The FreeRADIUS server $Id: 15bac2a4c627c01d1aa2047687b3418955ac7f00 $
Loading...
Searching...
No Matches
dict_util.c
Go to the documentation of this file.
1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2 of the License, or
5 * (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
15 */
16
17/** Multi-protocol AVP dictionary API
18 *
19 * @file src/lib/util/dict_util.c
20 *
21 * @copyright 2000,2006 The FreeRADIUS server project
22 * @copyright 2024 Arran Cudbard-Bell (a.cudbardb@freeradius.org)
23 */
24RCSID("$Id: 0bca91fe6c61c1f1a5e27d9afef40ee7180a592a $")
25
26#define _DICT_PRIVATE 1
27
28#include <freeradius-devel/util/atexit.h>
29#include <freeradius-devel/util/conf.h>
30#include <freeradius-devel/util/dict.h>
31#include <freeradius-devel/util/dict_ext_priv.h>
32#include <freeradius-devel/util/dict_fixup_priv.h>
33#include <freeradius-devel/util/hash.h>
34#include <freeradius-devel/util/proto.h>
35#include <freeradius-devel/util/rand.h>
36#include <freeradius-devel/util/syserror.h>
37
38#ifdef HAVE_SYS_STAT_H
39# include <sys/stat.h>
40#endif
41
42fr_dict_gctx_t *dict_gctx = NULL; //!< Top level structure containing global dictionary state.
43
44#define DICT_ATTR_ALLOWED_CHARS \
45 ['-'] = true, ['/'] = true, ['_'] = true, \
46 ['0'] = true, ['1'] = true, ['2'] = true, ['3'] = true, ['4'] = true, \
47 ['5'] = true, ['6'] = true, ['7'] = true, ['8'] = true, ['9'] = true, \
48 ['A'] = true, ['B'] = true, ['C'] = true, ['D'] = true, ['E'] = true, \
49 ['F'] = true, ['G'] = true, ['H'] = true, ['I'] = true, ['J'] = true, \
50 ['K'] = true, ['L'] = true, ['M'] = true, ['N'] = true, ['O'] = true, \
51 ['P'] = true, ['Q'] = true, ['R'] = true, ['S'] = true, ['T'] = true, \
52 ['U'] = true, ['V'] = true, ['W'] = true, ['X'] = true, ['Y'] = true, \
53 ['Z'] = true, \
54 ['a'] = true, ['b'] = true, ['c'] = true, ['d'] = true, ['e'] = true, \
55 ['f'] = true, ['g'] = true, ['h'] = true, ['i'] = true, ['j'] = true, \
56 ['k'] = true, ['l'] = true, ['m'] = true, ['n'] = true, ['o'] = true, \
57 ['p'] = true, ['q'] = true, ['r'] = true, ['s'] = true, ['t'] = true, \
58 ['u'] = true, ['v'] = true, ['w'] = true, ['x'] = true, ['y'] = true, \
59 ['z'] = true
60
61/** Characters allowed in a single dictionary attribute name
62 *
63 */
67
68/** Characters allowed in a nested dictionary attribute name
69 *
70 */
73 [ '.' ] = true
74};
75
76/** Characters allowed in enumeration value names
77 *
78 */
80 ['+'] = true, ['-'] = true, ['.'] = true, ['/'] = true, ['_'] = true,
81 ['0'] = true, ['1'] = true, ['2'] = true, ['3'] = true, ['4'] = true,
82 ['5'] = true, ['6'] = true, ['7'] = true, ['8'] = true, ['9'] = true,
83 ['A'] = true, ['B'] = true, ['C'] = true, ['D'] = true, ['E'] = true,
84 ['F'] = true, ['G'] = true, ['H'] = true, ['I'] = true, ['J'] = true,
85 ['K'] = true, ['L'] = true, ['M'] = true, ['N'] = true, ['O'] = true,
86 ['P'] = true, ['Q'] = true, ['R'] = true, ['S'] = true, ['T'] = true,
87 ['U'] = true, ['V'] = true, ['W'] = true, ['X'] = true, ['Y'] = true,
88 ['Z'] = true,
89 ['a'] = true, ['b'] = true, ['c'] = true, ['d'] = true, ['e'] = true,
90 ['f'] = true, ['g'] = true, ['h'] = true, ['i'] = true, ['j'] = true,
91 ['k'] = true, ['l'] = true, ['m'] = true, ['n'] = true, ['o'] = true,
92 ['p'] = true, ['q'] = true, ['r'] = true, ['s'] = true, ['t'] = true,
93 ['u'] = true, ['v'] = true, ['w'] = true, ['x'] = true, ['y'] = true,
94 ['z'] = true
95};
96
97/** Default protocol rules set for every dictionary
98 *
99 * This is usually overriden by the public symbol from the protocol library
100 * associated with the dictionary
101 * e.g. libfreeradius-dhcpv6.so -> libfreeradius_dhcpv6_dict_protocol.
102 */
104 .name = "default",
105 .default_type_size = 2,
106 .default_type_length = 2,
107};
108
109/*
110 * Create the hash of the name.
111 *
112 * We copy the hash function here because it's substantially faster.
113 */
114#define FNV_MAGIC_INIT (0x811c9dc5)
115#define FNV_MAGIC_PRIME (0x01000193)
116
117static void hash_pool_free(void *to_free)
118{
119 talloc_free(to_free);
120}
121
122/** Apply a simple (case insensitive) hashing function to the name of an attribute, vendor or protocol
123 *
124 * @param[in] name of the attribute, vendor or protocol.
125 * @param[in] len length of the input string.
126 *
127 * @return the hashed derived from the name.
128 */
129static uint32_t dict_hash_name(char const *name, size_t len)
130{
132
133 char const *p = name, *q = name + len;
134
135 while (p < q) {
136 int c = *(unsigned char const *)p;
137 if (isalpha(c)) c = tolower(c);
138
139 /* coverity[overflow_const] */
141 hash ^= (uint32_t)(c & 0xff);
142 p++;
143 }
144
145 return hash;
146}
147
148/** Wrap name hash function for fr_dict_protocol_t
149 *
150 * @param[in] data fr_dict_attr_t to hash.
151 * @return the hash derived from the name of the attribute.
