fr_sbuff_t *in, fr_sbuff_term_t const *tt,
3053 bool internal, bool foreign,
3055{
3057 fr_hash_iter_t iter;
3058 fr_dict_t *dict = NULL;
3059 fr_sbuff_t our_in = FR_SBUFF(in);
3060
3061 if (internal && !dict_gctx->internal) internal = false;
3062
3063 /*
3064 * Always going to fail...
3065 */
3066 if (unlikely(!internal && !foreign && !dict_def)) {
3067 if (err) *err = FR_DICT_ATTR_EINVAL;
3068 *out = NULL;
3069 return 0;
3070 }
3071
3072 /*
3073 * dict_def search in the specified dictionary
3074 */
3075 if (dict_def) {
3076 (void)func(&our_err, out, fr_dict_root(dict_def), &our_in, tt);
3077 switch (our_err) {
3078 case FR_DICT_ATTR_OK:
3079 FR_SBUFF_SET_RETURN(in, &our_in);
3080
3082 if (!internal && !foreign) goto error;
3083 break;
3084
3085 default:
3086 goto error;
3087 }
3088 }
3089
3090 /*
3091 * Next in the internal dictionary
3092 */
3093 if (internal) {
3094 (void)func(&our_err, out, fr_dict_root(dict_gctx->internal), &our_in, tt);
3095 switch (our_err) {
3096 case FR_DICT_ATTR_OK:
3097 FR_SBUFF_SET_RETURN(in, &our_in);
3098
3100 if (!foreign) goto error;
3101 break;
3102
3103 default:
3104 goto error;
3105 }
3106 }
3107
3108 /*
3109 * Now loop over the protocol dictionaries
3110 */
3112 dict;
3114 if (dict == dict_def) continue;
3115 if (dict == dict_gctx->internal) continue;
3116
3117 (void)func(&our_err, out, fr_dict_root(dict), &our_in, tt);
3118 switch (our_err) {
3119 case FR_DICT_ATTR_OK:
3120 FR_SBUFF_SET_RETURN(in, &our_in);
3121
3123 continue;
3124
3125 default:
3126 break;
3127 }
3128 }
3129
3130error:
3131 /*
3132 * Add a more helpful error message about
3133 * which dictionaries we tried to locate
3134 * the attribute in.
3135 */
3136 if (our_err == FR_DICT_ATTR_NOTFOUND) {
3137 fr_sbuff_marker_t start;
3138 char *list = NULL;
3139
3140#define DICT_NAME_APPEND(_in, _dict) \
3141do { \
3142 char *_n; \
3143 _n = talloc_strdup_append_buffer(_in, fr_dict_root(_dict)->name); \
3144 if (unlikely(!_n)) { \
3145 talloc_free(_in); \
3146 goto done; \
3147 } \
3148 _in = _n; \
3149 _n = talloc_strdup_append_buffer(_in, ", "); \
3150 if (unlikely(!_n)) { \
3151 talloc_free(_in); \
3152 goto done; \
3153 } \
3154 _in = _n; \
3155} while (0)
3156
3157 our_in = FR_SBUFF(in);
3158 fr_sbuff_marker(&start, &our_in);
3159
3160 list = talloc_strdup(NULL, "");
3161 if (unlikely(!list)) goto done;
3162
3163 if (dict_def) DICT_NAME_APPEND(list, dict_def);
3164 if (internal) DICT_NAME_APPEND(list, dict_gctx->internal);
3165
3166 if (foreign) {
3168 dict;
3170 if (dict == dict_def) continue;
3171 if (dict == dict_gctx->internal) continue;
3172
3173 if (internal) DICT_NAME_APPEND(list, dict);
3174 }
3175 }
3176
3177 fr_strerror_printf("Attribute '%pV' not found. Searched in: %pV",
3179 fr_sbuff_adv_until(&our_in, SIZE_MAX, tt, '\0')),
3180 fr_box_strvalue_len(list, talloc_array_length(list) - 3));
3181
3182 talloc_free(list);
3183 }
3184
3185done:
3186 if (err) *err = our_err;
3187 *out = NULL;
3188
3189 FR_SBUFF_ERROR_RETURN(&our_in);
3190}
3191
3192/** Internal function for searching for attributes in multiple dictionaries
3193 *
3194 * Unlike #dict_attr_search this function searches for a protocol name preceding
3195 * the attribute identifier.
3196 */
3197static inline CC_HINT(always_inline)
3199 fr_dict_t const *dict_def,
3200 fr_sbuff_t *in, fr_sbuff_term_t const *tt,
3201 bool internal, bool foreign,
3203{
3204 fr_sbuff_t our_in = FR_SBUFF(in);
3205 fr_dict_attr_err_t our_err;
3206 fr_dict_t *initial;
3207 fr_slen_t slen;
3208
3209 /*
3210 * Check for dictionary prefix
3211 */
3212 slen = dict_by_protocol_substr(&our_err, &initial, &our_in, dict_def);
3213 if (our_err != FR_DICT_ATTR_OK) {
3214 error:
3215 if (err) *err = our_err;
3216 *out = NULL;
3217 FR_SBUFF_ERROR_RETURN(&our_in);
3218 }
3219
3220 /*
3221 * Has dictionary qualifier, can't fallback
3222 */
3223 if (slen > 0) {
3224 /*
3225 * Next thing SHOULD be a '.'
3226 */
3227 if (!fr_sbuff_next_if_char(&our_in, '.')) {
3229 *out = NULL;
3230 FR_SBUFF_ERROR_RETURN(&our_in);
3231 }
3232
3233 internal = foreign = false;
3234 }
3235
3236 if (dict_attr_search(&our_err, out, initial, &our_in, tt, internal, foreign, func) < 0) goto error;
3237 if (err) *err = FR_DICT_ATTR_OK;
3238
3239 FR_SBUFF_SET_RETURN(in, &our_in);
3240}
3241
3242/** Locate a qualified #fr_dict_attr_t by its name and a dictionary qualifier
3243 *
3244 * This function will search through all loaded dictionaries, or a subset of
3245 * loaded dictionaries, for a matching attribute in the top level namespace.
3246 *
3247 * This attribute may be qualified with `<protocol>.` to selection an attribute
3248 * in a specific case.
3249 *
3250 * @note If calling this function from the server any list or request qualifiers
3251 * should be stripped first.
3252 *
3253 * @param[out] err Why parsing failed. May be NULL.
3254 * @see fr_dict_attr_err_t
3255 * @param[out] out Dictionary found attribute.
3256 * @param[in] dict_def Default dictionary for non-qualified dictionaries.
3257 * @param[in] name Dictionary/Attribute name.
3258 * @param[in] tt Terminal strings.
3259 * @param[in] internal If true, fallback to the internal dictionary.
3260 * @param[in] foreign If true, fallback to foreign dictionaries.
3261 * @return
3262 * - < 0 on failure.
3263 * - The number of bytes of name consumed on success.
3264 */
3266 fr_dict_t const *dict_def,
3267 fr_sbuff_t *name, fr_sbuff_term_t const *tt,
3268 bool internal, bool foreign)
3269{
3270 return dict_attr_search_qualified(err, out, dict_def, name, tt,
3271 internal, foreign, fr_dict_attr_by_name_substr);
3272}
3273
3274/** Locate a #fr_dict_attr_t by its name in the top level namespace of a dictionary
3275 *
3276 * This function will search through all loaded dictionaries, or a subset of
3277 * loaded dictionaries, for a matching attribute in the top level namespace.
3278 *
3279 * @note If calling this function from the server any list or request qualifiers
3280 * should be stripped first.
3281 *
3282 * @param[out] err Why parsing failed. May be NULL.
3283 * @see fr_dict_attr_err_t
3284 * @param[out] out Dictionary found attribute.
3285 * @param[in] dict_def Default dictionary for non-qualified dictionaries.
3286 * @param[in] name Dictionary/Attribute name.
3287 * @param[in] tt Terminal strings.
3288 * @param[in] internal If true, fallback to the internal dictionary.
3289 * @param[in] foreign If true, fallback to foreign dictionaries.
3290 * @return
3291 * - < 0 on failure.
3292 * - The number of bytes of name consumed on success.
3293 */
3295 fr_dict_t const *dict_def,
3296 fr_sbuff_t *name, fr_sbuff_term_t const *tt,
3297 bool internal, bool foreign)
3298{
3299 return dict_attr_search_qualified(err, out, dict_def, name, tt,
3300 internal, foreign, fr_dict_attr_by_name_substr);
3301}
3302
3303/** Locate a qualified #fr_dict_attr_t by a dictionary qualified OID string
3304 *
3305 * This function will search through all loaded dictionaries, or a subset of
3306 * loaded dictionaries, for a matching attribute.
3307 *
3308 * @note If calling this function from the server any list or request qualifiers
3309 * should be stripped first.
3310 *
3311 * @note err should be checked to determine if a parse error occurred.
3312 *
3313 * @param[out] err Why parsing failed. May be NULL.
3314 * @see fr_dict_attr_err_t
3315 * @param[out] out Dictionary found attribute.
3316 * @param[in] dict_def Default dictionary for non-qualified dictionaries.
3317 * @param[in] in Dictionary/Attribute name.
3318 * @param[in] tt Terminal strings.
3319 * @param[in] internal If true, fallback to the internal dictionary.
3320 * @param[in] foreign If true, fallback to foreign dictionaries.
3321 * @return The number of bytes of name consumed.
3322 */
3324 fr_dict_t const *dict_def,
3325 fr_sbuff_t *in, fr_sbuff_term_t const *tt,
3326 bool internal, bool foreign)
3327{
3328 return dict_attr_search_qualified(err, out, dict_def, in, tt,
3329 internal, foreign, fr_dict_attr_by_oid_substr);
3330}
3331
3332/** Locate a qualified #fr_dict_attr_t by a dictionary using a non-qualified OID string
3333 *
3334 * This function will search through all loaded dictionaries, or a subset of
3335 * loaded dictionaries, for a matching attribute.
3336 *
3337 * @note If calling this function from the server any list or request qualifiers
3338 * should be stripped first.
3339 *
3340 * @note err should be checked to determine if a parse error occurred.
3341 *
3342 * @param[out] err Why parsing failed. May be NULL.
3343 * @see fr_dict_attr_err_t
3344 * @param[out] out Dictionary found attribute.
3345 * @param[in] dict_def Default dictionary for non-qualified dictionaries.
3346 * @param[in] in Dictionary/Attribute name.
3347 * @param[in] tt Terminal strings.
3348 * @param[in] internal If true, fallback to the internal dictionary.
3349 * @param[in] foreign If true, fallback to foreign dictionaries.
3350 * @return The number of bytes of name consumed.
3351 */
3353 fr_dict_t const *dict_def,
3354 fr_sbuff_t *in, fr_sbuff_term_t const *tt,
3355 bool internal, bool foreign)
3356{
3357 return dict_attr_search_qualified(err, out, dict_def, in, tt,
3358 internal, foreign, fr_dict_attr_by_oid_substr);
3359}
3360
3361/** Locate a qualified #fr_dict_attr_t by its name and a dictionary qualifier
3362 *
3363 * @param[out] err Why parsing failed. May be NULL.
3364 * @see fr_dict_attr_err_t.
3365 * @param[in] dict_def Default dictionary for non-qualified dictionaries.
3366 * @param[in] name Dictionary/Attribute name.
3367 * @param[in] internal If true, fallback to the internal dictionary.
3368 * @param[in] foreign If true, fallback to foreign dictionaries.
3369 * @return an #fr_dict_attr_err_t value.
3370 */
3372 char const *name,
3373 bool internal, bool foreign)
3374{
3375 ssize_t slen;
3376 fr_sbuff_t our_name;
3377 fr_dict_attr_t const *da;
3378 fr_dict_attr_err_t our_err;
3379
3380 fr_sbuff_init_in(&our_name, name, strlen(name));
3381
3382 slen = fr_dict_attr_search_by_qualified_oid_substr(&our_err, &da, dict_def, &our_name, NULL, internal, foreign);
3383 if (our_err != FR_DICT_ATTR_OK) {
3384 if (err) *err = our_err;
3385 return NULL;
3386 }
3387 if ((size_t)slen != fr_sbuff_len(&our_name)) {
3388 fr_strerror_printf("Trailing garbage after attr string \"%s\"", name);
3390 return NULL;
3391 }
3392
3393 return da;
3394}
3395
3396/** Look up a dictionary attribute by a name embedded in another string
3397 *
3398 * Find the first invalid attribute name char in the string pointed
3399 * to by name.
3400 *
3401 * Copy the characters between the start of the name string and the first
3402 * none #fr_dict_attr_allowed_chars char to a buffer and perform a dictionary lookup
3403 * using that value.
3404 *
3405 * If the attribute exists, advance the pointer pointed to by name
3406 * to the first none #fr_dict_attr_allowed_chars char, and return the DA.
3407 *
3408 * If the attribute does not exist, don't advance the pointer and return
3409 * NULL.
3410 *
3411 * @param[out] err Why parsing failed. May be NULL.
3412 * @see fr_dict_attr_err_t
3413 * @param[out] out Where to store the resolve attribute.
3414 * @param[in] parent containing the namespace to search in.
3415 * @param[in] name string start.
3416 * @param[in] tt Terminal sequences to use to determine the portion
3417 * of in to search.
3418 * @return
3419 * - <= 0 on failure.
3420 * - The number of bytes of name consumed on success.
3421 */
3424{
3425 fr_dict_attr_t const *da;
3426 size_t len;
3427 fr_dict_attr_t const *ref;
3428 char const *p;
3429 char buffer[FR_DICT_ATTR_MAX_NAME_LEN + 1 + 1]; /* +1 \0 +1 for "too long" */
3430 fr_sbuff_t our_name = FR_SBUFF(name);
3431 fr_hash_table_t *namespace;
3432
3433 *out = NULL;
3434
3435#ifdef STATIC_ANALYZER
3436 memset(buffer, 0, sizeof(buffer));
3437#endif
3438
3440 &our_name, SIZE_MAX,
3442 if (len == 0) {
3443 fr_strerror_const("Zero length attribute name");
3445 FR_SBUFF_ERROR_RETURN(&our_name);
3446 }
3447 if (len > FR_DICT_ATTR_MAX_NAME_LEN) {
3448 fr_strerror_const("Attribute name too long");
3450 FR_SBUFF_ERROR_RETURN(&our_name);
3451 }
3452
3453 /*
3454 * Do a second pass, ensuring that the name has at least one alphanumeric character.