152 */
154{
155 char const *name;
156
157 name = ((fr_dict_t const *)data)->root->name;
158
159 return dict_hash_name(name, strlen(name));
160}
161
162/** Compare two protocol names
163 *
164 */
165static int8_t dict_protocol_name_cmp(void const *one, void const *two)
166{
167 fr_dict_t const *a = one;
168 fr_dict_t const *b = two;
169 int ret;
170
171 ret = strcasecmp(a->root->name, b->root->name);
172 return CMP(ret, 0);
173}
174
175/** Hash a protocol number
176 *
177 */
179{
180 return fr_hash(&(((fr_dict_t const *)data)->root->attr), sizeof(((fr_dict_t const *)data)->root->attr));
181}
182
183/** Compare two protocol numbers
184 *
185 */
186static int8_t dict_protocol_num_cmp(void const *one, void const *two)
187{
188 fr_dict_t const *a = one;
189 fr_dict_t const *b = two;
190
191 return CMP(a->root->attr, b->root->attr);
192}
193
194/** Wrap name hash function for fr_dict_attr_t
195 *
196 * @param data fr_dict_attr_t to hash.
197 * @return the hash derived from the name of the attribute.
198 */
200{
201 char const *name;
202
203 name = ((fr_dict_attr_t const *)data)->name;
204
205 return dict_hash_name(name, strlen(name));
206}
207
208/** Compare two attribute names
209 *
210 */
211static int8_t dict_attr_name_cmp(void const *one, void const *two)
212{
213 fr_dict_attr_t const *a = one, *b = two;
214 int ret;
215
216 ret = strcasecmp(a->name, b->name);
217 return CMP(ret, 0);
218}
219
220/** Compare two attributes by total order.
221 *
222 * This function is safe / ordered even when the attributes are in
223 * different dictionaries. This allows it to work for local
224 * variables, as those are in a different dictionary from the
225 * protocol ones.
226 *
227 * This function orders parents first, then their children.
228 */
230{
231 int8_t ret;
232
233 /*
234 * Order by parent first. If the parents are different,
235 * we order by parent numbers.
236 *
237 * If the attributes share the same parent at some point,
238 * then the deeper child is sorted later.
239 */
240 if (a->depth < b->depth) {
241 ret = fr_dict_attr_ordered_cmp(a, b->parent);
242 if (ret != 0) return ret;
243
244 return -1; /* order a before b */
245 }
246
247 if (a->depth > b->depth) {
248 ret = fr_dict_attr_ordered_cmp(a->parent, b);
249 if (ret != 0) return ret;
250
251 return +1; /* order b before a */
252 }
253
254 /*
255 * We're at the root (e.g. "RADIUS"). Compare by
256 * protocol number.
257 *
258 * Or, the parents are the same. We can then order by
259 * our (i.e. child) attribute number.
260 */
261 if ((a->depth == 0) || (a->parent == b->parent)) {
262 /*
263 * Order known attributes before unknown / raw ones.
264 */
265 ret = (b->flags.is_unknown | b->flags.is_raw) - (a->flags.is_unknown | a->flags.is_raw);
266 if (ret != 0) return 0;
267
268 return CMP(a->attr, b->attr);
269 }
270
271 /*
272 * The parents are different, we don't need to order by
273 * our attribute number. Instead, we order by the
274 * parent.
275 *
276 * Note that at this point, the call below will never
277 * return 0, because the parents are different.
278 */
279 return fr_dict_attr_ordered_cmp(a->parent, b->parent);
280}
281
282/** Wrap name hash function for fr_dict_vendor_t
283 *
284 * @param data fr_dict_vendor_t to hash.
285 * @return the hash derived from the name of the attribute.
286 */
288{
289 char const *name;
290
291 name = ((fr_dict_vendor_t const *)data)->name;
292
293 return dict_hash_name(name, strlen(name));
294}
295
296/** Compare two attribute names
297 *
298 */
299static int8_t dict_vendor_name_cmp(void const *one, void const *two)
300{
301 fr_dict_vendor_t const *a = one;
302 fr_dict_vendor_t const *b = two;
303 int ret;
304
305 ret = strcasecmp(a->name, b->name);
306 return CMP(ret, 0);
307}
308
309/** Hash a vendor number
310 *
311 */
313{
314 return fr_hash(&(((fr_dict_vendor_t const *)data)->pen),
315 sizeof(((fr_dict_vendor_t const *)data)->pen));
316}
317
318/** Compare two vendor numbers
319 *
320 */
321static int8_t dict_vendor_pen_cmp(void const *one, void const *two)
322{
323 fr_dict_vendor_t const *a = one;
324 fr_dict_vendor_t const *b = two;
325
326 return CMP(a->pen, b->pen);
327}
328
329/** Hash a enumeration name
330 *
331 */
333{
334 fr_dict_enum_value_t const *enumv = data;
335
336 return dict_hash_name((void const *)enumv->name, enumv->name_len);
337}
338
339/** Compare two dictionary attribute enum values
340 *
341 */
342static int8_t dict_enum_name_cmp(void const *one, void const *two)
343{
344 fr_dict_enum_value_t const *a = one;
345 fr_dict_enum_value_t const *b = two;
346 size_t len;
347 int ret;
348
349 if (a->name_len >= b->name_len) {
350 len = a->name_len;
351 } else {
352 len = b->name_len;
353 }
354
355 ret = strncasecmp(a->name, b->name, len);
356 return CMP(ret, 0);
357}
358
359/** Hash a dictionary enum value
360 *
361 */
363{
364 fr_dict_enum_value_t const *enumv = data;
365
366 return fr_value_box_hash(enumv->value);
367}
368
369/** Compare two dictionary enum values
370 *
371 */
372static int8_t dict_enum_value_cmp(void const *one, void const *two)
373{
374 fr_dict_enum_value_t const *a = one;
375 fr_dict_enum_value_t const *b = two;
376 int ret;
377
378 ret = fr_value_box_cmp(a->value, b->value); /* not yet int8_t! */
379 return CMP(ret, 0);
380}
381
382/** Resolve an alias attribute to the concrete attribute it points to
383 *
384 * @param[out] err where to write the error (if any).
385 * @param[in] da to resolve.
386 * @return
387 * - NULL on error.
388 * - The concrete attribute on success.
389 */
391{
392 fr_dict_attr_t const *ref;
393
394 if (!da->flags.is_alias) return da;
395
396 ref = fr_dict_attr_ref(da);
397 if (unlikely(!ref)) {
398 fr_strerror_printf("ALIAS attribute '%s' missing reference", da->name);
400 return NULL;
401 } else {
402 if (err) *err = FR_DICT_ATTR_OK;
403 }
404
405 return ref;
406}
407
408/** Set a dictionary attribute's name
409 *
410 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
411 *
412 * @param[in] da_p to set name for.
413 * @param[in] name to set. If NULL a name will be automatically generated.
414 */
415static inline CC_HINT(always_inline) int dict_attr_name_set(fr_dict_attr_t **da_p, char const *name)
416{
418 size_t name_len;
419 char *name_start, *name_end;
420 fr_dict_attr_t *da = *da_p;
421
422 /*
423 * Generate a name if none is specified
424 */
425 if (!name) {
426 fr_sbuff_t unknown_name = FR_SBUFF_OUT(buffer, sizeof(buffer));
427
428
429 (void) fr_sbuff_in_sprintf(&unknown_name, "%u", da->attr);
430
431 name = fr_sbuff_buff(&unknown_name);
432 name_len = fr_sbuff_used(&unknown_name);
433 } else {
434 name_len = strlen(name);
435 }
436
437 /*
438 * Grow the structure to hold the name
439 *
440 * We add the name as an extension because it makes
441 * the code less complex, and means the name value
442 * is copied automatically when if the fr_dict_attr_t
443 * is copied.
444 *
445 * We do still need to fixup the da->name pointer
446 * though.
447 */
448 name_start = dict_attr_ext_alloc_size(da_p, FR_DICT_ATTR_EXT_NAME, name_len + 1);
449 if (!name_start) return -1;
450
451 name_end = name_start + name_len;
452
453 memcpy(name_start, name, name_len);
454 *name_end = '\0';
455
456 (*da_p)->name = name_start;
457 (*da_p)->name_len = name_len;
458
459 return 0;
460}
461
462/** Add a child/nesting extension to an attribute
463 *
464 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
465 *
466 * @param[in] da_p to set a group reference for.
467 */
468static inline CC_HINT(always_inline) int dict_attr_children_init(fr_dict_attr_t **da_p)
469{
471
473 if (unlikely(!ext)) return -1;
474
475 return 0;
476}
477
478/** Cache the vendor pointer for an attribute
479 *
480 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
481 *
482 * @param[in] da_p to set a group reference for.
483 * @param[in] vendor to set.
484 */
485static inline CC_HINT(always_inline) int dict_attr_vendor_set(fr_dict_attr_t **da_p, fr_dict_attr_t const *vendor)
486{
488
490 if (unlikely(!ext)) return -1;
491
492 ext->vendor = vendor;
493
494 return 0;
495}
496
497/** Initialise an attribute's da stack from its parent
498 *
499 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
500 *
501 * @param[in] da_p to populate the da_stack for.
502 */
503static inline CC_HINT(always_inline) int dict_attr_da_stack_set(fr_dict_attr_t **da_p)
504{
505 fr_dict_attr_ext_da_stack_t *ext, *p_ext;
506 fr_dict_attr_t *da = *da_p;
507 fr_dict_attr_t const *parent = da->parent;
508
509 if (!parent) return 1;
510 if (da->depth > FR_DICT_DA_STACK_CACHE_MAX) return 1;
512
514 if (!p_ext) return 1;
515
516 ext = dict_attr_ext_alloc_size(da_p, FR_DICT_ATTR_EXT_DA_STACK, sizeof(ext->da_stack[0]) * (da->depth + 1));
517 if (unlikely(!ext)) return -1;
518
519 memcpy(ext->da_stack, p_ext->da_stack, sizeof(ext->da_stack[0]) * parent->depth);
520
521 /*
522 * Always set the last stack entry to ourselves.
523 */
524 ext->da_stack[da->depth] = da;
525
526 return 0;
527}
528
529/** Initialise a per-attribute enumeration table
530 *
531 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
532 *
533 * @param[in] da_p to set a group reference for.
534 */
535static inline CC_HINT(always_inline) int dict_attr_enumv_init(fr_dict_attr_t **da_p)
536{
538
540 if (unlikely(!ext)) return -1;
541
542 return 0;
543}
544
545/** Initialise a per-attribute namespace
546 *
547 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
548 *
549 * @param[in] da_p to set a group reference for.
550 */
551static inline CC_HINT(always_inline) int dict_attr_namespace_init(fr_dict_attr_t **da_p)
552{
554
556 if (unlikely(!ext)) return -1;
557
558 /*
559 * Create the table of attributes by name.
560 * There MAY NOT be multiple attributes of the same name.
561 *
562 * If the attribute already has extensions
563 * then we don't want to leak the old
564 * namespace hash table.
565 */
566 if (!ext->namespace) {
567 ext->namespace = fr_hash_table_talloc_alloc(*da_p, fr_dict_attr_t,
569 if (!ext->namespace) {
570 fr_strerror_printf("Failed allocating \"namespace\" table");
571 return -1;
572 }
573 }
574
575 return 0;
576}
577
578/** Initialise type specific fields within the dictionary attribute
579 *
580 * Call when the type of the attribute is known.
581 *
582 * @param[in,out] da_p to set the type for.
583 * @param[in] type to set.
584 * @return
585 * - 0 on success.
586 * - < 0 on error.
587 */
589{
590 if (unlikely((*da_p)->type != FR_TYPE_NULL)) {
591 fr_strerror_const("Attribute type already set");
592 return -1;
593 }
594
595 if (unlikely((*da_p)->state.finalised == true)) {
596 fr_strerror_const("Can't perform type initialisation on finalised attribute");
597 return -1;
598 }
599
600 /*
601 * Structural types can have children
602 * so add the extension for them.
603 */
604 switch (type) {
606 structural:
607 /*
608 * Groups don't have children or namespaces. But
609 * they always have refs. Either to the root of
610 * the current dictionary, or to another dictionary,
611 * via its top-level TLV.
612 *
613 * Note that when multiple TLVs have the same
614 * children, the dictionary has to use "clone="
615 * instead of "ref=". That's because the
616 * children of the TLVs all require the correct
617 * parentage. Perhaps that can be changed when
618 * the encoders / decoders are updated. It would be good to just reference the DAs instead of cloning an entire subtree.