3455 */
3456 for (p = buffer; p < (buffer + len); p++) {
3457 if (sbuff_char_alpha_num[(uint8_t) *p]) break;
3458 }
3459
3460 if ((size_t) (p - buffer) == len) {
3461 fr_strerror_const("Invalid attribute name");
3463 FR_SBUFF_ERROR_RETURN(&our_name);
3464 }
3465
3466 ref = fr_dict_attr_ref(parent);
3467 if (ref) parent = ref;
3468
3469redo:
3470 namespace = dict_attr_namespace(parent);
3471 if (!namespace) {
3472 fr_strerror_printf("Attribute '%s' does not contain a namespace", parent->name);
3474 fr_sbuff_set_to_start(&our_name);
3475 FR_SBUFF_ERROR_RETURN(&our_name);
3476 }
3477
3478 da = fr_hash_table_find(namespace, &(fr_dict_attr_t){ .name = buffer });
3479 if (!da) {
3480 if (parent->flags.is_root) {
3481 fr_dict_t const *dict = fr_dict_by_da(parent);
3482
3483 if (dict->next) {
3484 parent = dict->next->root;
3485 goto redo;
3486 }
3487 }
3488
3490 fr_strerror_printf("Attribute '%s' not found in namespace '%s'", buffer, parent->name);
3491 fr_sbuff_set_to_start(&our_name);
3492 FR_SBUFF_ERROR_RETURN(&our_name);
3493 }
3494
3495 da = dict_attr_alias(err, da);
3496 if (unlikely(!da)) FR_SBUFF_ERROR_RETURN(&our_name);
3497
3498 *out = da;
3499 if (err) *err = FR_DICT_ATTR_OK;
3500
3501 FR_SBUFF_SET_RETURN(name, &our_name);
3502}
3503
3504/* Internal version of fr_dict_attr_by_name
3505 *
3506 */
3508{
3509 fr_hash_table_t *namespace;
3510 fr_dict_attr_t *da;
3511
3513
3514redo:
3515 namespace = dict_attr_namespace(parent);
3516 if (!namespace) {
3517 fr_strerror_printf("Attribute '%s' does not contain a namespace", parent->name);
3519 return NULL;
3520 }
3521
3522 da = fr_hash_table_find(namespace, &(fr_dict_attr_t) { .name = name });
3523 if (!da) {
3524 if (parent->flags.is_root) {
3525 fr_dict_t const *dict = fr_dict_by_da(parent);
3526
3527 if (dict->next) {
3528 parent = dict->next->root;
3529 goto redo;
3530 }
3531 }
3532
3534 fr_strerror_printf("Attribute '%s' not found in namespace '%s'", name, parent->name);
3535 return NULL;
3536 }
3537
3538 if (err) *err = FR_DICT_ATTR_OK;
3539
3540 return da;
3541}
3542
3543/** Locate a #fr_dict_attr_t by its name
3544 *
3545 * @param[out] err Why the lookup failed. May be NULL.
3546 * @see fr_dict_attr_err_t.
3547 * @param[in] parent containing the namespace we're searching in.
3548 * @param[in] name of the attribute to locate.
3549 * @return
3550 * - Attribute matching name.
3551 * - NULL if no matching attribute could be found.
3552 */
3554{
3555 fr_dict_attr_t const *da;
3556
3558
3560 if (!da) return NULL;
3561
3562 da = dict_attr_alias(err, da);
3563 if (unlikely(!da)) return NULL;
3564
3565 return da;
3566}
3567
3568/** Internal version of fr_dict_attr_child_by_num
3569 *
3570 */
3572{
3573 fr_dict_attr_t const *bin;
3574 fr_dict_attr_t const **children;
3575 fr_dict_attr_t const *ref;
3576
3578
3579 /*
3580 * Do any necessary dereferencing
3581 */
3582 ref = fr_dict_attr_ref(parent);
3583 if (ref) parent = ref;
3584
3585 children = dict_attr_children(parent);
3586 if (!children) return NULL;
3587
3588 /*
3589 * Child arrays may be trimmed back to save memory.
3590 * Check that so we don't SEGV.
3591 */
3592 if ((attr & 0xff) > talloc_array_length(children)) return NULL;
3593
3594 bin = children[attr & 0xff];
3595 for (;;) {
3596 if (!bin) return NULL;
3597 if (bin->attr == attr) {
3599
3600 memcpy(&out, &bin, sizeof(bin));
3601
3602 return out;
3603 }
3604 bin = bin->next;
3605 }
3606
3607 return NULL;
3608}
3609
3610/** Check if a child attribute exists in a parent using an attribute number
3611 *
3612 * @param[in] parent to check for child in.
3613 * @param[in] attr number to look for.
3614 * @return
3615 * - The child attribute on success.
3616 * - NULL if the child attribute does not exist.
3617 */
3619{
3620 fr_dict_attr_t const *da;
3621
3622 da = dict_attr_child_by_num(parent, attr);
3623 if (!da) return NULL;
3624
3625 da = dict_attr_alias(NULL, da);
3626 if (unlikely(!da)) return NULL;
3627
3628 return da;
3629}
3630
3631/** Iterate over all enumeration values for an attribute
3632 *
3633 * @param[in] da to iterate over.
3634 * @param[in] iter to use for iteration.
3635 * @return
3636 * - First #fr_dict_enum_value_t in the attribute.
3637 * - NULL if no enumeration values exist.
3638 */
3640{
3642
3644 if (!ext) {
3645 fr_strerror_printf("%s has no enumeration values to iterate over", da->name);
3646 return NULL;
3647 }
3648
3649 return fr_hash_table_iter_init(ext->value_by_name, iter);
3650}
3651
3652/* Iterate over next enumeration value for an attribute
3653 *
3654 * @param[in] da to iterate over.
3655 * @param[in] iter to use for iteration.
3656 * @return
3657 * - Next #fr_dict_enum_value_t in the attribute.
3658 * - NULL if no more enumeration values exist.
3659 */
3661{
3664 if (!ext) {
3665 fr_strerror_printf("%s has no enumeration values to iterate over", da->name);
3666 return NULL;
3667 }
3668
3669 return fr_hash_table_iter_next(ext->value_by_name, iter);;
3670}
3671
3672/** Lookup the structure representing an enum value in a #fr_dict_attr_t
3673 *
3674 * @param[in] da to search in.
3675 * @param[in] value to search for.
3676 * @return
3677 * - Matching #fr_dict_enum_value_t.
3678 * - NULL if no matching #fr_dict_enum_value_t could be found.
3679 */
3681{
3683
3685 if (!ext) {
3686 fr_strerror_printf("VALUE cannot be defined for %s attributes",
3687 fr_type_to_str(da->type));
3688 return NULL;
3689 }
3690
3691 /*
3692 * No values associated with this attribute
3693 */
3694 if (!ext->name_by_value) return NULL;
3695
3696 /*
3697 * Could be NULL or an unknown attribute, in which case
3698 * we want to avoid the lookup gracefully...
3699 */
3700 if (value->type != da->type) return NULL;
3701
3702 return fr_hash_table_find(ext->name_by_value, &(fr_dict_enum_value_t){ .value = value });
3703}
3704
3705/** Lookup the name of an enum value in a #fr_dict_attr_t
3706 *
3707 * @param[in] da to search in.
3708 * @param[in] value number to search for.
3709 * @return
3710 * - Name of value.
3711 * - NULL if no matching value could be found.
3712 */
3714{
3715 fr_dict_enum_value_t const *dv;
3716
3717 dv = fr_dict_enum_by_value(da, value);
3718 if (!dv) return NULL;
3719
3720 return dv->name;
3721}
3722
3723/*
3724 * Get a value by its name, keyed off of an attribute.
3725 */
3727{
3729
3730 if (!name) return NULL;
3731
3733 if (!ext) {
3734 fr_strerror_printf("VALUE cannot be defined for %s attributes",
3735 fr_type_to_str(da->type));
3736 return NULL;
3737 }
3738
3739 /*
3740 * No values associated with this attribute
3741 */
3742 if (!ext->value_by_name) return NULL;
3743
3744 if (len < 0) len = strlen(name);
3745
3746 return fr_hash_table_find(ext->value_by_name, &(fr_dict_enum_value_t){ .name = name, .name_len = len});
3747}
3748
3749/*
3750 * Get a value by its name, keyed off of an attribute, from an sbuff
3751 */
3753{
3755 fr_sbuff_t our_in = FR_SBUFF(in);
3756 fr_dict_enum_value_t *found = NULL;
3757 size_t found_len = 0;
3758 uint8_t *p;
3760
3761 /*
3762 * No values associated with this attribute, do nothing.
3763 */
3765 if (!ext || !ext->value_by_name) return 0;
3766
3767 /*
3768 * Loop until we exhaust all of the possibilities.
3769 */
3770 for (p = name; (size_t) (p - name) < ext->max_name_len; p++) {
3771 int len = (p - name) + 1;
3772 fr_dict_enum_value_t *enumv;
3773
3774 *p = fr_sbuff_char(&our_in, '\0');
3775 if (!fr_dict_enum_allowed_chars[*p]) {
3776 break;
3777 }
3778 fr_sbuff_next(&our_in);
3779
3780 enumv = fr_hash_table_find(ext->value_by_name, &(fr_dict_enum_value_t){ .name = (char const *) name,
3781 .name_len = len});
3782
3783 /*
3784 * Return the LONGEST match, as there may be
3785 * overlaps. e.g. "Framed", and "Framed-User".
3786 */
3787 if (enumv) {
3788 found = enumv;
3789 found_len = len;
3790 }
3791 }
3792
3793 if (found) {
3794 *out = found;
3795 FR_SBUFF_SET_RETURN(in, found_len);
3796 }
3797
3798 return 0;
3799}
3800
3801/** Extract an enumeration name from a string
3802 *
3803 * This function defines the canonical format for an enumeration name.
3804 *
3805 * An enumeration name is made up of one or more fr_dict_attr_allowed_chars
3806 * with at least one character in the sequence not being a special character
3807 * i.e. [-+/_] or a number.
3808 *
3809 * This disambiguates enumeration identifiers from mathematical expressions.
3810 *
3811 * If we allowed enumeration names consisting of sequences of numbers separated
3812 * by special characters it would not be possible to determine if the special
3813 * character were an operator in a subexpression.
3814 *
3815 * For example take:
3816 *
3817 * &My-Enum-Attr == 01234-5678
3818 *
3819 * Without having access to the enumeration values of My-Enum-Attr (which we
3820 * might not have during tokenisation), we cannot tell if this is:
3821 *
3822 * (&My-Enum-Attr == 01234-5678)
3823 *
3824 * OR
3825 *
3826 * ((&My-Enum-Attr == 01234) - 5678)
3827 *
3828 * If an alpha character occurs anywhere in the string i.e:
3829 *
3830 * (&My-Enum-Attr == 01234-A5678)
3831 *
3832 * we know 01234-A5678 can't be a mathematical sub-expression because the
3833 * second potential operand can no longer be parsed as an integer constant.
3834 *
3835 * @param[out] out The name string we managed to extract.
3836 * May be NULL in which case only the length of the name
3837 * will be returned.
3838 * @param[out] err Type of parsing error which occurred. May be NULL.
3839 * @param[in] in The string containing the enum identifier.
3840 * @param[in] tt If non-null verify that a terminal sequence occurs
3841 * after the enumeration name.
3842 * @return
3843 * - <0 the offset at which the parse error occurred.
3844 * - >1 the number of bytes parsed.
3845 */
3847 fr_sbuff_t *in, fr_sbuff_term_t const *tt)
3848{
3849 fr_sbuff_t our_in = FR_SBUFF(in);
3850 bool seen_alpha = false;
3851
3852 while (fr_sbuff_is_in_charset(&our_in, fr_dict_enum_allowed_chars)) {
3853 if (fr_sbuff_is_alpha(&our_in)) seen_alpha = true;
3854 fr_sbuff_next(&our_in);
3855 }
3856
3857 if (!seen_alpha) {
3858 if (fr_sbuff_used(&our_in) == 0) {
3859 fr_strerror_const("VALUE name is empty");
3861 FR_SBUFF_ERROR_RETURN(&our_in);
3862 }
3863
3864 fr_strerror_const("VALUE name must contain at least one alpha character");
3866 fr_sbuff_set_to_start(&our_in); /* Marker should be at the start of the enum */
3867 FR_SBUFF_ERROR_RETURN(&our_in);
3868 }
3869
3870 /*
3871 * Check that the sequence is correctly terminated
3872 */
3873 if (tt && !fr_sbuff_is_terminal(&our_in, tt)) {
3874 fr_strerror_const("VALUE name has trailing text");
3876 FR_SBUFF_ERROR_RETURN(&our_in);
3877 }
3878
3879 if (out) return fr_sbuff_out_bstrncpy_exact(out, in, fr_sbuff_used(&our_in));
3880
3881 if (err) *err = FR_SBUFF_PARSE_OK;
3882
3883 FR_SBUFF_SET_RETURN(in, &our_in);
3884}
3885
3886int dict_dlopen(fr_dict_t *dict, char const *name)
3887{
3888 char *lib_name;
3889 char *sym_name;
3890 fr_dict_protocol_t *proto;
3891
3892 if (!name) return 0;
3893
3894 lib_name = talloc_typed_asprintf(NULL, "libfreeradius-%s", name);
3895 if (unlikely(lib_name == NULL)) {
3896 oom:
3897 fr_strerror_const("Out of memory");
3898 return -1;
3899 }
3900 talloc_bstr_tolower(lib_name);
3901
3902 dict->dl = dl_by_name(dict_gctx->dict_loader, lib_name, NULL, false);
3903 if (!dict->dl) {
3904 fr_strerror_printf_push("Failed loading dictionary validation library \"%s\"", lib_name);
3905 talloc_free(lib_name);
3906 return -1;
3907 }
3908 talloc_free(lib_name);
3909
3910 /*
3911 * The public symbol that contains per-protocol rules
3912 * and extensions.
3913 *
3914 * It ends up being easier to do this using dlsym to
3915 * resolve the symbol and not use the autoloader
3916 * callbacks as theoretically multiple dictionaries
3917 * could use the same protocol library, and then the
3918 * autoloader callback would only run for the first
3919 * dictionary which loaded the protocol.
3920 */
3921 sym_name = talloc_typed_asprintf(NULL, "libfreeradius_%s_dict_protocol", name);
3922 if (unlikely(sym_name == NULL)) {
3923 talloc_free(lib_name);
3924 goto oom;
3925 }
3926 talloc_bstr_tolower(sym_name);
3927
3928 /*
3929 * De-hyphenate the symbol name
3930 */
3931 {
3932 char *p, *q;
3933
3934 for (p = sym_name, q = p + (talloc_array_length(sym_name) - 1); p < q; p++) *p = *p == '-' ? '_' : *p;
3935 }
3936
3937 proto = dlsym(dict->dl->handle, sym_name);
3938 talloc_free(sym_name);
3939
3940 /*
3941 * Soft failure, not all protocol libraires provide
3942 * custom validation functions or flats.
3943 */
3944 if (!proto) return 0;
3945
3946 /*
3947 * Replace the default protocol with the custom one
3948 * if we have it...
3949 */
3950 dict->proto = proto;
3951
3952 return 0;
3953}
3954
3955/** Find a dependent in the tree of dependents
3956 *
3957 */
3958static int8_t _dict_dependent_cmp(void const *a, void const *b)
3959{
3960 fr_dict_dependent_t const *dep_a = a;
3961 fr_dict_dependent_t const *dep_b = b;
3962 int ret;
3963
3964 ret = strcmp(dep_a->dependent, dep_b->dependent);
3965 return CMP(ret, 0);
3966}
3967
3968/** Record a new dependency on a dictionary
3969 *
3970 * These are used to determine what is currently depending on a dictionary.
3971 *
3972 * @param[in] dict to record dependency on.
3973 * @param[in] dependent Either C src file, or another dictionary.
3974 * @return
3975 * - 0 on success.
3976 * - -1 on failure.
3977 */
3978int dict_dependent_add(fr_dict_t *dict, char const *dependent)
3979{
3980 fr_dict_dependent_t *found;
3981
3982 found = fr_rb_find(dict->dependents, &(fr_dict_dependent_t){ .dependent = dependent } );
3983 if (!found) {
3985
3986 new = talloc_zero(dict->dependents, fr_dict_dependent_t);
3987 if (unlikely(!new)) return -1;
3988
3989 /*
3990 * If the dependent is in a module that gets
3991 * unloaded, any strings in the text area also
3992 * get unloaded (including dependent locations).