619 */
620 if (type == FR_TYPE_GROUP) {
621 if (dict_attr_ext_alloc(da_p, FR_DICT_ATTR_EXT_REF) == NULL) return -1;
622 break;
623 }
624
625 if (dict_attr_children_init(da_p) < 0) return -1;
626 if (dict_attr_namespace_init(da_p) < 0) return -1; /* Needed for all TLV style attributes */
627
628 (*da_p)->last_child_attr = (1 << 24); /* High enough not to conflict with protocol numbers */
629 break;
630
631 /*
632 * Keying types *sigh*
633 */
634 case FR_TYPE_UINT8: /* Hopefully temporary until unions are done properly */
635 case FR_TYPE_UINT16: /* Same here */
636 if (dict_attr_enumv_init(da_p) < 0) return -1;
637 goto structural;
638
639 /*
640 * Leaf types
641 */
642 default:
643 if (dict_attr_enumv_init(da_p) < 0) return -1;
644 break;
645 }
646
647 (*da_p)->flags.is_known_width |= fr_type_fixed_size[type];
648
649 /*
650 * Set default type-based flags
651 */
652 switch (type) {
653 case FR_TYPE_DATE:
655 (*da_p)->flags.length = 4;
656 (*da_p)->flags.flag_time_res = FR_TIME_RES_SEC;
657 break;
658
659
660 case FR_TYPE_OCTETS:
661 case FR_TYPE_STRING:
662 (*da_p)->flags.is_known_width = ((*da_p)->flags.length != 0);
663 break;
664
665 default:
666 break;
667 }
668
669 (*da_p)->type = type;
670
671 return 0;
672}
673
674/** Initialise fields which depend on a parent attribute
675 *
676 * @param[in,out] da_p to initialise.
677 * @param[in] parent of the attribute.
678 * @return
679 * - 0 on success.
680 * - < 0 on error.
681 */
683{
684 fr_dict_attr_t *da = *da_p;
685
686 if (unlikely((*da_p)->type == FR_TYPE_NULL)) {
687 fr_strerror_const("Attribute type must be set before initialising parent. Use dict_attr_type_init() first");
688 return -1;
689 }
690
691 if (unlikely(da->parent != NULL)) {
692 fr_strerror_printf("Attempting to set parent for '%s' to '%s', but parent already set to '%s'",
693 da->name, parent->name, da->parent->name);
694 return -1;
695 }
696
697 if (unlikely((*da_p)->state.finalised == true)) {
698 fr_strerror_printf("Attempting to set parent for '%s' to '%s', but attribute already finalised",
699 da->name, parent->name);
700 return -1;
701 }
702
703 da->parent = parent;
704 da->dict = parent->dict;
705 da->depth = parent->depth + 1;
706
707 /*
708 * Point to the vendor definition. Since ~90% of
709 * attributes are VSAs, caching this pointer will help.
710 */
711 if (parent->type == FR_TYPE_VENDOR) {
712 int ret = dict_attr_vendor_set(&da, parent);
713 *da_p = da;
714 if (ret < 0) return -1;
715 } else {
716 dict_attr_ext_copy(da_p, parent, FR_DICT_ATTR_EXT_VENDOR); /* Noop if no vendor extension */
717 }
718
719 /*
720 * Cache the da_stack so we don't need
721 * to generate it at runtime.
722 */
724
725 return 0;
726}
727
728/** Set the attribute number (if any)
729 *
730 * @param[in] da to set the attribute number for.
731 * @param[in] num to set.
732 */
733int dict_attr_num_init(fr_dict_attr_t *da, unsigned int num)
734{
735 if (da->state.attr_set) {
736 fr_strerror_const("Attribute number already set");
737 return -1;
738 }
739 da->attr = num;
740 da->state.attr_set = true;
741
742 return 0;
743}
744
745/** Set the attribute number (if any)
746 *
747 * @note Must have a parent set.
748 *
749 * @param[in] da to set the attribute number for.
750 */
752{
753 if (!da->parent) {
754 fr_strerror_const("Attribute must have parent set before automatically setting attribute number");
755 return -1;
756 }
757 return dict_attr_num_init(da, ++fr_dict_attr_unconst(da->parent)->last_child_attr);
758}
759
760/** Set where the dictionary attribute was defined
761 *
762 */
763void dict_attr_location_init(fr_dict_attr_t *da, char const *filename, int line)
764{
765 da->filename = filename;
766 da->line = line;
767}
768
769/** Set remaining fields in a dictionary attribute before insertion
770 *
771 * @param[in] da_p to finalise.
772 * @param[in] name of the attribute.
773 * @return
774 * - 0 on success.
775 * - < 0 on error.
776 */
777int dict_attr_finalise(fr_dict_attr_t **da_p, char const *name)
778{
779 fr_dict_attr_t *da;
780
781 /*
782 * Finalising the attribute allocates its
783 * automatic number if its a name only attribute.
784 */
785 da = *da_p;
786
787 /*
788 * Initialize the length field automatically if it's not been set already
789 */
790 if (!da->flags.length && fr_type_is_leaf(da->type) && !fr_type_is_variable_size(da->type)) {
791 fr_value_box_t box;
792
793 fr_value_box_init(&box, da->type, NULL, false);
794 da->flags.length = fr_value_box_network_length(&box);
795 }
796
797 switch(da->type) {
798 case FR_TYPE_STRUCT:
799 da->flags.is_known_width |= da->flags.array;
800 break;
801
802 case FR_TYPE_GROUP:
803 {
805 /*
806 * If it's a group attribute, the default
807 * reference goes to the root of the
808 * dictionary as that's where the default
809 * name/numberspace is.
810 *
811 * This may be updated by the caller.
812 */
814 if (unlikely(ext == NULL)) {
815 fr_strerror_const("Missing ref extension");
816 return -1;
817 }
818
819 /*
820 * For groups, if a ref wasn't provided then
821 * set it to the dictionary root.
822 */
823 if ((ext->type == FR_DICT_ATTR_REF_NONE) &&
825 return -1;
826 }
827 }
828 break;
829
830 default:
831 break;
832 }
833
834 /*
835 * Name is a separate talloc chunk. We allocate
836 * it last because we cache the pointer value.
837 */
838 if (dict_attr_name_set(da_p, name) < 0) return -1;
839
840 DA_VERIFY(*da_p);
841
842 (*da_p)->state.finalised = true;
843
844 return 0;
845}
846
847static inline CC_HINT(always_inline)
848int dict_attr_init_common(char const *filename, int line,
849 fr_dict_attr_t **da_p,
850 fr_dict_attr_t const *parent,
852{
853 dict_attr_location_init((*da_p), filename, line);
854
855 if (unlikely(dict_attr_type_init(da_p, type) < 0)) return -1;
856
857 if (args->flags) (*da_p)->flags = *args->flags;
858
859 if (parent && (dict_attr_parent_init(da_p, parent) < 0)) return -1;
860
861 if (args->ref && (dict_attr_ref_aset(da_p, args->ref, FR_DICT_ATTR_REF_ALIAS) < 0)) return -1;
862
863 return 0;
864}
865
866/** Initialise fields in a dictionary attribute structure
867 *
868 * This function is a wrapper around the other initialisation functions.
869 *
870 * The reason for the separation, is that sometimes we're initialising a dictionary attribute
871 * by parsing an actual dictionary file, and other times we're copying attribute, or initialising
872 * them programatically.
873 *
874 * This function should only be used for the second case, where we have a complet attribute
875 * definition already.
876 *
877 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
878 *
879 * @param[in] filename file.
880 * @param[in] line number.
881 * @param[in] da_p to initialise.
882 * @param[in] parent of the attribute, if none, this attribute will
883 * be initialised as a dictionary root.
884 * @param[in] name of attribute. Pass NULL for auto-generated name.
885 * @param[in] attr number.
886 * @param[in] type of the attribute.
887 * @param[in] args optional initialisation arguments.
888 * @return
889 * - 0 on success.
890 * - <0 on error.
891 */
892int _dict_attr_init(char const *filename, int line,
893 fr_dict_attr_t **da_p,
894 fr_dict_attr_t const *parent,
895 char const *name, unsigned int attr,
897{
898 if (unlikely(dict_attr_init_common(filename, line, da_p, parent, type, args) < 0)) return -1;
899
900 if (unlikely(dict_attr_num_init(*da_p, attr) < 0)) return -1;
901
902 if (unlikely(dict_attr_finalise(da_p, name) < 0)) return -1;
903
904 return 0;
905}
906
907/** Initialise fields in a dictionary attribute structure
908 *
909 * This function is a wrapper around the other initialisation functions.
910 *
911 * The reason for the separation, is that sometimes we're initialising a dictionary attribute
912 * by parsing an actual dictionary file, and other times we're copying attribute, or initialising
913 * them programatically.
914 *
915 * This function should only be used for the second case, where we have a complet attribute
916 * definition already.
917 *
918 * @note This function can only be used _before_ the attribute is inserted into the dictionary.
919 *
920 * @param[in] filename file.
921 * @param[in] line number.
922 * @param[in] da_p to initialise.
923 * @param[in] parent of the attribute, if none, this attribute will
924 * be initialised as a dictionary root.
925 * @param[in] name of attribute. Pass NULL for auto-generated name.
926 * automatically generated.
927 * @param[in] type of the attribute.
928 * @param[in] args optional initialisation arguments.
929 * @return
930 * - 0 on success.
931 * - <0 on error.
932 */
933int _dict_attr_init_name_only(char const *filename, int line,
934 fr_dict_attr_t **da_p,
935 fr_dict_attr_t const *parent,
936 char const *name,
938{
939 if (unlikely(dict_attr_init_common(filename, line, da_p, parent, type, args) < 0)) return -1;
940
941 /*
942 * Automatically generate the attribute number when the attribut is added.
943 */
944 (*da_p)->flags.name_only = true;
945
946 if (unlikely(dict_attr_finalise(da_p, name) < 0)) return -1;
947
948 return 0;
949}
950
952{
954
955#if 0
956#ifdef WITH_VERIFY_PTR
957 /*
958 * Check that any attribute we reference is still valid
959 * when we're being freed.
960 */
961 fr_dict_attr_t const *ref = fr_dict_attr_ref(da);
962
963 if (ref) (void)talloc_get_type_abort_const(ref, fr_dict_attr_t);
964#endif
965#endif
966
968 if (ext) talloc_free(ext->value_by_name); /* Ensure this is freed before the enumvs */
969
970 return 0;
971}
972
973/** Allocate a partially completed attribute
974 *
975 * This is useful in some instances where we need to pre-allocate the attribute
976 * for talloc hierarchy reasons, but want to finish initialising it
977 * with #dict_attr_init later.
978 *
979 * @param[in] ctx to allocate attribute in.
980 * @param[in] proto protocol specific extensions.
981 * @return
982 * - A new, partially completed, fr_dict_attr_t on success.
983 * - NULL on failure (memory allocation error).
984 */
986{
987 fr_dict_attr_t *da;
988
989 /*
990 * Do not use talloc zero, the caller
991 * always initialises memory allocated
992 * here.
993 */
994 da = talloc_zero(ctx, fr_dict_attr_t);
995 if (unlikely(!da)) return NULL;
996
997 /*
998 * Allocate room for the protocol specific flags
999 */
1000 if (proto->attr.flags.len > 0) {
1002 proto->attr.flags.len) == NULL)) {
1003 talloc_free(da);
1004 return NULL;
1005 }
1006 }
1007 talloc_set_destructor(da, _dict_attr_free);
1008
1009 return da;
1010}
1011
1012/** Allocate a dictionary root attribute on the heap
1013 *
1014 * @param[in] filename file.
1015 * @param[in] line number.
1016 * @param[in] ctx to allocate the attribute in.
1017 * @param[in] dict the attribute will be used in.
1018 * @param[in] name of the attribute. If NULL an OID string
1019 * will be created and set as the name.
1020 * @param[in] proto_number number. This should be
1021 * @param[in] args optional initialisation arguments.
1022 * @return
1023 * - A new fr_dict_attr_t on success.
1024 * - NULL on failure.
1025 */
1026fr_dict_attr_t *_dict_attr_alloc_root(char const *filename, int line,
1027 TALLOC_CTX *ctx,
1028 fr_dict_t const *dict,
1029 char const *name, int proto_number,
1030 dict_attr_args_t const *args)
1031{
1033
1034 n = dict_attr_alloc_null(ctx, dict->proto);
1035 if (unlikely(!n)) return NULL;
1036
1037 if (_dict_attr_init(filename, line, &n, NULL, name, proto_number, FR_TYPE_TLV, args) < 0) {
1038 talloc_free(n);
1039 return NULL;
1040 }
1041
1042 return n;
1043}
1044
1045/** Allocate a dictionary attribute on the heap
1046 *
1047 * @param[in] filename file.
1048 * @param[in] line number.
1049 * @param[in] ctx to allocate the attribute in.
1050 * @param[in] parent of the attribute.
1051 * @param[in] name of the attribute. If NULL an OID string
1052 * will be created and set as the name.
1053 * @param[in] attr number.
1054 * @param[in] type of the attribute.
1055 * @param[in] args optional initialisation arguments.
1056 * @return
1057 * - A new fr_dict_attr_t on success.
1058 * - NULL on failure.
1059 */
1060fr_dict_attr_t *_dict_attr_alloc(char const *filename, int line,
1061 TALLOC_CTX *ctx,
1062 fr_dict_attr_t const *parent,
1063 char const *name, int attr,
1065{
1067
1068 n = dict_attr_alloc_null(ctx, parent->dict->proto);
1069 if (unlikely(!n)) return NULL;
1070
1071 if (_dict_attr_init(filename, line, &n, parent, name, attr, type, args) < 0) {
1072 talloc_free(n);
1073 return NULL;
1074 }
1075
1076 return n;
1077}
1078
1079/** Copy a an existing attribute
1080 *
1081 * @param[in] ctx to allocate new attribute in.