3993 *
3994 * Strdup the string here so we don't get
3995 * random segfaults if a module forgets to unload
3996 * a dictionary.
3997 */
3998 new->dependent = talloc_typed_strdup(new, dependent);
3999 fr_rb_insert(dict->dependents, new);
4000
4001 new->count = 1;
4002
4003 return 0;
4004 }
4005
4006 found->count++; /* Increase ref count */
4007
4008 return 0;
4009}
4010
4011/** Manually increase the reference count for a dictionary
4012 *
4013 * This is useful if a previously loaded dictionary needs to
4014 * be bound to the lifetime of an additional object.
4015 *
4016 * @param[in] dict to increase the reference count for.
4017 * @param[in] dependent requesting the loading of the dictionary.
4018 * @return
4019 * - 0 on success.
4020 * - -1 on error.
4021 */
4022int fr_dict_dependent_add(fr_dict_t const *dict, char const *dependent)
4023{
4024 fr_dict_t *m_dict = fr_dict_unconst(dict);
4025
4026 if (unlikely(!m_dict)) return -1;
4027
4028 return dict_dependent_add(m_dict, dependent);
4029}
4030
4031/** Decrement ref count for a dependent in a dictionary
4032 *
4033 * @param[in] dict to remove dependency from.
4034 * @param[in] dependent Either C src, or another dictionary dependent.
4035 * What depends on this dictionary.
4036 */
4037int dict_dependent_remove(fr_dict_t *dict, char const *dependent)
4038{
4039 fr_dict_dependent_t *found;
4040
4041 found = fr_rb_find(dict->dependents, &(fr_dict_dependent_t){ .dependent = dependent } );
4042 if (!found) {
4043 fr_strerror_printf("Dependent \"%s\" not found in dictionary \"%s\"", dependent, dict->root->name);
4044 return -1;
4045 }
4046
4047 if (found->count == 0) {
4048 fr_strerror_printf("Zero ref count invalid for dependent \"%s\", dictionary \"%s\"",
4049 dependent, dict->root->name);
4050 return -1;
4051 }
4052
4053 if (--found->count == 0) {
4054 fr_rb_delete(dict->dependents, found);
4055 talloc_free(found);
4056 return 0;
4057 }
4058
4059 return 1;
4060}
4061
4062/** Check if a dictionary still has dependents
4063 *
4064 * @param[in] dict to check
4065 * @return
4066 * - true if there's still at least one dependent.
4067 * - false if there are no dependents.
4068 */
4070{
4071 return (fr_rb_num_elements(dict->dependents) > 0);
4072}
4073
4074#ifndef NDEBUG
4075static void dependent_debug(fr_dict_t *dict)
4076{
4079
4080 if (!dict_has_dependents(dict)) return;
4081
4082 fprintf(stderr, "DEPENDENTS FOR %s\n", dict->root->name);
4083
4084 for (dep = fr_rb_iter_init_inorder(&iter, dict->dependents);
4085 dep;
4086 dep = fr_rb_iter_next_inorder(&iter)) {
4087 fprintf(stderr, "\t<- %s (%d)\n", dep->dependent, dep->count);
4088 }
4089}
4090#endif
4091
4092
4094{
4095 fr_dict_t **refd_list;
4096 unsigned int i;
4097
4098 if (!dict->autoref) return 0;
4099
4100 if (fr_hash_table_flatten(dict->autoref, (void ***)&refd_list, dict->autoref) < 0) {
4101 fr_strerror_const("failed flattening autoref hash table");
4102 return -1;
4103 }
4104
4105 /*
4106 * Free the dictionary. It will call proto->free() if there's nothing more to do.
4107 */
4108 for (i = 0; i < talloc_array_length(refd_list); i++) {
4109 if (fr_dict_free(&refd_list[i], dict->root->name) < 0) {
4110 fr_strerror_printf("failed freeing autoloaded protocol %s", refd_list[i]->root->name);
4111 return -1;
4112 }
4113 }
4114
4115 TALLOC_FREE(dict->autoref);
4116
4117 return 0;
4118}
4119
4120static int _dict_free(fr_dict_t *dict)
4121{
4122 /*
4123 * We don't necessarily control the order of freeing
4124 * children.
4125 */
4126 if (dict != dict->gctx->internal) {
4127 fr_dict_attr_t const *da;
4128
4129 if (dict->gctx->attr_protocol_encapsulation && dict->root) {
4130 da = fr_dict_attr_child_by_num(dict->gctx->attr_protocol_encapsulation, dict->root->attr);
4131 if (da && fr_dict_attr_ref(da)) dict_attr_ref_null(da);
4132 }
4133 }
4134
4135#ifdef STATIC_ANALYZER
4136 if (!dict->root) {
4137 fr_strerror_const("dict root is missing");
4138 return -1;
4139 }
4140#endif
4141
4142 /*
4143 * If we called init(), then call free()
4144 */
4145 if (dict->proto && dict->proto->free) {
4146 dict->proto->free();
4147 }
4148
4149 if (!fr_cond_assert(!dict->in_protocol_by_name || fr_hash_table_delete(dict->gctx->protocol_by_name, dict))) {
4150 fr_strerror_printf("Failed removing dictionary from protocol hash \"%s\"", dict->root->name);
4151 return -1;
4152 }
4153 dict->in_protocol_by_name = false;
4154
4155 if (!fr_cond_assert(!dict->in_protocol_by_num || fr_hash_table_delete(dict->gctx->protocol_by_num, dict))) {
4156 fr_strerror_printf("Failed removing dictionary from protocol number_hash \"%s\"", dict->root->name);
4157 return -1;
4158 }
4159 dict->in_protocol_by_num = false;
4160
4161 if (dict_has_dependents(dict)) {
4164
4165 fr_strerror_printf("Refusing to free dictionary \"%s\", still has dependents", dict->root->name);
4166
4167 for (dep = fr_rb_iter_init_inorder(&iter, dict->dependents);
4168 dep;
4169 dep = fr_rb_iter_next_inorder(&iter)) {
4170 fr_strerror_printf_push("%s (%d)", dep->dependent, dep->count);
4171 }
4172
4173 return -1;
4174 }
4175
4176 /*
4177 * Free the hash tables with free functions first
4178 * so that the things the hash tables reference
4179 * are still there.
4180 */
4181 talloc_free(dict->vendors_by_name);
4182
4183 /*
4184 * Decrease the reference count on the validation
4185 * library we loaded.
4186 */
4187 dl_free(dict->dl);
4188
4189 if (dict == dict->gctx->internal) {
4190 dict->gctx->internal = NULL;
4191 dict->gctx->attr_protocol_encapsulation = NULL;
4192 }
4193
4194 return 0;
4195}
4196
4197/** Allocate a new dictionary
4198 *
4199 * @param[in] ctx to allocate dictionary in.
4200 * @return
4201 * - NULL on memory allocation error.
4202 */
4203fr_dict_t *dict_alloc(TALLOC_CTX *ctx)
4204{
4205 fr_dict_t *dict;
4206
4207 if (!dict_gctx) {
4208 fr_strerror_const("Initialise global dictionary ctx with fr_dict_global_ctx_init()");
4209 return NULL;
4210 }
4211
4212 dict = talloc_zero(ctx, fr_dict_t);
4213 if (!dict) {
4214 fr_strerror_const("Failed allocating memory for dictionary");
4215 error:
4216 talloc_free(dict);
4217 return NULL;
4218 }
4219 dict->gctx = dict_gctx; /* Record which global context this was allocated in */
4220 talloc_set_destructor(dict, _dict_free);
4221
4222 /*
4223 * A list of all the files that constitute this dictionary
4224 */
4225 fr_dlist_talloc_init(&dict->filenames, fr_dict_filename_t, entry);
4226
4227 /*
4228 * Pre-Allocate pool memory for rapid startup
4229 * As that's the working memory required during
4230 * dictionary initialisation.
4231 */
4232 dict->pool = talloc_pool(dict, DICT_POOL_SIZE);
4233 if (!dict->pool) {
4234 fr_strerror_const("Failed allocating talloc pool for dictionary");
4235 goto error;
4236 }
4237
4238 /*
4239 * Create the table of vendor by name. There MAY NOT
4240 * be multiple vendors of the same name.
4241 */
4243 if (!dict->vendors_by_name) {
4244 fr_strerror_printf("Failed allocating \"vendors_by_name\" table");
4245 goto error;
4246 }
4247 /*
4248 * Create the table of vendors by value. There MAY
4249 * be vendors of the same value. If there are, we
4250 * pick the latest one.
4251 */
4252 dict->vendors_by_num = fr_hash_table_alloc(dict, dict_vendor_pen_hash, dict_vendor_pen_cmp, NULL);
4253 if (!dict->vendors_by_num) {
4254 fr_strerror_printf("Failed allocating \"vendors_by_num\" table");
4255 goto error;
4256 }
4257
4258 /*
4259 * Inter-dictionary reference caching
4260 */
4262 if (!dict->autoref) {
4263 fr_strerror_printf("Failed allocating \"autoref\" table");
4264 goto error;
4265 }
4266
4267 /*
4268 * Who/what depends on this dictionary
4269 */
4270 dict->dependents = fr_rb_inline_alloc(dict, fr_dict_dependent_t, node, _dict_dependent_cmp, NULL);
4271
4272 /*
4273 * Set the default dictionary protocol, this can
4274 * be overriden by the protocol library.
4275 */
4276 dict->proto = &dict_proto_default;
4277
4278 return dict;
4279}
4280
4281/** Allocate a new local dictionary
4282 *
4283 * @param[in] parent parent dictionary and talloc ctx
4284 * @return
4285 * - NULL on memory allocation error.
4286 *
4287 * This dictionary cannot define vendors, or inter-dictionary
4288 * dependencies. However, we initialize the relevant fields just in
4289 * case. We should arguably just skip initializing those fields, and
4290 * just allow the server to crash if programmers do something stupid with it.
4291 */
4293{
4294 fr_dict_t *dict;
4295 fr_dict_attr_t *da;
4296
4297 fr_dict_attr_flags_t flags = {
4298 .is_root = true,
4299 .local = true,
4300 .internal = true,
4301 .type_size = parent->root->flags.type_size,
4302 .length = parent->root->flags.length,
4303 };
4304
4305 dict = dict_alloc(UNCONST(fr_dict_t *, parent));
4306 if (!dict) return NULL;
4307
4308 /*
4309 * Allocate the root attribute. This dictionary is
4310 * always protocol "local", and number "0".
4311 */
4312 da = dict_attr_alloc_root(dict->pool, parent, "local", 0,
4313 &(dict_attr_args_t){ .flags = &flags });
4314 if (unlikely(!da)) {
4315 talloc_free(dict);
4316 return NULL;
4317 }
4318
4319 da->last_child_attr = fr_dict_root(parent)->last_child_attr;
4320
4321 dict->root = da;
4322 dict->root->dict = dict;
4323 dict->next = parent;
4324
4325 DA_VERIFY(dict->root);
4326
4327 return dict;
4328}
4329
4330/** Decrement the reference count on a previously loaded dictionary
4331 *
4332 * @param[in] dict to free.
4333 * @param[in] dependent that originally allocated this dictionary.
4334 * @return
4335 * - 0 on success (dictionary freed).
4336 * - 1 if other things still depend on the dictionary.
4337 * - -1 on error (dependent doesn't exist)
4338 */
4339int fr_dict_const_free(fr_dict_t const **dict, char const *dependent)
4340{
4341 fr_dict_t **our_dict = UNCONST(fr_dict_t **, dict);
4342
4343 return fr_dict_free(our_dict, dependent);
4344}
4345
4346/** Decrement the reference count on a previously loaded dictionary
4347 *
4348 * @param[in] dict to free.
4349 * @param[in] dependent that originally allocated this dictionary.
4350 * @return
4351 * - 0 on success (dictionary freed).
4352 * - 1 if other things still depend on the dictionary.
4353 * - -1 on error (dependent doesn't exist)
4354 */
4355int fr_dict_free(fr_dict_t **dict, char const *dependent)
4356{
4357 if (!*dict) return 0;
4358
4359 switch (dict_dependent_remove(*dict, dependent)) {
4360 case 0: /* dependent has no more refs */
4361 if (!dict_has_dependents(*dict)) {
4362 talloc_free(*dict);
4363 return 0;
4364 }
4366
4367 case 1: /* dependent has more refs */
4368 return 1;
4369
4370 default: /* error */
4371 return -1;
4372 }
4373}
4374
4375/** Process a dict_attr_autoload element to load/verify a dictionary attribute
4376 *
4377 * @param[in] to_load attribute definition
4378 * @return
4379 * - 0 on success.
4380 * - -1 on failure.
4381 */
4383{
4384 fr_dict_enum_autoload_t const *p = to_load;
4385 fr_dict_enum_value_t const *enumv;
4386
4387 for (p = to_load; p->out; p++) {
4388 if (unlikely(!p->attr)) {
4389 fr_strerror_printf("Invalid attribute autoload entry for \"%s\", missing attribute pointer", p->name);
4390 return -1;
4391 }
4392
4393 if (unlikely(!*p->attr)) {
4394 fr_strerror_printf("Can't resolve value \"%s\", attribute not loaded", p->name);
4395 fr_strerror_printf_push("Check fr_dict_attr_autoload_t struct has "
4396 "an entry to load the attribute \"%s\" is located in, and that "
4397 "the fr_dict_autoload_attr_t symbol name is correct", p->name);
4398 return -1;
4399 }
4400
4401 enumv = fr_dict_enum_by_name(*(p->attr), p->name, -1);
4402 if (!enumv) {
4403 fr_strerror_printf("Value '%s' not found in \"%s\" attribute",
4404 p->name, (*(p->attr))->name);
4405 return -1;
4406 }
4407
4408 if (p->out) *(p->out) = enumv->value;
4409 }
4410
4411 return 0;
4412}
4413
4414/** Process a dict_attr_autoload element to load/verify a dictionary attribute
4415 *
4416 * @param[in] to_load attribute definition
4417 * @return
4418 * - 0 on success.
4419 * - -1 on failure.
4420 */
4422{
4423 fr_dict_attr_t const *da;
4424 fr_dict_attr_autoload_t const *p = to_load;
4425
4426 for (p = to_load; p->out; p++) {
4427 if (!p->dict) {
4428 fr_strerror_printf("Invalid attribute autoload entry for \"%s\", missing dictionary pointer", p->name);
4429 return -1;
4430 }
4431
4432 if (!*p->dict) {
4433 fr_strerror_printf("Autoloader autoloader can't resolve attribute \"%s\", dictionary not loaded", p->name);
4434 fr_strerror_printf_push("Check fr_dict_autoload_t struct has "
4435 "an entry to load the dictionary \"%s\" is located in, and that "
4436 "the fr_dict_autoload_t symbol name is correct", p->name);
4437 return -1;
4438 }
4439
4440 da = fr_dict_attr_by_oid(NULL, fr_dict_root(*p->dict), p->name);
4441 if (!da) {
4442 fr_strerror_printf("Autoloader attribute \"%s\" not found in \"%s\" dictionary", p->name,
4443 *p->dict ? (*p->dict)->root->name : "internal");
4444 return -1;
4445 }
4446
4447 if (da->type != p->type) {
4448 fr_strerror_printf("Autoloader attribute \"%s\" should be type %s, but defined as type %s", da->name,
4449 fr_type_to_str(p->type),
4450 fr_type_to_str(da->type));
4451 return -1;
4452 }
4453
4454 DA_VERIFY(da);
4455
4456 if (p->out) *(p->out) = da;
4457 }
4458
4459 return 0;
4460}
4461
4462/** Process a dict_autoload element to load a protocol
4463 *
4464 * @param[in] to_load dictionary definition.
4465 * @param[in] dependent that is loading this dictionary.
4466 * @return
4467 * - 0 on success.
4468 * - -1 on failure.
4469 */
4470int _fr_dict_autoload(fr_dict_autoload_t const *to_load, char const *dependent)
4471{
4472 fr_dict_autoload_t const *p;
4473
4474 for (p = to_load; p->out; p++) {
4475 fr_dict_t *dict = NULL;
4476
4477 if (unlikely(!p->proto)) {
4478 fr_strerror_const("autoload missing parameter proto");
4479 return -1;
4480 }
4481
4482 /*
4483 * Load the internal dictionary
4484 */
4485 if (strcmp(p->proto, "freeradius") == 0) {
4486 if (fr_dict_internal_afrom_file(&dict, p->proto, dependent) < 0) return -1;
4487 } else {
4488 if (fr_dict_protocol_afrom_file(&dict, p->proto, p->base_dir, dependent) < 0) return -1;
4489 }
4490
4491 *(p->out) = dict;
4492 }
4493
4494 return 0;
4495}
4496
4497
4498/** Decrement the reference count on a previously loaded dictionary
4499 *
4500 * @param[in] to_free previously loaded dictionary to free.
4501 * @param[in] dependent that originally allocated this dictionary
4502 */
4503int _fr_dict_autofree(fr_dict_autoload_t const *to_free, char const *dependent)
4504{
4505 fr_dict_autoload_t const *p;
4506
4507 for (p = to_free; p->out; p++) {
4508 int ret;
4509
4510 if (!*p->out) continue;
4511 ret = fr_dict_const_free(p->out, dependent);
4512
4513 if (ret == 0) *p->out = NULL;
4514 if (ret < 0) return -1;
4515 }
4516
4517 return 0;
4518}
4519
4520/** Structure used to managed the lifetime of a dictionary
4521 *
4522 * This should only be used when dictionaries are being dynamically loaded during
4523 * compilation. It should not be used to load dictionaries at runtime, or if
4524 * modules need to load dictionaries (use static fr_dict_autoload_t defs).
4525
4526 */
4528 fr_dict_autoload_t load[2]; //!< Autoloader def.
4529 char const *dependent; //!< Dependent that loaded the dictionary.
4530};
4531
4532/** Talloc destructor to automatically free dictionaries
4533 *
4534 * @param[in] to_free dictionary autoloader definition describing the dictionary to free.
4535 */
4537{
4538 return _fr_dict_autofree(to_free->load, to_free->dependent);
4539}
4540
4541/** Autoload a dictionary and bind the lifetime to a talloc chunk
4542 *
4543 * Mainly useful for resolving "forward" references from unlang immediately.
4544 *
4545 * @note If the talloc chunk is freed it does not mean the dictionary will
4546 * be immediately freed. It will be freed when all other references
4547 * to the dictionary are gone.
4548 *
4549 * @param[in] ctx to bind the dictionary lifetime to.
4550 * @param[out] out pointer to the loaded dictionary.
4551 * @param[in] proto to load.
4552 * @param[in] dependent to register this reference to. Will be dupd.
4553 */
4554fr_dict_autoload_talloc_t *_fr_dict_autoload_talloc(TALLOC_CTX *ctx, fr_dict_t const **out, char const *proto, char const *dependent)
4555{
4556 fr_dict_autoload_talloc_t *dict_ref;
4557 int ret;
4558
4559 dict_ref = talloc(ctx, fr_dict_autoload_talloc_t);
4560 if (unlikely(dict_ref == NULL)) {
4561 oom:
4562 fr_strerror_const("Out of memory");
4563 return NULL;
4564 }
4565
4566 dict_ref->load[0] = (fr_dict_autoload_t){ .proto = proto, .out = out};
4568 dict_ref->dependent = talloc_strdup(dict_ref, dependent);
4569 if (unlikely(dict_ref->dependent == NULL)) {
4570 talloc_free(dict_ref);
4571 goto oom;
4572 }
4573
4574 ret = _fr_dict_autoload(dict_ref->load, dependent);
4575 if (ret < 0) {
4576 talloc_free(dict_ref);
4577 return NULL;
4578 }
4579
4580 return dict_ref;
4581}
4582
4583/** Callback to automatically resolve enum values
4584 *
4585 * @param[in] module being loaded.
4586 * @param[in] symbol An array of fr_dict_enum_autoload_t to load.
4587 * @param[in] user_ctx unused.
4588 * @return
4589 * - 0 on success.
4590 * - -1 on failure.
4591 */
4592int fr_dl_dict_enum_autoload(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
4593{
4594 if (fr_dict_enum_autoload((fr_dict_enum_autoload_t *)symbol) < 0) return -1;
4595
4596 return 0;
4597}
4598
4599/** Callback to automatically resolve attributes and check the types are correct
4600 *
4601 * @param[in] module being loaded.
4602 * @param[in] symbol An array of fr_dict_attr_autoload_t to load.
4603 * @param[in] user_ctx unused.
4604 * @return
4605 * - 0 on success.
4606 * - -1 on failure.
4607 */
4608int fr_dl_dict_attr_autoload(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
4609{
4610 if (fr_dict_attr_autoload((fr_dict_attr_autoload_t *)symbol) < 0) return -1;
4611
4612 return 0;
4613}
4614
4615/** Callback to automatically load dictionaries required by modules
4616 *
4617 * @param[in] module being loaded.
4618 * @param[in] symbol An array of fr_dict_autoload_t to load.
4619 * @param[in] user_ctx unused.
4620 * @return
4621 * - 0 on success.
4622 * - -1 on failure.
4623 */
4624int fr_dl_dict_autoload(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
4625{
4626 if (fr_dict_autoload((fr_dict_autoload_t const *)symbol) < 0) return -1;
4627
4628 return 0;
4629}
4630
4631/** Callback to automatically free a dictionary when the module is unloaded
4632 *
4633 * @param[in] module being loaded.
4634 * @param[in] symbol An array of fr_dict_autoload_t to load.
4635 * @param[in] user_ctx unused.
4636 */
4637void fr_dl_dict_autofree(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
4638{
4640}
4641
4642static int _dict_global_free_at_exit(void *uctx)
4643{
4644 return talloc_free(uctx);
4645}
4646
4648{
4649 fr_hash_iter_t iter;
4650 fr_dict_t *dict;
4651 bool still_loaded = false;
4652
4653 /*
4654 * Make sure this doesn't fire later and mess
4655 * things up...
4656 */
4658
4659 /*
4660 * Free up autorefs first, which will free up inter-dictionary dependencies.
4661 */
4662 for (dict = fr_hash_table_iter_init(gctx->protocol_by_name, &iter);
4663 dict;
4664 dict = fr_hash_table_iter_next(gctx->protocol_by_name, &iter)) {
4665 (void)talloc_get_type_abort(dict, fr_dict_t);
4666
4667 if (dict_autoref_free(dict) < 0) return -1;
4668 }
4669
4670 for (dict = fr_hash_table_iter_init(gctx->protocol_by_name, &iter);
4671 dict;
4672 dict = fr_hash_table_iter_next(gctx->protocol_by_name, &iter)) {
4673 (void)talloc_get_type_abort(dict, fr_dict_t);
4674 dict_dependent_remove(dict, "global"); /* remove our dependency */
4675
4676 if (talloc_free(dict) < 0) {
4677#ifndef NDEBUG
4678 FR_FAULT_LOG("gctx failed to free dictionary %s - %s", dict->root->name, fr_strerror());
4679#endif
4680 still_loaded = true;
4681 }
4682 }
4683
4684 /*
4685 * Free the internal dictionary as the last step, after all of the protocol dictionaries and
4686 * libraries have freed their references to it.
4687 */
4688 if (gctx->internal) {
4689 dict_dependent_remove(gctx->internal, "global"); /* remove our dependency */
4690
4691 if (talloc_free(gctx->internal) < 0) still_loaded = true;
4692 }
4693
4694 if (still_loaded) {
4695#ifndef NDEBUG
4696 fr_dict_gctx_debug(stderr, gctx);
4697#endif
4698 return -1;
4699 }
4700
4701 /*
4702 * Set this to NULL just in case the caller tries to use
4703 * dict_global_init() again.
4704 */
4705 if (gctx == dict_gctx) dict_gctx = NULL; /* In case the active context isn't this one */
4706
4707 return 0;
4708}
4709
4710/** Initialise the global protocol hashes
4711 *
4712 * @note Must be called before any other dictionary functions.
4713 *
4714 * @param[in] ctx to allocate global resources in.
4715 * @param[in] free_at_exit Install an at_exit handler to free the global ctx.
4716 * This is useful when dictionaries are held by other
4717 * libraries which free them using atexit handlers.
4718 * @param[in] dict_dir the default location for the dictionaries.
4719 * @return
4720 * - A pointer to the new global context on success.
4721 * - NULL on failure.
4722 */
4723fr_dict_gctx_t *fr_dict_global_ctx_init(TALLOC_CTX *ctx, bool free_at_exit, char const *dict_dir)
4724{
4725 fr_dict_gctx_t *new_ctx;
4726
4727 if (!dict_dir) {
4728 fr_strerror_const("No dictionary location provided");
4729 return NULL;
4730 }
4731
4732 new_ctx = talloc_zero(ctx, fr_dict_gctx_t);
4733 if (!new_ctx) {
4734 fr_strerror_const("Out of Memory");
4735 return NULL;
4736 }
4737 new_ctx->perm_check = true; /* Check file permissions by default */
4738
4740 if (!new_ctx->protocol_by_name) {
4741 fr_strerror_const("Failed initializing protocol_by_name hash");
4742 error:
4743 talloc_free(new_ctx);
4744 return NULL;
4745 }
4746
4748 if (!new_ctx->protocol_by_num) {
4749 fr_strerror_const("Failed initializing protocol_by_num hash");
4750 goto error;
4751 }
4752
4753 new_ctx->dict_dir_default = talloc_strdup(new_ctx, dict_dir);
4754 if (!new_ctx->dict_dir_default) goto error;
4755
4756 new_ctx->dict_loader = dl_loader_init(new_ctx, NULL, false, false);
4757 if (!new_ctx->dict_loader) goto error;
4758
4759 new_ctx->free_at_exit = free_at_exit;
4760
4761 talloc_set_destructor(new_ctx, _dict_global_free);
4762
4763 if (!dict_gctx) dict_gctx = new_ctx; /* Set as the default */
4764
4765 if (free_at_exit) fr_atexit_global(_dict_global_free_at_exit, new_ctx);
4766
4767 return new_ctx;
4768}
4769
4770/** Set whether we check dictionary file permissions
4771 *
4772 * @param[in] gctx to alter.
4773 * @param[in] enable Whether we should check file permissions as they're loaded.
4774 */
4776{
4777 gctx->perm_check = enable;
4778}
4779
4780/** Set a new, active, global dictionary context
4781 *
4782 * @param[in] gctx To set.
4783 */
4785{
4786 memcpy(&dict_gctx, &gctx, sizeof(dict_gctx));
4787}
4788
4789/** Explicitly free all data associated with a global dictionary context
4790 *
4791 * @note You should *NOT* ignore the return code of this function.
4792 * You should use perror() or PERROR() to print out the reason
4793 * why freeing failed.
4794 *
4795 * @param[in] gctx To set.
4796 * @return
4797 * - 0 on success.
4798 * - -1 on failure.
4799 */
4801{
4802 if (dict_gctx == gctx) dict_gctx = NULL;
4803
4804 return talloc_const_free(gctx);
4805}
4806
4807/** Allow the default dict dir to be changed after initialisation
4808 *
4809 * @param[in] dict_dir New default dict dir to use.
4810 * @return
4811 * - 0 on success.
4812 * - -1 on failure.
4813 */
4814int fr_dict_global_ctx_dir_set(char const *dict_dir)
4815{
4816 if (!dict_gctx) return -1;
4817
4818 talloc_free(dict_gctx->dict_dir_default); /* Free previous value */
4819 dict_gctx->dict_dir_default = talloc_strdup(dict_gctx, dict_dir);
4820 if (!dict_gctx->dict_dir_default) return -1;
4821
4822 return 0;
4823}
4824
4825char const *fr_dict_global_ctx_dir(void)
4826{
4828}
4829
4830/** Mark all dictionaries and the global dictionary ctx as read only
4831 *
4832 * Any attempts to add new attributes will now fail.
4833 */
4835{
4836 fr_hash_iter_t iter;
4837 fr_dict_t *dict;
4838
4839 if (!dict_gctx) return;
4840
4841 /*
4842 * Set everything to read only
4843 */
4845 dict;
4848 dict->read_only = true;
4849 }
4850
4851 dict = dict_gctx->internal;
4853 dict->read_only = true;
4854 dict_gctx->read_only = true;
4855}
4856
4857/** Dump information about currently loaded dictionaries
4858 *
4859 * Intended to be called from a debugger
4860 */
4861void fr_dict_gctx_debug(FILE *fp, fr_dict_gctx_t const *gctx)
4862{
4863 fr_hash_iter_t dict_iter;
4864 fr_dict_t *dict;
4865 fr_rb_iter_inorder_t dep_iter;
4867
4868 if (gctx == NULL) gctx = dict_gctx;
4869
4870 if (!gctx) {
4871 fprintf(fp, "gctx not initialised\n");
4872 return;
4873 }
4874
4875 fprintf(fp, "gctx %p report\n", dict_gctx);
4876 for (dict = fr_hash_table_iter_init(gctx->protocol_by_num, &dict_iter);
4877 dict;
4878 dict = fr_hash_table_iter_next(gctx->protocol_by_num, &dict_iter)) {
4879 for (dep = fr_rb_iter_init_inorder(&dep_iter, dict->dependents);
4880 dep;
4881 dep = fr_rb_iter_next_inorder(&dep_iter)) {
4882 fprintf(fp, "\t%s is referenced from %s count (%d)\n",
4883 dict->root->name, dep->dependent, dep->count);
4884 }
4885 }
4886
4887 if (gctx->internal) {
4888 for (dep = fr_rb_iter_init_inorder(&dep_iter, gctx->internal->dependents);
4889 dep;
4890 dep = fr_rb_iter_next_inorder(&dep_iter)) {
4891 fprintf(fp, "\t%s is referenced from %s count (%d)\n",
4892 gctx->internal->root->name, dep->dependent, dep->count);
4893 }
4894 }
4895}
4896
4897/** Iterate protocols by name
4898 *
4899 */
4906
4913
4914
4915/** Coerce to non-const
4916 *
4917 */
4919{
4920 if (unlikely(dict->read_only)) {
4921 fr_strerror_printf("%s dictionary has been marked as read only", fr_dict_root(dict)->name);
4922 return NULL;
4923 }
4924 return UNCONST(fr_dict_t *, dict);
4925}
4926
4927/** Coerce to non-const
4928 *
4929 */
4931{
4932 fr_dict_t *dict;
4933
4934 dict = dict_by_da(da);
4935 if (unlikely(dict->read_only)) {
4936 fr_strerror_printf("%s dictionary has been marked as read only", fr_dict_root(dict)->name);
4937 return NULL;
4938 }
4939
4940 return UNCONST(fr_dict_attr_t *, da);
4941}
4942
4944{
4945 if (!dict_gctx) return NULL;
4946
4947 return dict_gctx->internal;
4948}
4949
4950/*
4951 * Check for the allowed characters.