1082 * @param[in] in attribute to copy.
1083 * @param[in] new_name to assign to the attribute.
1084 * If NULL the existing name will be used.
1085 * @return
1086 * - A copy of the input fr_dict_attr_t on success.
1087 * - NULL on failure.
1088 */
1089fr_dict_attr_t *dict_attr_acopy(TALLOC_CTX *ctx, fr_dict_attr_t const *in, char const *new_name)
1090{
1092
1093 if (in->flags.has_fixup) {
1094 fr_strerror_printf("Cannot copy from %s - source attribute is waiting for additional definitions",
1095 in->name);
1096 return NULL;
1097 }
1098
1099 n = dict_attr_alloc(ctx, in->parent, new_name ? new_name : in->name,
1100 in->attr, in->type, &(dict_attr_args_t){ .flags = &in->flags });
1101 if (unlikely(!n)) return NULL;
1102
1103 if (dict_attr_ext_copy_all(&n, in) < 0) {
1104 talloc_free(n);
1105 return NULL;
1106 }
1107 DA_VERIFY(n);
1108
1109 return n;
1110}
1111
1112/** Copy an existing attribute to a different dictionary
1113 *
1114 * @param[in] ctx to allocate new attribute in.
1115 * @param[in] parent new parent to copy into
1116 * @param[in] in attribute to copy.
1117 * @return
1118 * - A copy of the input fr_dict_attr_t on success.
1119 * - NULL on failure.
1120 */
1122{
1124
1125 if (in->flags.has_fixup) {
1126 fr_strerror_printf("Cannot copy from %s - source attribute is waiting for additional definitions",
1127 in->name);
1128 return NULL;
1129 }
1130
1131 n = dict_attr_alloc(ctx, parent, in->name,
1132 in->attr, in->type, &(dict_attr_args_t){ .flags = &in->flags });
1133 if (unlikely(!n)) return NULL;
1134
1135 if (dict_attr_ext_copy_all(&n, in) < 0) {
1136 talloc_free(n);
1137 return NULL;
1138 }
1139 DA_VERIFY(n);
1140
1141 return n;
1142}
1143
1145{
1146 if (!dst->flags.local) {
1147 fr_strerror_const("Cannot copy attributes to a non-local dictionary");
1148 return -1;
1149 }
1150
1151 if (src->flags.has_fixup) {
1152 fr_strerror_printf("Cannot copy from %s to %s - source attribute is waiting for additional definitions",
1153 src->name, dst->name);
1154 return -1;
1155 }
1156
1157 /*
1158 * Why not? @todo - check and fix
1159 */
1160 if (src->flags.local) {
1161 fr_strerror_const("Cannot copy a local attribute");
1162 return -1;
1163 }
1164
1165 return dict_attr_acopy_children(dst->dict, UNCONST(fr_dict_attr_t *, dst), src);
1166}
1167
1168/** Copy the children of an existing attribute
1169 *
1170 * @param[in] dict to allocate the children in
1171 * @param[in] dst where to copy the children to
1172 * @param[in] src where to copy the children from
1173 * @return
1174 * - 0 on success
1175 * - <0 on error
1176 */
1178{
1179 fr_dict_attr_t const *child = NULL;
1180 fr_dict_attr_t *copy;
1181 uint depth_diff = dst->depth - src->depth;
1182
1184 fr_assert(dst->type == src->type);
1186
1187 for (child = fr_dict_attr_iterate_children(src, &child);
1188 child != NULL;
1189 child = fr_dict_attr_iterate_children(src, &child)) {
1190 if (child->dict == dict) {
1191 copy = dict_attr_acopy(dict->pool, child, NULL);
1192 } else {
1193 copy = dict_attr_acopy_dict(dict->pool, dst, child);
1194 }
1195 if (!copy) return -1;
1196
1197 copy->parent = dst;
1198 copy->depth += depth_diff;
1199
1200 if (dict_attr_child_add(dst, copy) < 0) return -1;
1201
1202 if (dict_attr_add_to_namespace(dst, copy) < 0) return -1;
1203
1204 if (!dict_attr_children(child)) continue;
1205
1206 if (dict_attr_acopy_children(dict, copy, child) < 0) return -1;
1207 }
1208
1209 return 0;
1210}
1211
1212/** Copy the VALUEs of an existing attribute, by casting them
1213 *
1214 * @param[in] dst where to cast the VALUEs to
1215 * @param[in] src where to cast the VALUEs from
1216 * @return
1217 * - 0 on success
1218 * - <0 on error
1219 */
1221{
1223
1224 fr_assert(!fr_type_is_non_leaf(dst->type));
1225 fr_assert(!fr_type_is_non_leaf(src->type));
1226
1229
1231 if (!ext) {
1232 fr_assert(0);
1233 return -1;
1234 }
1235
1236 if (!ext->name_by_value) {
1237 fr_strerror_printf("Reference enum %s does not have any VALUEs to copy", src->name);
1238 return -1;
1239 }
1240
1242
1243 return -1;
1244}
1245
1246/** Add an alias to an existing attribute
1247 *
1248 */
1249int dict_attr_alias_add(fr_dict_attr_t const *parent, char const *alias, fr_dict_attr_t const *ref)
1250{
1251 fr_dict_attr_t const *da;
1252 fr_dict_attr_t *self;
1253 fr_hash_table_t *namespace;
1254
1255 da = dict_attr_by_name(NULL, parent, alias);
1256 if (da) {
1257 fr_strerror_printf("ALIAS '%s' conflicts with another attribute in namespace %s",
1258 alias, parent->name);
1259 return -1;
1260 }
1261
1262 /*
1263 * Note that we do NOT call fr_dict_attr_add() here.
1264 *
1265 * When that function adds two equivalent attributes, the
1266 * second one is prioritized for printing. For ALIASes,
1267 * we want the pre-existing one to be prioritized.
1268 *
1269 * i.e. you can lookup the ALIAS by "name", but you
1270 * actually get returned "ref".