4952 */
4954{
4955 char const *p = name, *end;
4956 bool unknown = false;
4957 bool alnum = false;
4958
4959 if (len < 0) len = strlen(name);
4960
4961 if (len > FR_DICT_ATTR_MAX_NAME_LEN) {
4962 fr_strerror_const("Attribute name is too long");
4963 return -1;
4964 }
4965
4966 end = p + len;
4967
4968 /*
4969 * Unknown attributes can have '.' in their name.
4970 */
4971 if ((len > 5) && (memcmp(name, "Attr-", 5) == 0)) unknown = true;
4972
4973 while (p < end) {
4974 if ((*p == '.') && unknown) p++;
4975
4977 fr_strerror_printf("Invalid character '%pV' in attribute name \"%pV\"",
4979
4980 return -(p - name);
4981 }
4982
4983 alnum |= sbuff_char_alpha_num[(uint8_t)*p];
4984
4985 p++;
4986 }
4987
4988 if (!alnum) {
4989 fr_strerror_const("Invalid attribute name");
4990 return -1;
4991 }
4992
4993 return len;
4994}
4995
4997{
4998 char const *p = name, *end;
4999 bool alnum = false;
5000
5001 if (len < 0) len = strlen(name);
5002 end = p + len;
5003
5004 do {
5005 if (!fr_dict_attr_allowed_chars[(uint8_t)*p] && (*p != '.')) {
5006 fr_strerror_printf("Invalid character '%pV' in oid string \"%pV\"",
5008
5009 return -(p - name);
5010 }
5011
5012 alnum |= sbuff_char_alpha_num[(uint8_t)*p];
5013 p++;
5014 } while (p < end);
5015
5016 if (!alnum) return 0;
5017
5018 return len;
5019}
5020
5021/** Iterate over children of a DA.
5022 *
5023 * @param[in] parent the parent da to iterate over
5024 * @param[in,out] prev pointer to NULL to start, otherwise pointer to the previously returned child
5025 * @return
5026 * - NULL for end of iteration
5027 * - !NULL for a valid child. This child MUST be passed to the next loop.
5028 */
5030{
5031 fr_dict_attr_t const * const *bin;
5032 fr_dict_attr_t const **children;
5033 fr_dict_attr_t const *ref;
5034 size_t len, i, start;
5035
5036 if (!parent || !prev) return NULL;
5037
5038 ref = fr_dict_attr_ref(parent);
5039 if (ref) parent = ref;
5040
5041 children = dict_attr_children(parent);
5042 if (!children) return NULL;
5043
5044 if (!*prev) {
5045 start = 0;
5046
5047 } else if ((*prev)->next) {
5048 /*
5049 * There are more children in this bin, return
5050 * the next one.
5051 */
5052 return (*prev)->next;
5053
5054 } else {
5055 /*
5056 * Figure out which bin we were in. If it was
5057 * the last one, we're done.
5058 */
5059 start = (*prev)->attr & 0xff;
5060 if (start == 255) return NULL;
5061
5062 /*
5063 * Start at the next bin.
5064 */
5065 start++;
5066 }
5067
5068 /*
5069 * Look for a non-empty bin, and return the first child
5070 * from there.
5071 */
5072 len = talloc_array_length(children);
5073 for (i = start; i < len; i++) {
5074 bin = &children[i & 0xff];
5075
5076 if (*bin) return *bin;
5077 }
5078
5079 return NULL;
5080}
5081
5082/** Call the specified callback for da and then for all its children
5083 *
5084 */
5085static int dict_walk(fr_dict_attr_t const *da, fr_dict_walk_t callback, void *uctx)
5086{
5087 size_t i, len;
5088 fr_dict_attr_t const **children;
5089
5090 children = dict_attr_children(da);
5091
5092 if (fr_dict_attr_ref(da) || !children) return callback(da, uctx);
5093
5094 len = talloc_array_length(children);
5095 for (i = 0; i < len; i++) {
5096 int ret;
5097 fr_dict_attr_t const *bin;
5098
5099 if (!children[i]) continue;
5100
5101 for (bin = children[i]; bin; bin = bin->next) {
5102 ret = dict_walk(bin, callback, uctx);
5103 if (ret < 0) return ret;
5104 }
5105 }
5106
5107 return 0;
5108}
5109
5110int fr_dict_walk(fr_dict_attr_t const *da, fr_dict_walk_t callback, void *uctx)
5111{
5112 return dict_walk(da, callback, uctx);
5113}
5114
5115
5116void fr_dict_attr_verify(char const *file, int line, fr_dict_attr_t const *da)
5117{
5118 int i;
5119 fr_dict_attr_t const *da_p;
5120
5121 if (!da) fr_fatal_assert_fail("CONSISTENCY CHECK FAILED %s[%d]: fr_dict_attr_t pointer was NULL", file, line);
5122
5124
5125 if ((!da->flags.is_root) && (da->depth == 0)) {
5126 fr_fatal_assert_fail("CONSISTENCY CHECK FAILED %s[%d]: fr_dict_attr_t %s vendor: %u, attr %u: "
5127 "Is not root, but depth is 0",
5128 file, line, da->name, fr_dict_vendor_num_by_da(da), da->attr);
5129 }
5130
5131 if (da->depth > FR_DICT_MAX_TLV_STACK) {
5132 fr_fatal_assert_fail("CONSISTENCY CHECK FAILED %s[%d]: fr_dict_attr_t %s vendor: %u, attr %u: "
5133 "Indicated depth (%u) greater than TLV stack depth (%d)",
5134 file, line, da->name, fr_dict_vendor_num_by_da(da), da->attr,
5135 da->depth, FR_DICT_MAX_TLV_STACK);
5136 }
5137
5138 for (da_p = da; da_p; da_p = da_p->next) {
5140 }
5141
5142 for (i = da->depth, da_p = da; (i >= 0) && da; i--, da_p = da_p->parent) {
5143 if (!da_p) {
5144 fr_fatal_assert_fail("CONSISTENCY CHECK FAILED %s[%d]: fr_dict_attr_t %s vendor: %u, attr %u: "
5145 "Depth indicated there should be a parent, but parent is NULL",
5146 file, line, da->name, fr_dict_vendor_num_by_da(da), da->attr);
5147 }
5148 if (i != (int)da_p->depth) {
5149 fr_fatal_assert_fail("CONSISTENCY CHECK FAILED %s[%d]: fr_dict_attr_t %s vendor: %u, attr %u: "
5150 "Depth out of sequence, expected %i, got %u",
5151 file, line, da->name, fr_dict_vendor_num_by_da(da), da->attr, i, da_p->depth);
5152 }
5153
5154 }
5155
5156 if ((i + 1) < 0) {
5157 fr_fatal_assert_fail("CONSISTENCY CHECK FAILED %s[%d]: fr_dict_attr_t top of hierarchy was not at depth 0",
5158 file, line);
5159 }
5160
5161 if (da->parent && (da->parent->type == FR_TYPE_VENDOR) && !fr_dict_attr_has_ext(da, FR_DICT_ATTR_EXT_VENDOR)) {
5162 fr_fatal_assert_fail("CONSISTENCY CHECK FAILED %s[%d]: VSA missing 'vendor' extension", file, line);
5163 }
5164
5165 switch (da->type) {
5166 case FR_TYPE_STRUCTURAL:
5167 {
5168 fr_hash_table_t *ht;
5169
5170 if (da->type == FR_TYPE_GROUP) break;
5171
5173 "CONSISTENCY CHECK FAILED %s[%d]: %s missing 'children' extension",
5174 file, line,
5175 fr_type_to_str(da->type));
5176
5178 "CONSISTENCY CHECK FAILED %s[%d]: %s missing 'namespace' extension",
5179 file, line,
5180 fr_type_to_str(da->type));
5181
5182 /*
5183 * Check the namespace hash table is ok
5184 */
5185 ht = dict_attr_namespace(da);
5186 if (unlikely(!ht)) break;
5188 }
5189 break;
5190
5191 default:
5192 break;
5193 }
5194}
5195
5196/** See if a structural da is allowed to contain another da
5197 *
5198 * We have some complex rules with different structural types,
5199 * different protocol dictionaries, references to other protocols,
5200 * etc.
5201 *
5202 * @param[in] parent The parent da, must be structural
5203 * @param[in] child The alleged child
5204 * @return
5205 * - false - the child is not allowed to be contained by the parent
5206 * - true - the child is allowed to be contained by the parent
5207 */
5209{
5210 /*
5211 * This is the common case: child is from the parent.
5212 */
5213 if (child->parent == parent) return true;
5214
5215 if (child->flags.is_raw) return true; /* let people do stupid things */
5216
5217 /*
5218 * Only structural types can have children.
5219 */
5220 if (!fr_type_structural[parent->type]) return false;
5221
5222 /*
5223 * An internal attribute can go into any other container.
5224 *
5225 * Any other attribute can go into an internal structural
5226 * attribute, because why not?
5227 */
5228 if (dict_gctx) {
5229 if (child->dict == dict_gctx->internal) return true;
5230
5231 if (parent->dict == dict_gctx->internal) return true;
5232 }
5233
5234 /*
5235 * Anything can go into internal groups.
5236 */
5237 if ((parent->type == FR_TYPE_GROUP) && parent->flags.internal) return true;
5238
5239 /*
5240 * Protocol attributes have to be in the same dictionary.
5241 *
5242 * Unless they're a cross-protocol grouping attribute.
5243 * In which case we check if the ref is the same.
5244 */
5245 if (child->dict != parent->dict) {
5246 fr_dict_attr_t const *ref;
5247
5248 ref = fr_dict_attr_ref(parent);
5249
5250 return (ref && (ref->dict == child->dict));
5251 }
5252
5253 /*
5254 * Key fields can have children, but everyone else thinks
5255 * that the struct is the parent. <sigh>
5256 */
5257 if ((parent->type == FR_TYPE_STRUCT) && child->parent->parent == parent) return true;
5258
5259 /*
5260 * We're in the same protocol dictionary, but the child
5261 * isn't directly from the parent. Therefore the only
5262 * type of same-protocol structure it can go into is a
5263 * group.
5264 */
5265 return (parent->type == FR_TYPE_GROUP);
5266}
5267
5268/** Return the protocol descriptor for the dictionary.
5269 *
5270 */
5272{
5273 return dict->proto;
5274}
5275
5276/*
5277 * Get the real protocol namespace behind a local one.
5278 */
5280{
5281 if (!da->flags.local) return da;
5282
5283 fr_assert(da->dict->root == da);
5284
5285 while (da->dict->next) {
5286 da = da->dict->next->root;
5287 }
5288
5289 return da;
5290}
5291
5292/*
5293 * Get the real protocol dictionary behind a local one.
5294 */
5296{
5297 while (dict->next) dict = dict->next;
5298
5299 return dict;
5300}
5301
5303{
5304 if ((*da_p)->type == FR_TYPE_GROUP) {
5306 return 0;
5307 }
5308
5309 (*da_p)->type = FR_TYPE_GROUP;
5310
5312
5314 return -1;
5315 }
5316
5317 return 0;
5318}
static int const char char buffer[256]
Definition acutest.h:578
int const char * file
Definition acutest.h:704
int n
Definition acutest.h:579
va_list args
Definition acutest.h:772
int const char int line
Definition acutest.h:704
unsigned int fr_atexit_global_disarm(bool uctx_scope, fr_atexit_t func, void const *uctx)
Remove a specific global destructor (without executing it)
Definition atexit.c:229
#define fr_atexit_global(_func, _uctx)
Add a free function to the global free list.
Definition atexit.h:59
#define UNCONST(_type, _ptr)
Remove const qualification from a pointer.
Definition build.h:167
#define RCSID(id)
Definition build.h:485
#define FALL_THROUGH
clang 10 doesn't recognised the FALL-THROUGH comment anymore
Definition build.h:324
#define CMP(_a, _b)
Same as CMP_PREFER_SMALLER use when you don't really care about ordering, you just want an ordering.
Definition build.h:112
#define unlikely(_x)
Definition build.h:383
#define UNUSED
Definition build.h:317
#define fr_fatal_assert_fail(_msg,...)
Calls panic_action ifndef NDEBUG, else logs error and causes the server to exit immediately with code...
Definition debug.h:183
#define fr_cond_assert(_x)
Calls panic_action ifndef NDEBUG, else logs error and evaluates to value of _x.
Definition debug.h:131
#define fr_assert_msg(_x, _msg,...)
Calls panic_action ifndef NDEBUG, else logs error and causes the server to exit immediately with code...
Definition debug.h:202
#define FR_FAULT_LOG(_fmt,...)
Definition debug.h:50
#define fr_cond_assert_msg(_x, _fmt,...)
Calls panic_action ifndef NDEBUG, else logs error and evaluates to value of _x.
Definition debug.h:148
size_t type
Length of type data.
Definition dict.h:273
size_t name_len
Allows for efficient name lookups when operating on partial buffers.
Definition dict.h:256
char const * name
of the attribute.
Definition dict.h:298
int fr_dict_internal_afrom_file(fr_dict_t **out, char const *internal_name, char const *dependent)
(Re-)Initialize the special internal dictionary
@ FR_DICT_ENUM_EXT_ATTR_REF
Reference to a child attribute associated with this key value.
Definition dict.h:239
char const * name
Vendor name.
Definition dict.h:275
fr_dict_attr_t const ** attr
The protocol dictionary the attribute should be resolved in.
Definition dict.h:283
fr_dict_t const * fr_dict_by_da(fr_dict_attr_t const *da)
Attempt to locate the protocol dictionary containing an attribute.
Definition dict_util.c:2896
unsigned int is_root
Is root of a dictionary.
Definition dict.h:77
#define fr_dict_autofree(_to_free)
Definition dict.h:918
fr_dict_attr_t const * fr_dict_attr_common_parent(fr_dict_attr_t const *a, fr_dict_attr_t const *b, bool is_ancestor)
Find a common ancestor that two TLV type attributes share.
Definition dict_util.c:2345
static fr_slen_t err
Definition dict.h:887
fr_dict_attr_t const * fr_dict_attr_by_name(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *attr))
Locate a fr_dict_attr_t by its name.
Definition dict_util.c:3553
fr_value_box_t const ** out
Enumeration value.
Definition dict.h:282
fr_dict_t const ** dict
The protocol dictionary the attribute should be resolved in.
Definition dict.h:295
int fr_dict_protocol_afrom_file(fr_dict_t **out, char const *proto_name, char const *proto_dir, char const *dependent)
(Re)-initialize a protocol dictionary
int(* fr_dict_walk_t)(fr_dict_attr_t const *da, void *uctx)
Definition dict.h:995
fr_dict_attr_t const ** out
Where to write a pointer to the resolved fr_dict_attr_t.
Definition dict.h:293
fr_dict_t const ** out
Where to write a pointer to the loaded/resolved fr_dict_t.
Definition dict.h:306
#define DA_VERIFY(_x)
Definition dict.h:68
char const * name
of the attribute.
Definition dict.h:286
fr_value_box_t const * value
Enum value (what name maps to).
Definition dict.h:258
struct fr_dict_protocol_t::@127 attr
uint32_t pen
Private enterprise number.
Definition dict.h:271
fr_type_t type
of the attribute. Mismatch is a fatal error.
Definition dict.h:299
#define FR_DICT_DA_STACK_CACHE_MAX
Maximum level of da stack caching.
Definition dict.h:510
size_t length
Length of length data.
Definition dict.h:274
char const * base_dir
Directory structure beneath share.
Definition dict.h:308
@ FR_DICT_ATTR_EXT_PROTOCOL_SPECIFIC
Protocol specific extensions.