1271 */
1272 {
1273 fr_dict_attr_flags_t flags = ref->flags;
1274
1275 flags.is_alias = 1; /* These get followed automatically by public functions */
1276
1277 self = dict_attr_alloc(parent->dict->pool, parent, alias, ref->attr, ref->type, (&(dict_attr_args_t){ .flags = &flags, .ref = ref }));
1278 if (unlikely(!self)) return -1;
1279 }
1280
1281 self->dict = parent->dict;
1282
1283 fr_assert(fr_dict_attr_ref(self) == ref);
1284
1285 namespace = dict_attr_namespace(parent);
1286 if (!namespace) {
1287 fr_strerror_printf("Attribute '%s' does not contain a namespace", parent->name);
1288 error:
1289 talloc_free(self);
1290 return -1;
1291 }
1292
1293 if (!fr_hash_table_insert(namespace, self)) {
1294 fr_strerror_const("Internal error storing attribute");
1295 goto error;
1296 }
1297
1298 return 0;
1299}
1300
1301/** Add a protocol to the global protocol table
1302 *
1303 * Inserts a protocol into the global protocol table. Uses the root attributes
1304 * of the dictionary for comparisons.
1305 *
1306 * @param[in] dict of protocol we're inserting.
1307 * @return
1308 * - 0 on success.
1309 * - -1 on failure.
1310 */
1312{
1313 if (!dict->root) return -1; /* Should always have root */
1314
1316 fr_dict_t *old_proto;
1317
1318 old_proto = fr_hash_table_find(dict_gctx->protocol_by_name, dict);
1319 if (!old_proto) {
1320 fr_strerror_printf("%s: Failed inserting protocol name %s", __FUNCTION__, dict->root->name);
1321 return -1;
1322 }
1323
1324 if ((strcmp(old_proto->root->name, dict->root->name) == 0) &&
1325 (old_proto->root->name == dict->root->name)) {
1326 fr_strerror_printf("%s: Duplicate protocol name %s", __FUNCTION__, dict->root->name);
1327 return -1;
1328 }
1329
1330 return 0;
1331 }
1332 dict->in_protocol_by_name = true;
1333
1335 fr_strerror_printf("%s: Duplicate protocol number %u", __FUNCTION__, dict->root->attr);
1336 return -1;
1337 }
1338 dict->in_protocol_by_num = true;
1339
1340 dict_dependent_add(dict, "global");
1341
1342 /*
1343 * Create and add sub-attributes which allow other
1344 * protocols to be encapsulated in the internal
1345 * namespace.
1346 */
1347 if (dict_gctx->internal && (dict != dict_gctx->internal)) {
1348 fr_dict_attr_t const *da;
1349 fr_dict_attr_flags_t flags = { 0 };
1350
1353
1355 if (!da) {
1357 dict->root->name, dict->root->attr, FR_TYPE_GROUP, &flags) < 0) {
1358 return -1;
1359 }
1360
1362 fr_assert(da != NULL);
1363 }
1364
1366 }
1367
1368 return 0;
1369}
1370
1371/** Add a vendor to the dictionary
1372 *
1373 * Inserts a vendor entry into the vendor hash table. This must be done before adding
1374 * attributes under a VSA.
1375 *
1376 * @param[in] dict of protocol context we're operating in.
1377 * If NULL the internal dictionary will be used.
1378 * @param[in] name of the vendor.
1379 * @param[in] num Vendor's Private Enterprise Number.
1380 * @return
1381 * - 0 on success.
1382 * - -1 on failure.
1383 */
1384int dict_vendor_add(fr_dict_t *dict, char const *name, unsigned int num)
1385{
1386 size_t len;
1387 fr_dict_vendor_t *vendor;
1388
1389 INTERNAL_IF_NULL(dict, -1);
1390
1391 len = strlen(name);
1392 if (len >= FR_DICT_VENDOR_MAX_NAME_LEN) {
1393 fr_strerror_printf("%s: Vendor name too long", __FUNCTION__);
1394 return -1;
1395 }
1396
1397 vendor = talloc_zero(dict, fr_dict_vendor_t);
1398 if (!vendor) {
1399 oom:
1400 fr_strerror_const("Out of memory");
1401 return -1;
1402 }
1403
1404 vendor->name = talloc_typed_strdup(vendor, name);
1405 if (!vendor->name) {
1406 talloc_free(vendor);
1407 goto oom;
1408 }
1409 vendor->pen = num;
1410 vendor->type = vendor->length = 1; /* defaults */
1411
1412 if (!fr_hash_table_insert(dict->vendors_by_name, vendor)) {
1413 fr_dict_vendor_t const *old_vendor;
1414
1415 old_vendor = fr_hash_table_find(dict->vendors_by_name, vendor);
1416 if (!old_vendor) {
1417 fr_strerror_printf("%s: Failed inserting vendor name %s", __FUNCTION__, name);
1418 return -1;
1419 }
1420 if ((strcmp(old_vendor->name, vendor->name) == 0) && (old_vendor->pen != vendor->pen)) {
1421 fr_strerror_printf("%s: Duplicate vendor name %s", __FUNCTION__, name);
1422 return -1;
1423 }
1424
1425 /*
1426 * Already inserted. Discard the duplicate entry.
1427 */
1428 talloc_free(vendor);
1429
1430 return 0;
1431 }
1432
1433 /*
1434 * Insert the SAME pointer (not free'd when this table is
1435 * deleted), into another table.
1436 *
1437 * We want this behaviour because we want OLD names for
1438 * the attributes to be read from the configuration
1439 * files, but when we're printing them, (and looking up
1440 * by value) we want to use the NEW name.
1441 */
1442 if (fr_hash_table_replace(NULL, dict->vendors_by_num, vendor) < 0) {
1443 fr_strerror_printf("%s: Failed inserting vendor %s", __FUNCTION__, name);
1444 return -1;
1445 }
1446
1447 return 0;
1448}
1449
1450/** See if a #fr_dict_attr_t can have children
1451 *
1452 * The check for children is complicated by the need for "int" types
1453 * to have children, when they are `key` fields in a `struct`. This
1454 * situation occurs when a struct has multiple sub-structures, which
1455 * are selected based on a `key` field.
1456 *
1457 * There is no other place for the sub-structures to go. In the
1458 * future, we may extend the functionality of the `key` field, by
1459 * allowing non-integer data types. That would require storing keys
1460 * as #fr_dict_enum_value_t, and then placing the child (i.e. sub)
1461 * structures there. But that would involve adding children to
1462 * enums, which is currently not supported.
1463 *
1464 * @param da the dictionary attribute to check.
1465 */
1467{
1468 switch (da->type) {
1469 case FR_TYPE_TLV:
1470 case FR_TYPE_VENDOR:
1471 case FR_TYPE_VSA:
1472 case FR_TYPE_STRUCT:
1473 case FR_TYPE_UNION:
1474 return true;
1475
1476 case FR_TYPE_UINT8:
1477 case FR_TYPE_UINT16:
1478 case FR_TYPE_UINT32:
1479 /*
1480 * Children are allowed here, but ONLY if this
1481 * attribute is a key field.