Definition dict.h:191
@ FR_DICT_ATTR_EXT_ENUMV
Enumeration values.
Definition dict.h:189
@ FR_DICT_ATTR_EXT_NAMESPACE
Attribute has its own namespace.
Definition dict.h:190
@ FR_DICT_ATTR_EXT_DA_STACK
Cached da stack.
Definition dict.h:188
@ FR_DICT_ATTR_EXT_REF
Attribute references another attribute and/or dictionary.
Definition dict.h:184
@ FR_DICT_ATTR_EXT_VENDOR
Cached vendor pointer.
Definition dict.h:187
@ FR_DICT_ATTR_EXT_NAME
Name of the attribute.
Definition dict.h:182
@ FR_DICT_ATTR_EXT_CHILDREN
Attribute has children.
Definition dict.h:183
#define fr_dict_autoload(_to_load)
Definition dict.h:915
#define FR_DICT_MAX_TLV_STACK
Maximum TLV stack size.
Definition dict.h:522
fr_dict_attr_err_t
Errors returned by attribute lookup functions.
Definition dict.h:318
@ FR_DICT_ATTR_OK
No error.
Definition dict.h:319
@ FR_DICT_ATTR_NOTFOUND
Attribute couldn't be found.
Definition dict.h:320
@ FR_DICT_ATTR_EINVAL
Invalid arguments.
Definition dict.h:330
@ FR_DICT_ATTR_NO_CHILDREN
Child lookup in attribute with no children.
Definition dict.h:329
@ FR_DICT_ATTR_PARSE_ERROR
Attribute string couldn't be parsed.
Definition dict.h:322
@ FR_DICT_ATTR_INTERNAL_ERROR
Internal error occurred.
Definition dict.h:323
#define FR_DICT_ENUM_MAX_NAME_LEN
Maximum length of a enum value.
Definition dict.h:500
#define DICT_AUTOLOAD_TERMINATOR
Definition dict.h:312
char const * proto
The protocol dictionary name.
Definition dict.h:309
#define fr_dict_attr_is_key_field(_da)
Definition dict.h:170
char const * name
Enum name.
Definition dict.h:255
static fr_slen_t in
Definition dict.h:887
char const * name
name of this protocol
Definition dict.h:457
#define FR_DICT_VENDOR_MAX_NAME_LEN
Maximum length of a vendor name.
Definition dict.h:501
#define FR_DICT_ATTR_MAX_NAME_LEN
Maximum length of a attribute name.
Definition dict.h:502
unsigned int is_alias
This isn't a real attribute, it's a reference to to one.
Definition dict.h:87
fr_dict_attr_t const * da
the child structure referenced by this value of key
Definition dict.h:247
Specifies an attribute which must be present for the module to function.
Definition dict.h:292
Values of the encryption flags.
Specifies a dictionary which must be loaded/loadable for the module to function.
Definition dict.h:305
Specifies a value which must be present for the module to function.
Definition dict.h:281
Enum extension - Sub-struct or union pointer.
Definition dict.h:246
Value of an enumerated attribute.
Definition dict.h:254
Protocol-specific callbacks in libfreeradius-PROTOCOL.
Definition dict.h:456
Private enterprise.
Definition dict.h:270
size_t max_name_len
maximum length of a name
Definition dict_ext.h:109
fr_dict_attr_t const * vendor
ancestor which has type FR_TYPE_VENDOR
Definition dict_ext.h:89
fr_dict_attr_ref_type_t type
The state of the reference.
Definition dict_ext.h:78
fr_hash_table_t * name_by_value
Lookup a name by value.
Definition dict_ext.h:111
static void * fr_dict_attr_ext(fr_dict_attr_t const *da, fr_dict_attr_ext_t ext)
Definition dict_ext.h:134
fr_hash_table_t * value_by_name
Lookup an enumeration value by name.
Definition dict_ext.h:110
fr_dict_attr_t const * da_stack[]
Stack of dictionary attributes.
Definition dict_ext.h:102
static fr_dict_attr_t const * fr_dict_attr_ref(fr_dict_attr_t const *da)
Return the reference associated with a group type attribute.
Definition dict_ext.h:178
static bool fr_dict_attr_has_ext(fr_dict_attr_t const *da, fr_dict_attr_ext_t ext)
Return whether a da has a given extension or not.
Definition dict_ext.h:149
@ FR_DICT_ATTR_REF_ALIAS
The attribute is an alias for another attribute.
Definition dict_ext.h:60
@ FR_DICT_ATTR_REF_NONE
No ref set.
Definition dict_ext.h:59
static uint32_t fr_dict_vendor_num_by_da(fr_dict_attr_t const *da)
Return the vendor number for an attribute.
Definition dict_ext.h:206
Attribute extension - Holds children for an attribute.
Definition dict_ext.h:52
Attribute extension - Stack of dictionary attributes that describe the path back to the root of the d...
Definition dict_ext.h:95
Attribute extension - Holds enumeration values.
Definition dict_ext.h:108
Attribute extension - Holds a hash table with the names of all children of this attribute.
Definition dict_ext.h:117
Attribute extension - Holds a reference to an attribute in another dictionary.
Definition dict_ext.h:77
Attribute extension - Cached vendor pointer.
Definition dict_ext.h:88
static int dict_attr_ref_set(fr_dict_attr_t const *da, fr_dict_attr_t const *ref, fr_dict_attr_ref_type_t type)
static int dict_attr_children_set(fr_dict_attr_t const *da, fr_dict_attr_t const **children)
static fr_hash_table_t * dict_attr_namespace(fr_dict_attr_t const *da)
Return the namespace hash table associated with the attribute.
static int dict_attr_ref_null(fr_dict_attr_t const *da)
static int dict_attr_ext_copy_all(fr_dict_attr_t **da_out_p, fr_dict_attr_t const *da_in)
Copy all attribute extensions from one attribute to another.
static void * dict_attr_ext_copy(fr_dict_attr_t **da_out_p, fr_dict_attr_t const *da_in, fr_dict_attr_ext_t ext)
Copy a single attribute extension from one attribute to another.
static fr_dict_attr_t const ** dict_attr_children(fr_dict_attr_t const *da)
static void * dict_attr_ext_alloc_size(fr_dict_attr_t **da_p, fr_dict_attr_ext_t ext, size_t ext_len)
Allocate an attribute extension of a particular size.
static void * dict_enum_ext_alloc(fr_dict_enum_value_t **enumv_p, fr_dict_enum_ext_t ext)
Allocate an enum extension.
static int dict_attr_ref_aset(fr_dict_attr_t **da_p, fr_dict_attr_t const *ref, fr_dict_attr_ref_type_t type)
static void * dict_attr_ext_alloc(fr_dict_attr_t **da_p, fr_dict_attr_ext_t ext)
Allocate an attribute extension.
void dict_hash_tables_finalise(fr_dict_t *dict)
Walk a dictionary finalising the hash tables in all attributes with a distinct namespace.
Definition dict_fixup.c:876
char * dict_dir_default
The default location for loading dictionaries if one wasn't provided.
Definition dict_priv.h:137
fr_hash_table_t * protocol_by_name
Hash containing names of all the registered protocols.
Definition dict_priv.h:142
#define dict_attr_alloc(_ctx, _parent, _name, _attr, _type, _args)
Definition dict_priv.h:255
#define INTERNAL_IF_NULL(_dict, _ret)
Set the internal dictionary if none was provided.
Definition dict_priv.h:45
fr_hash_table_t * protocol_by_num
Hash containing numbers of all the registered protocols.
Definition dict_priv.h:144
fr_dict_attr_t * root
Root attribute of this dictionary.
Definition dict_priv.h:109
#define DICT_POOL_SIZE
Definition dict_priv.h:37
dl_loader_t * dict_loader
for protocol validation
Definition dict_priv.h:140
int dict_attr_alias_add(fr_dict_attr_t const *parent, char const *alias, fr_dict_attr_t const *ref)
Add an alias to an existing attribute.
Definition dict_util.c:1428
#define dict_attr_init(_da_p, _parent, _name, _attr, _type, _args)
Full initialisation functions.
Definition dict_priv.h:231
char const * dependent
File holding the reference.
Definition dict_priv.h:62
bool dict_attr_valid(fr_dict_attr_t *da)
Validate a new attribute definition.
#define dict_attr_init_name_only(_da_p, _parent, _name, _type, _args)
Definition dict_priv.h:239
fr_dict_attr_t const * attr_protocol_encapsulation
Definition dict_priv.h:157
@ FR_DICT_PROTO_RADIUS
Definition dict_priv.h:161
fr_dict_t * internal
Magic internal dictionary.
Definition dict_priv.h:155
bool free_at_exit
This gctx will be freed on exit.
Definition dict_priv.h:130
#define dict_attr_alloc_root(_ctx, _dict, _name, _attr, _args)
Definition dict_priv.h:247
bool perm_check
Whether we should check dictionary file permissions as they're loaded.
Definition dict_priv.h:132
int count
How many references are held by this file.
Definition dict_priv.h:60
Optional arguments for initialising/allocating attributes.
Definition dict_priv.h:191
Entry recording dictionary reference holders by file.
Definition dict_priv.h:58
Entry in the filename list of files associated with this dictionary.
Definition dict_priv.h:69
Test enumeration values.
Definition dict_test.h:92
static fr_dict_protocol_t dict_proto_default
Default protocol rules set for every dictionary.
Definition dict_util.c:103
int fr_dl_dict_attr_autoload(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
Callback to automatically resolve attributes and check the types are correct.
Definition dict_util.c:4608
fr_dict_t * fr_dict_global_ctx_iter_next(fr_dict_global_ctx_iter_t *iter)
Definition dict_util.c:4907
int fr_dict_enum_add_name(fr_dict_attr_t *da, char const *name, fr_value_box_t const *value, bool coerce, bool takes_precedence)
Add a value name.
Definition dict_util.c:2249
fr_slen_t fr_dict_attr_search_by_name_substr(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_t const *dict_def, fr_sbuff_t *name, fr_sbuff_term_t const *tt, bool internal, bool foreign)
Locate a fr_dict_attr_t by its name in the top level namespace of a dictionary.
Definition dict_util.c:3294
ssize_t fr_dict_attr_by_oid_legacy(fr_dict_t const *dict, fr_dict_attr_t const **parent, unsigned int *attr, char const *oid)
Get the leaf attribute of an OID string.
Definition dict_util.c:2433
fr_dict_gctx_t * fr_dict_global_ctx_init(TALLOC_CTX *ctx, bool free_at_exit, char const *dict_dir)
Initialise the global protocol hashes.
Definition dict_util.c:4723
int fr_dict_attr_add_initialised(fr_dict_attr_t *da)
A variant of fr_dict_attr_t that allows a pre-allocated, populated fr_dict_attr_t to be added.
Definition dict_util.c:1877
ssize_t fr_dict_valid_oid_str(char const *name, ssize_t len)
Definition dict_util.c:4996
int fr_dict_global_ctx_dir_set(char const *dict_dir)
Allow the default dict dir to be changed after initialisation.
Definition dict_util.c:4814
fr_slen_t fr_dict_enum_name_from_substr(fr_sbuff_t *out, fr_sbuff_parse_error_t *err, fr_sbuff_t *in, fr_sbuff_term_t const *tt)
Extract an enumeration name from a string.
Definition dict_util.c:3846
static int _dict_global_free_at_exit(void *uctx)
Definition dict_util.c:4642
static uint32_t dict_protocol_num_hash(void const *data)
Hash a protocol number.
Definition dict_util.c:178
static uint32_t dict_vendor_name_hash(void const *data)
Wrap name hash function for fr_dict_vendor_t.
Definition dict_util.c:287
#define DICT_NAME_APPEND(_in, _dict)
static int _dict_free(fr_dict_t *dict)
Definition dict_util.c:4120
fr_dict_t * fr_dict_unconst(fr_dict_t const *dict)
Coerce to non-const.
Definition dict_util.c:4918
static int dict_attr_init_common(char const *filename, int line, fr_dict_attr_t **da_p, fr_dict_attr_t const *parent, fr_type_t type, dict_attr_args_t const *args)
Definition dict_util.c:870
fr_dict_t const * fr_dict_by_da(fr_dict_attr_t const *da)
Attempt to locate the protocol dictionary containing an attribute.
Definition dict_util.c:2896
int fr_dict_enum_autoload(fr_dict_enum_autoload_t const *to_load)
Process a dict_attr_autoload element to load/verify a dictionary attribute.
Definition dict_util.c:4382
fr_dict_enum_value_t const * fr_dict_enum_iter_init(fr_dict_attr_t const *da, fr_dict_enum_iter_t *iter)
Iterate over all enumeration values for an attribute.
Definition dict_util.c:3639
int _fr_dict_autofree(fr_dict_autoload_t const *to_free, char const *dependent)
Decrement the reference count on a previously loaded dictionary.
Definition dict_util.c:4503
static int dict_autoref_free(fr_dict_t *dict)
Definition dict_util.c:4093
int fr_dict_walk(fr_dict_attr_t const *da, fr_dict_walk_t callback, void *uctx)
Definition dict_util.c:5110
fr_slen_t dict_by_protocol_substr(fr_dict_attr_err_t *err, fr_dict_t **out, fr_sbuff_t *name, fr_dict_t const *dict_def)
Definition dict_util.c:2705
fr_dict_attr_t const * fr_dict_unlocal(fr_dict_attr_t const *da)
Definition dict_util.c:5279
fr_dict_attr_t const * fr_dict_attr_common_parent(fr_dict_attr_t const *a, fr_dict_attr_t const *b, bool is_ancestor)
Find a common ancestor that two TLV type attributes share.
Definition dict_util.c:2345
static int dict_walk(fr_dict_attr_t const *da, fr_dict_walk_t callback, void *uctx)
Call the specified callback for da and then for all its children.
Definition dict_util.c:5085
fr_dict_attr_t * dict_attr_alloc_null(TALLOC_CTX *ctx, fr_dict_protocol_t const *proto)
Allocate a partially completed attribute.
Definition dict_util.c:1013
int dict_attr_type_init(fr_dict_attr_t **da_p, fr_type_t type)
Initialise type specific fields within the dictionary attribute.
Definition dict_util.c:588
int dict_attr_parent_init(fr_dict_attr_t **da_p, fr_dict_attr_t const *parent)
Initialise fields which depend on a parent attribute.
Definition dict_util.c:673
static void dependent_debug(fr_dict_t *dict)
Definition dict_util.c:4075
fr_dict_t const * fr_dict_proto_dict(fr_dict_t const *dict)
Definition dict_util.c:5295
fr_dict_t * dict_alloc(TALLOC_CTX *ctx)
Allocate a new dictionary.
Definition dict_util.c:4203
static uint32_t dict_vendor_pen_hash(void const *data)
Hash a vendor number.
Definition dict_util.c:312
bool const fr_dict_attr_allowed_chars[UINT8_MAX+1]
Characters allowed in a single dictionary attribute name.
Definition dict_util.c:64
int8_t fr_dict_attr_ordered_cmp(fr_dict_attr_t const *a, fr_dict_attr_t const *b)
Compare two attributes by total order.
Definition dict_util.c:229
int fr_dict_attr_set_group(fr_dict_attr_t **da_p)
Definition dict_util.c:5302
fr_dict_protocol_t const * fr_dict_protocol(fr_dict_t const *dict)
Return the protocol descriptor for the dictionary.
Definition dict_util.c:5271
fr_dict_attr_t * _dict_attr_alloc_root(char const *filename, int line, TALLOC_CTX *ctx, fr_dict_t const *dict, char const *name, int proto_number, dict_attr_args_t const *args)
Allocate a dictionary root attribute on the heap.
Definition dict_util.c:1054
fr_dict_attr_t * _dict_attr_alloc(char const *filename, int line, TALLOC_CTX *ctx, fr_dict_attr_t const *parent, char const *name, int attr, fr_type_t type, dict_attr_args_t const *args)
Allocate a dictionary attribute on the heap.
Definition dict_util.c:1088
int fr_dict_attr_acopy_local(fr_dict_attr_t const *dst, fr_dict_attr_t const *src)
Definition dict_util.c:1153
void fr_dl_dict_autofree(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
Callback to automatically free a dictionary when the module is unloaded.
Definition dict_util.c:4637
fr_dict_autoload_talloc_t * _fr_dict_autoload_talloc(TALLOC_CTX *ctx, fr_dict_t const **out, char const *proto, char const *dependent)
Autoload a dictionary and bind the lifetime to a talloc chunk.
Definition dict_util.c:4554
static int dict_attr_da_stack_set(fr_dict_attr_t **da_p)
Initialise an attribute's da stack from its parent.
Definition dict_util.c:503
bool fr_dict_compatible(fr_dict_t const *dict1, fr_dict_t const *dict2)
See if two dictionaries have the same end parent.
Definition dict_util.c:2909
static fr_slen_t dict_attr_search_qualified(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_t const *dict_def, fr_sbuff_t *in, fr_sbuff_term_t const *tt, bool internal, bool foreign, dict_attr_resolve_func_t func)
Internal function for searching for attributes in multiple dictionaries.
Definition dict_util.c:3198
bool dict_attr_can_have_children(fr_dict_attr_t const *da)
See if a fr_dict_attr_t can have children.
Definition dict_util.c:1687
fr_dict_attr_t * fr_dict_attr_unconst(fr_dict_attr_t const *da)
Coerce to non-const.
Definition dict_util.c:4930
static int8_t _dict_dependent_cmp(void const *a, void const *b)
Find a dependent in the tree of dependents.
Definition dict_util.c:3958
fr_slen_t fr_dict_attr_by_oid_substr(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_attr_t const *parent, fr_sbuff_t *in, fr_sbuff_term_t const *tt)
Resolve an attribute using an OID string.
Definition dict_util.c:2614
void fr_dict_attr_verify(char const *file, int line, fr_dict_attr_t const *da)
Definition dict_util.c:5116
#define FNV_MAGIC_PRIME
Definition dict_util.c:115
bool fr_dict_attr_can_contain(fr_dict_attr_t const *parent, fr_dict_attr_t const *child)
See if a structural da is allowed to contain another da.
Definition dict_util.c:5208
void dict_attr_location_init(fr_dict_attr_t *da, char const *filename, int line)
Set where the dictionary attribute was defined.
Definition dict_util.c:785
fr_dict_t * dict_by_da(fr_dict_attr_t const *da)
Internal version of fr_dict_by_da.
Definition dict_util.c:2826
bool const fr_dict_attr_nested_allowed_chars[UINT8_MAX+1]
Characters allowed in a nested dictionary attribute name.
Definition dict_util.c:71
fr_dict_t * fr_dict_global_ctx_iter_init(fr_dict_global_ctx_iter_t *iter)
Iterate protocols by name.
Definition dict_util.c:4900
static int8_t dict_vendor_name_cmp(void const *one, void const *two)
Compare two attribute names.
Definition dict_util.c:299
fr_slen_t fr_dict_attr_search_by_qualified_name_substr(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_t const *dict_def, fr_sbuff_t *name, fr_sbuff_term_t const *tt, bool internal, bool foreign)
Locate a qualified fr_dict_attr_t by its name and a dictionary qualifier.
Definition dict_util.c:3265
fr_dict_attr_t const * fr_dict_root(fr_dict_t const *dict)
Return the root attribute of a dictionary.
Definition dict_util.c:2690
fr_dict_attr_t const * fr_dict_vendor_da_by_num(fr_dict_attr_t const *vendor_root, uint32_t vendor_pen)
Return vendor attribute for the specified dictionary and pen.
Definition dict_util.c:2985
int dict_attr_add_to_namespace(fr_dict_attr_t const *parent, fr_dict_attr_t *da)
Add an attribute to the name table for an attribute.
Definition dict_util.c:1811
fr_dict_attr_t * dict_attr_child_by_num(fr_dict_attr_t const *parent, unsigned int attr)
Internal version of fr_dict_attr_child_by_num.
Definition dict_util.c:3571
void fr_dict_global_ctx_set(fr_dict_gctx_t const *gctx)
Set a new, active, global dictionary context.
Definition dict_util.c:4784
int fr_dl_dict_autoload(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
Callback to automatically load dictionaries required by modules.
Definition dict_util.c:4624
static int8_t dict_attr_name_cmp(void const *one, void const *two)
Compare two attribute names.
Definition dict_util.c:211
static int8_t dict_vendor_pen_cmp(void const *one, void const *two)
Compare two vendor numbers.
Definition dict_util.c:321
static int8_t dict_enum_value_cmp(void const *one, void const *two)
Compare two dictionary enum values.
Definition dict_util.c:372
fr_dict_attr_t * dict_attr_by_name(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *name)
Definition dict_util.c:3507
static void hash_pool_free(void *to_free)
Definition dict_util.c:117
static uint32_t dict_attr_name_hash(void const *data)
Wrap name hash function for fr_dict_attr_t.
Definition dict_util.c:199
bool const fr_dict_enum_allowed_chars[UINT8_MAX+1]
Characters allowed in enumeration value names.
Definition dict_util.c:79
static int _fr_dict_autoload_talloc_free(fr_dict_autoload_talloc_t const *to_free)
Talloc destructor to automatically free dictionaries.
Definition dict_util.c:4536
fr_dict_t * dict_by_protocol_num(unsigned int num)
Internal version of fr_dict_by_protocol_num.
Definition dict_util.c:2812
static int dict_attr_acopy_child(fr_dict_t *dict, fr_dict_attr_t *dst, fr_dict_attr_t const *src, fr_dict_attr_t const *child)
Definition dict_util.c:1177
fr_slen_t fr_dict_attr_search_by_qualified_oid_substr(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_t const *dict_def, fr_sbuff_t *in, fr_sbuff_term_t const *tt, bool internal, bool foreign)
Locate a qualified fr_dict_attr_t by a dictionary qualified OID string.
Definition dict_util.c:3323
dl_t * fr_dict_dl(fr_dict_t const *dict)
Definition dict_util.c:2700
static fr_slen_t dict_attr_search(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_t const *dict_def, fr_sbuff_t *in, fr_sbuff_term_t const *tt, bool internal, bool foreign, dict_attr_resolve_func_t func)
Internal function for searching for attributes in multiple dictionaries.
Definition dict_util.c:3050
char const * fr_dict_enum_name_by_value(fr_dict_attr_t const *da, fr_value_box_t const *value)
Lookup the name of an enum value in a fr_dict_attr_t.
Definition dict_util.c:3713
fr_dict_enum_value_t const * fr_dict_enum_iter_next(fr_dict_attr_t const *da, fr_dict_enum_iter_t *iter)
Definition dict_util.c:3660
int fr_dict_enum_add_name_next(fr_dict_attr_t *da, char const *name)
Add an name to an integer attribute hashing the name for the integer value.
Definition dict_util.c:2261
int dict_attr_child_add(fr_dict_attr_t *parent, fr_dict_attr_t *child)
Add a child to a parent.
Definition dict_util.c:1712
static int dict_attr_children_init(fr_dict_attr_t **da_p)
Add a child/nesting extension to an attribute.
Definition dict_util.c:468
fr_dict_autoload_t load[2]
Autoloader def.
Definition dict_util.c:4528
int fr_dict_free(fr_dict_t **dict, char const *dependent)
Decrement the reference count on a previously loaded dictionary.
Definition dict_util.c:4355
fr_dict_enum_value_t const * fr_dict_enum_by_value(fr_dict_attr_t const *da, fr_value_box_t const *value)
Lookup the structure representing an enum value in a fr_dict_attr_t.
Definition dict_util.c:3680
int dict_dependent_remove(fr_dict_t *dict, char const *dependent)
Decrement ref count for a dependent in a dictionary.
Definition dict_util.c:4037
int fr_dict_oid_component_legacy(unsigned int *out, char const **oid)
Process a single OID component.
Definition dict_util.c:2388
fr_slen_t fr_dict_enum_by_name_substr(fr_dict_enum_value_t **out, fr_dict_attr_t const *da, fr_sbuff_t *in)
Definition dict_util.c:3752
static int8_t dict_enum_name_cmp(void const *one, void const *two)
Compare two dictionary attribute enum values.
Definition dict_util.c:342
void fr_dict_global_ctx_perm_check(fr_dict_gctx_t *gctx, bool enable)
Set whether we check dictionary file permissions.
Definition dict_util.c:4775
void fr_dict_global_ctx_read_only(void)
Mark all dictionaries and the global dictionary ctx as read only.
Definition dict_util.c:4834
int _dict_attr_init_name_only(char const *filename, int line, fr_dict_attr_t **da_p, fr_dict_attr_t const *parent, char const *name, fr_type_t type, dict_attr_args_t const *args)
Initialise fields in a dictionary attribute structure.
Definition dict_util.c:961
fr_dict_attr_t const * fr_dict_attr_by_oid(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *oid)
Resolve an attribute using an OID string.
Definition dict_util.c:2663
int dict_vendor_add(fr_dict_t *dict, char const *name, unsigned int num)
Add a vendor to the dictionary.
Definition dict_util.c:1605
static int _dict_global_free(fr_dict_gctx_t *gctx)
Definition dict_util.c:4647
static int8_t dict_protocol_name_cmp(void const *one, void const *two)
Compare two protocol names.
Definition dict_util.c:165
static int dict_attr_enumv_init(fr_dict_attr_t **da_p)
Initialise a per-attribute enumeration table.
Definition dict_util.c:535
int fr_dict_const_free(fr_dict_t const **dict, char const *dependent)
Decrement the reference count on a previously loaded dictionary.
Definition dict_util.c:4339
int fr_dl_dict_enum_autoload(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
Callback to automatically resolve enum values.
Definition dict_util.c:4592
int fr_dict_attr_autoload(fr_dict_attr_autoload_t const *to_load)
Process a dict_attr_autoload element to load/verify a dictionary attribute.
Definition dict_util.c:4421
fr_dict_t const * fr_dict_internal(void)
Definition dict_util.c:4943
fr_slen_t fr_dict_by_protocol_substr(fr_dict_attr_err_t *err, fr_dict_t const **out, fr_sbuff_t *name, fr_dict_t const *dict_def)
Look up a protocol name embedded in another string.
Definition dict_util.c:2787
int fr_dict_dependent_add(fr_dict_t const *dict, char const *dependent)
Manually increase the reference count for a dictionary.
Definition dict_util.c:4022
static int8_t dict_protocol_num_cmp(void const *one, void const *two)
Compare two protocol numbers.
Definition dict_util.c:186
int dict_attr_alias_add(fr_dict_attr_t const *parent, char const *alias, fr_dict_attr_t const *ref)
Add an alias to an existing attribute.
Definition dict_util.c:1428
fr_dict_t const * fr_dict_by_protocol_name(char const *name)
Lookup a protocol by its name.
Definition dict_util.c:2867
static uint32_t dict_protocol_name_hash(void const *data)
Wrap name hash function for fr_dict_protocol_t.
Definition dict_util.c:153
int dict_attr_finalise(fr_dict_attr_t **da_p, char const *name)
Set remaining fields in a dictionary attribute before insertion.
Definition dict_util.c:799
bool fr_dict_is_read_only(fr_dict_t const *dict)
Definition dict_util.c:2695
static uint32_t dict_hash_name(char const *name, size_t len)
Apply a simple (case insensitive) hashing function to the name of an attribute, vendor or protocol.
Definition dict_util.c:129
int fr_dict_attr_add_name_only(fr_dict_t *dict, fr_dict_attr_t const *parent, char const *name, fr_type_t type, fr_dict_attr_flags_t const *flags)
Add an attribute to the dictionary.
Definition dict_util.c:2038
#define FNV_MAGIC_INIT
Definition dict_util.c:114
int dict_attr_num_init(fr_dict_attr_t *da, unsigned int num)
Set the attribute number (if any)
Definition dict_util.c:755
static int dict_attr_namespace_init(fr_dict_attr_t **da_p)
Initialise a per-attribute namespace.
Definition dict_util.c:551
char const * fr_dict_global_ctx_dir(void)
Definition dict_util.c:4825
int dict_attr_num_init_name_only(fr_dict_attr_t *da)
Set the attribute number (if any)
Definition dict_util.c:773
static int _dict_attr_free(fr_dict_attr_t *da)
Definition dict_util.c:979
int fr_dict_global_ctx_free(fr_dict_gctx_t const *gctx)
Explicitly free all data associated with a global dictionary context.
Definition dict_util.c:4800
int dict_dlopen(fr_dict_t *dict, char const *name)
Definition dict_util.c:3886
fr_dict_t * dict_by_protocol_name(char const *name)
Internal version of fr_dict_by_protocol_name.
Definition dict_util.c:2798
int dict_attr_acopy_children(fr_dict_t *dict, fr_dict_attr_t *dst, fr_dict_attr_t const *src)
Copy the children of an existing attribute.
Definition dict_util.c:1215
fr_dict_vendor_t const * fr_dict_vendor_by_name(fr_dict_t const *dict, char const *name)
Look up a vendor by its name.
Definition dict_util.c:2947
int dict_attr_acopy_aliases(UNUSED fr_dict_attr_t *dst, fr_dict_attr_t const *src)
Copy aliases of an existing attribute to a new one.
Definition dict_util.c:1347
fr_slen_t(* dict_attr_resolve_func_t)(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_attr_t const *parent, fr_sbuff_t *in, fr_sbuff_term_t const *tt)
Callback function for resolving dictionary attributes.
Definition dict_util.c:3030
void fr_dict_gctx_debug(FILE *fp, fr_dict_gctx_t const *gctx)
Dump information about currently loaded dictionaries.
Definition dict_util.c:4861
fr_dict_attr_t const * fr_dict_attr_iterate_children(fr_dict_attr_t const *parent, fr_dict_attr_t const **prev)
Iterate over children of a DA.
Definition dict_util.c:5029
int dict_attr_enum_add_name(fr_dict_attr_t *da, char const *name, fr_value_box_t const *value, bool coerce, bool takes_precedence, fr_dict_attr_t const *key_child_ref)
Definition dict_util.c:2052
int _fr_dict_autoload(fr_dict_autoload_t const *to_load, char const *dependent)
Process a dict_autoload element to load a protocol.
Definition dict_util.c:4470
fr_dict_vendor_t const * fr_dict_vendor_by_num(fr_dict_t const *dict, uint32_t vendor_pen)
Look up a vendor by its PEN.
Definition dict_util.c:2970
fr_slen_t fr_dict_attr_search_by_oid_substr(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_t const *dict_def, fr_sbuff_t *in, fr_sbuff_term_t const *tt, bool internal, bool foreign)
Locate a qualified fr_dict_attr_t by a dictionary using a non-qualified OID string.
Definition dict_util.c:3352
ssize_t fr_dict_valid_name(char const *name, ssize_t len)
Definition dict_util.c:4953
#define DICT_ATTR_ALLOWED_CHARS
Definition dict_util.c:44
fr_dict_t * fr_dict_protocol_alloc(fr_dict_t const *parent)
Allocate a new local dictionary.
Definition dict_util.c:4292
fr_dict_attr_t const * fr_dict_attr_by_name(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *name)
Locate a fr_dict_attr_t by its name.
Definition dict_util.c:3553
fr_slen_t fr_dict_attr_by_name_substr(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_attr_t const *parent, fr_sbuff_t *name, UNUSED fr_sbuff_term_t const *tt)
Look up a dictionary attribute by a name embedded in another string.
Definition dict_util.c:3422
fr_dict_attr_t const * fr_dict_attr_child_by_num(fr_dict_attr_t const *parent, unsigned int attr)
Check if a child attribute exists in a parent using an attribute number.
Definition dict_util.c:3618
int dict_dependent_add(fr_dict_t *dict, char const *dependent)
Record a new dependency on a dictionary.
Definition dict_util.c:3978
fr_dict_enum_value_t const * fr_dict_enum_by_name(fr_dict_attr_t const *da, char const *name, ssize_t len)
Definition dict_util.c:3726
static int dict_attr_name_set(fr_dict_attr_t **da_p, char const *name)
Set a dictionary attribute's name.
Definition dict_util.c:415
fr_slen_t fr_dict_oid_component(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_attr_t const *parent, fr_sbuff_t *in, fr_sbuff_term_t const *tt)
Parse an OID component, resolving it to a defined attribute.
Definition dict_util.c:2524
static int dict_attr_vendor_set(fr_dict_attr_t **da_p, fr_dict_attr_t const *vendor)
Cache the vendor pointer for an attribute.
Definition dict_util.c:485
static uint32_t dict_enum_name_hash(void const *data)
Hash a enumeration name.
Definition dict_util.c:332
int dict_protocol_add(fr_dict_t *dict)
Add a protocol to the global protocol table.
Definition dict_util.c:1532
static uint32_t dict_enum_value_hash(void const *data)
Hash a dictionary enum value.
Definition dict_util.c:362
fr_dict_attr_t const * fr_dict_attr_search_by_qualified_oid(fr_dict_attr_err_t *err, fr_dict_t const *dict_def, char const *name, bool internal, bool foreign)
Locate a qualified fr_dict_attr_t by its name and a dictionary qualifier.
Definition dict_util.c:3371
bool dict_has_dependents(fr_dict_t *dict)
Check if a dictionary still has dependents.
Definition dict_util.c:4069
fr_dict_gctx_t * dict_gctx
Top level structure containing global dictionary state.
Definition dict_util.c:42
fr_dict_t const * fr_dict_by_protocol_num(unsigned int num)
Lookup a protocol by its number.
Definition dict_util.c:2880
int dict_attr_acopy_enumv(fr_dict_attr_t *dst, fr_dict_attr_t const *src)
Copy the VALUEs of an existing attribute, by casting them.
Definition dict_util.c:1312
int fr_dict_attr_add(fr_dict_t *dict, fr_dict_attr_t const *parent, char const *name, unsigned int attr, fr_type_t type, fr_dict_attr_flags_t const *flags)
Add an attribute to the dictionary.
Definition dict_util.c:1999
char const * dependent
Dependent that loaded the dictionary.
Definition dict_util.c:4529
static fr_dict_attr_t const * dict_attr_alias(fr_dict_attr_err_t *err, fr_dict_attr_t const *da)
Resolve an alias attribute to the concrete attribute it points to.
Definition dict_util.c:390
fr_dict_vendor_t const * fr_dict_vendor_by_da(fr_dict_attr_t const *da)
Look up a vendor by one of its child attributes.
Definition dict_util.c:2925
fr_dict_attr_t * dict_attr_acopy(TALLOC_CTX *ctx, fr_dict_attr_t const *parent, fr_dict_attr_t const *in, char const *name)
Copy a an existing attribute, possibly to a new location.
Definition dict_util.c:1117
int _dict_attr_init(char const *filename, int line, fr_dict_attr_t **da_p, fr_dict_attr_t const *parent, char const *name, unsigned int attr, fr_type_t type, dict_attr_args_t const *args)
Initialise fields in a dictionary attribute structure.
Definition dict_util.c:914
Structure used to managed the lifetime of a dictionary.
Definition dict_util.c:4527
dl_loader_t * dl_loader_init(TALLOC_CTX *ctx, void *uctx, bool uctx_free, bool defer_symbol_init)
Initialise structures needed by the dynamic linker.
Definition dl.c:885
int dl_free(dl_t const *dl)
"free" a dl handle, possibly actually freeing it, and unloading the library
Definition dl.c:678
dl_t * dl_by_name(dl_loader_t *dl_loader, char const *name, void *uctx, bool uctx_free)
Search for a dl's shared object in various locations.
Definition dl.c:470
Module handle.
Definition dl.h:58
#define fr_dlist_talloc_init(_head, _type, _field)
Initialise the head structure of a doubly linked list.
Definition dlist.h:275
void * fr_hash_table_iter_next(fr_hash_table_t *ht, fr_hash_iter_t *iter)
Iterate over entries in a hash table.
Definition hash.c:625
void * fr_hash_table_find(fr_hash_table_t *ht, void const *data)
Find data in a hash table.
Definition hash.c:428
void * fr_hash_table_iter_init(fr_hash_table_t *ht, fr_hash_iter_t *iter)
Initialise an iterator.
Definition hash.c:677
uint32_t fr_hash(void const *data, size_t size)
Definition hash.c:811
bool fr_hash_table_insert(fr_hash_table_t *ht, void const *data)
Insert data into a hash table.
Definition hash.c:467
int fr_hash_table_flatten(TALLOC_CTX *ctx, void **out[], fr_hash_table_t *ht)
Copy all entries out of a hash table into an array.
Definition hash.c:694
uint32_t fr_hash_string(char const *p)
Definition hash.c:864
bool fr_hash_table_delete(fr_hash_table_t *ht, void const *data)
Remove and free data (if a free function was specified)
Definition hash.c:593
void fr_hash_table_verify(fr_hash_table_t *ht)
Check hash table is sane.
Definition hash.c:896
int fr_hash_table_replace(void **old, fr_hash_table_t *ht, void const *data)
Replace old data with new data, OR insert if there is no old.
Definition hash.c:527
uint32_t fr_hash_table_num_elements(fr_hash_table_t *ht)
Definition hash.c:609
#define fr_hash_table_alloc(_ctx, _hash_node, _cmp_node, _free_node)
Definition hash.h:58
#define fr_hash_table_talloc_alloc(_ctx, _type, _hash_node, _cmp_node, _free_node)
Definition hash.h:61
Stores the state of the current iteration operation.
Definition hash.h:41
talloc_free(reap)
fr_type_t
@ FR_TYPE_TIME_DELTA
A period of time measured in nanoseconds.
@ FR_TYPE_INT8
8 Bit signed integer.
@ FR_TYPE_TLV
Contains nested attributes.
@ FR_TYPE_STRING
String of printable characters.
@ FR_TYPE_NULL
Invalid (uninitialised) attribute type.
@ FR_TYPE_UINT16
16 Bit unsigned integer.
@ FR_TYPE_INT64
64 Bit signed integer.
@ FR_TYPE_INT16
16 Bit signed integer.
@ FR_TYPE_DATE
Unix time stamp, always has value >2^31.
@ FR_TYPE_UINT8
8 Bit unsigned integer.
@ FR_TYPE_UINT32
32 Bit unsigned integer.
@ FR_TYPE_STRUCT
like TLV, but without T or L, and fixed-width children
@ FR_TYPE_INT32
32 Bit signed integer.
@ FR_TYPE_VENDOR
Attribute that represents a vendor in the attribute tree.
@ FR_TYPE_UINT64
64 Bit unsigned integer.
@ FR_TYPE_VOID
User data.
@ FR_TYPE_VSA
Vendor-Specific, for RADIUS attribute 26.
@ FR_TYPE_OCTETS
Raw octets.
@ FR_TYPE_GROUP
A grouping of other attributes.
unsigned int uint32_t
long int ssize_t
ssize_t fr_sbuff_out_bstrncpy_exact(fr_sbuff_t *out, fr_sbuff_t *in, size_t len)
unsigned char uint8_t
ssize_t fr_slen_t
unsigned long int size_t
#define UINT8_MAX
fr_sbuff_parse_error_t
@ FR_SBUFF_PARSE_ERROR_NOT_FOUND
String does not contain a token matching the output type.
@ FR_SBUFF_PARSE_ERROR_FORMAT
Format of data was invalid.
@ FR_SBUFF_PARSE_OK
No error.
@ FR_SBUFF_PARSE_ERROR_TRAILING
Trailing characters found.
size_t fr_sbuff_out_bstrncpy_allowed(fr_sbuff_t *out, fr_sbuff_t *in, size_t len, bool const allowed[static UINT8_MAX+1])
int strncasecmp(char *s1, char *s2, int n)
Definition missing.c:36
int strcasecmp(char *s1, char *s2)
Definition missing.c:66
#define fr_assert(_expr)
Definition rad_assert.h:38
static bool done
Definition radclient.c:81
uint32_t fr_rb_num_elements(fr_rb_tree_t *tree)
Return how many nodes there are in a tree.
Definition rb.c:781
void * fr_rb_iter_init_inorder(fr_rb_iter_inorder_t *iter, fr_rb_tree_t *tree)
Initialise an in-order iterator.
Definition rb.c:824
void * fr_rb_iter_next_inorder(fr_rb_iter_inorder_t *iter)
Return the next node.
Definition rb.c:850
void * fr_rb_find(fr_rb_tree_t const *tree, void const *data)
Find an element in the tree, returning the data, not the node.
Definition rb.c:577
bool fr_rb_insert(fr_rb_tree_t *tree, void const *data)
Insert data into a tree.
Definition rb.c:626
bool fr_rb_delete(fr_rb_tree_t *tree, void const *data)
Remove node and free data (if a free function was specified)
Definition rb.c:741
#define fr_rb_inline_alloc(_ctx, _type, _field, _data_cmp, _data_free)
Allocs a red black tree.
Definition rb.h:271
Iterator structure for in-order traversal of an rbtree.
Definition rb.h:321
static unsigned int hash(char const *username, unsigned int tablesize)
Definition rlm_passwd.c:132
static char const * name
bool fr_sbuff_is_terminal(fr_sbuff_t *in, fr_sbuff_term_t const *tt)
Efficient terminal string search.
Definition sbuff.c:2180
size_t fr_sbuff_adv_until(fr_sbuff_t *sbuff, size_t len, fr_sbuff_term_t const *tt, char escape_chr)
Wind position until we hit a character in the terminal set.
Definition sbuff.c:1880
fr_table_num_ordered_t const sbuff_parse_error_table[]
Definition sbuff.c:43
ssize_t fr_sbuff_in_sprintf(fr_sbuff_t *sbuff, char const *fmt,...)
Print using a fmt string to an sbuff.
Definition sbuff.c:1592
bool fr_sbuff_next_if_char(fr_sbuff_t *sbuff, char c)
Return true if the current char matches, and if it does, advance.
Definition sbuff.c:2116
bool const sbuff_char_alpha_num[UINT8_MAX+1]
Definition sbuff.c:98
#define fr_sbuff_set(_dst, _src)
#define FR_SBUFF_IN(_start, _len_or_end)
#define fr_sbuff_current(_sbuff_or_marker)
#define fr_sbuff_char(_sbuff_or_marker, _eob)
#define fr_sbuff_is_alpha(_sbuff_or_marker)
#define fr_sbuff_buff(_sbuff_or_marker)
#define fr_sbuff_is_char(_sbuff_or_marker, _c)
#define FR_SBUFF_ERROR_RETURN(_sbuff_or_marker)
#define FR_SBUFF_SET_RETURN(_dst, _src)
#define FR_SBUFF(_sbuff_or_marker)
#define fr_sbuff_out(_err, _out, _in)
#define fr_sbuff_init_in(_out, _start, _len_or_end)
#define fr_sbuff_remaining(_sbuff_or_marker)
#define fr_sbuff_len(_sbuff_or_marker)
#define FR_SBUFF_OUT(_start, _len_or_end)
#define fr_sbuff_used(_sbuff_or_marker)
Set of terminal elements.
fr_aka_sim_id_type_t type
#define fr_table_str_by_value(_table, _number, _def)
Convert an integer to a string.
Definition table.h:772
char * talloc_typed_asprintf(TALLOC_CTX *ctx, char const *fmt,...)
Call talloc vasprintf, setting the type on the new chunk correctly.
Definition talloc.c:514
char * talloc_typed_strdup(TALLOC_CTX *ctx, char const *p)
Call talloc_strdup, setting the type on the new chunk correctly.
Definition talloc.c:467
#define talloc_get_type_abort_const
Definition talloc.h:244
static int talloc_const_free(void const *ptr)
Free const'd memory.
Definition talloc.h:229
static void talloc_bstr_tolower(char *str)
Convert a talloced string to lowercase.
Definition talloc.h:128
@ FR_TIME_RES_SEC
Definition time.h:50
@ T_OP_CMP_EQ
Definition token.h:106
static fr_slen_t parent
Definition pair.h:854
char const * fr_strerror(void)
Get the last library error.
Definition strerror.c:553
#define fr_strerror_printf(_fmt,...)
Log to thread local error buffer.
Definition strerror.h:64
#define fr_strerror_printf_push(_fmt,...)
Add a message to an existing stack of messages at the tail.
Definition strerror.h:84
#define fr_strerror_const(_msg)
Definition strerror.h:223
bool const fr_type_fixed_size[FR_TYPE_MAX+1]
Definition types.c:189
bool const fr_type_structural[FR_TYPE_MAX+1]
Definition types.c:194
#define fr_type_is_non_leaf(_x)
Definition types.h:395
#define fr_type_is_variable_size(_x)
Definition types.h:389
#define fr_type_is_structural(_x)
Definition types.h:393
@ FR_TYPE_UNION
A union of limited children.
Definition types.h:82
#define FR_TYPE_STRUCTURAL
Definition types.h:317
#define fr_type_is_leaf(_x)
Definition types.h:394
static char const * fr_type_to_str(fr_type_t type)
Return a static string containing the type name.
Definition types.h:455
size_t fr_value_box_network_length(fr_value_box_t const *value)
Get the size of the value held by the fr_value_box_t.
Definition value.c:1430
uint32_t fr_value_box_hash(fr_value_box_t const *vb)
Hash the contents of a value box.
Definition value.c:6670
int fr_value_box_cast(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_value_box_t const *src)
Convert one type of fr_value_box_t to another.
Definition value.c:3730
int8_t fr_value_box_cmp(fr_value_box_t const *a, fr_value_box_t const *b)
Compare two values.
Definition value.c:743
int fr_value_box_copy(TALLOC_CTX *ctx, fr_value_box_t *dst, const fr_value_box_t *src)
Copy value data verbatim duplicating any buffers.
Definition value.c:4174
int fr_value_box_cmp_op(fr_token_t op, fr_value_box_t const *a, fr_value_box_t const *b)
Compare two attributes using an operator.
Definition value.c:1008
void fr_value_box_increment(fr_value_box_t *vb)
Increment a boxed value.
Definition value.c:4989
#define fr_value_box_alloc(_ctx, _type, _enumv)
Allocate a value box of a specific type.
Definition value.h:643
static fr_slen_t data
Definition value.h:1322
#define fr_box_strvalue_len(_val, _len)
Definition value.h:308
#define fr_value_box_init(_vb, _type, _enumv, _tainted)
Initialise a fr_value_box_t.
Definition value.h:609
static size_t char ** out
Definition value.h:1023