1482 */
1483 if (da->parent && (da->parent->type == FR_TYPE_STRUCT) && fr_dict_attr_is_key_field(da)) return true;
1484 break;
1485
1486 default:
1487 break;
1488 }
1489
1490 return false;
1491}
1492
1493/** Add a child to a parent.
1494 *
1495 * @param[in] parent we're adding a child to.
1496 * @param[in] child to add to parent.
1497 * @return
1498 * - 0 on success.
1499 * - -1 on failure (memory allocation error).
1500 */
1502{
1503 fr_dict_attr_t const * const *bin;
1504 fr_dict_attr_t **this;
1505 fr_dict_attr_t const **children;
1506
1507 /*
1508 * Setup fields in the child
1509 */
1510 fr_assert(child->parent == parent);
1511
1512 DA_VERIFY(child);
1513
1514 if (fr_dict_attr_ref(parent)) {
1515 fr_strerror_printf("Cannot add children to attribute '%s' which has 'ref=%s'",
1517 return -1;
1518 }
1519
1521 fr_strerror_printf("Cannot add children to attribute '%s' of type %s",
1522 parent->name,
1523 fr_type_to_str(parent->type));
1524 return -1;
1525 }
1526
1527 if ((parent->type == FR_TYPE_VSA) && (child->type != FR_TYPE_VENDOR)) {
1528 fr_strerror_printf("Cannot add non-vendor children to attribute '%s' of type %s",
1529 parent->name,
1530 fr_type_to_str(parent->type));
1531 return -1;
1532 }
1533
1534 /*
1535 * The parent has children by name only, not by number. Don't even bother trying to track
1536 * numbers, except for VENDOR in root, and MEMBER of a struct.
1537 */
1538 if (!parent->flags.is_root && parent->flags.name_only &&
1539 (parent->type != FR_TYPE_STRUCT) && (parent->type != FR_TYPE_TLV)) {
1540 return 0;
1541 }
1542
1543 /*
1544 * We only allocate the pointer array *if* the parent has children.
1545 */
1546 children = dict_attr_children(parent);
1547 if (!children) {
1548 children = talloc_zero_array(parent, fr_dict_attr_t const *, UINT8_MAX + 1);
1549 if (!children) {
1550 fr_strerror_const("Out of memory");
1551 return -1;
1552 }
1553 if (dict_attr_children_set(parent, children) < 0) return -1;
1554 }
1555
1556 /*
1557 * Treat the array as a hash of 255 bins, with attributes
1558 * sorted into bins using num % 255.
1559 *
1560 * Although the various protocols may define numbers higher than 255:
1561 *
1562 * RADIUS/DHCPv4 - 1-255
1563 * Diameter/Internal - 1-4294967295
1564 * DHCPv6 - 1-65535
1565 *
1566 * In reality very few will ever use attribute numbers > 500, so for
1567 * the majority of lookups we get O(1) performance.
1568 *
1569 * Attributes are inserted into the bin in order of their attribute
1570 * numbers to allow slightly more efficient lookups.
1571 */
1572 for (bin = &children[child->attr & 0xff]; *bin; bin = &(*bin)->next) {
1573 /*
1574 * Workaround for vendors that overload the RFC space.
1575 * Structural attributes always take priority.
1576 */
1577 bool child_is_struct = fr_type_is_structural(child->type);
1578 bool bin_is_struct = fr_type_is_structural((*bin)->type);
1579
1580 if (child_is_struct && !bin_is_struct) break;
1581 if (fr_dict_vendor_num_by_da(child) <= fr_dict_vendor_num_by_da(*bin)) break; /* Prioritise RFC attributes */
1582 if (child->attr <= (*bin)->attr) break;
1583 }
1584
1585 memcpy(&this, &bin, sizeof(this));
1586 child->next = *this;
1587 *this = child;
1588
1589 return 0;
1590}
1591
1592/** Add an attribute to the name table for an attribute
1593 *
1594 * @param[in] parent containing the namespace to add this attribute to.
1595 * @param[in] da to add to the name lookup tables.
1596 * @return
1597 * - 0 on success.
1598 * - -1 on failure.
1599 */
1601{
1602 fr_hash_table_t *namespace;
1603
1604 namespace = dict_attr_namespace(parent);
1605 if (unlikely(!namespace)) {
1606 fr_strerror_printf("Parent \"%s\" has no namespace", parent->name);
1607 error:
1608 return -1;
1609 }
1610
1611 /*
1612 * Sanity check to stop children of vendors ending
1613 * up in the Vendor-Specific or root namespace.
1614 */
1615 if ((fr_dict_vendor_num_by_da(da) != 0) && (da->type != FR_TYPE_VENDOR) &&
1616 ((parent->type == FR_TYPE_VSA) || parent->flags.is_root)) {
1617 fr_strerror_printf("Cannot insert attribute '%s' of type %s into %s",
1618 da->name,
1619 fr_type_to_str(da->type),
1620 parent->name);
1621 goto error;
1622 }
1623
1624 /*
1625 * Insert the attribute, only if it's not a duplicate.
1626 */
1627 if (!fr_hash_table_insert(namespace, da)) {
1628 fr_dict_attr_t *a;
1629
1630 /*
1631 * Find the old name. If it's the same name and
1632 * but the parent, or number, or type are
1633 * different, that's an error.
1634 */
1635 a = fr_hash_table_find(namespace, da);
1636 if (a && (strcasecmp(a->name, da->name) == 0)) {
1637 if ((a->attr != da->attr) || (a->type != da->type) || (a->parent != da->parent)) {
1638 fr_strerror_printf("Duplicate attribute name '%s' in namespace '%s'. "
1639 "Originally defined %s[%d]",
1640 da->name, parent->name,
1641 a->filename, a->line);
1642 goto error;
1643 }
1644 }
1645
1646 /*
1647 * Otherwise the attribute has been redefined later
1648 * in the dictionary.
1649 *
1650 * The original fr_dict_attr_t remains in the
1651 * dictionary but entry in the name hash table is
1652 * updated to point to the new definition.
1653 */
1654 if (fr_hash_table_replace(NULL, namespace, da) < 0) {
1655 fr_strerror_const("Internal error storing attribute");
1656 goto error;
1657 }
1658 }
1659
1660 return 0;
1661}
1662
1663/** A variant of fr_dict_attr_t that allows a pre-allocated, populated fr_dict_attr_t to be added
1664 *
1665 */
1667{
1668 fr_dict_attr_t const *exists;
1669
1670 if (unlikely(da->dict->read_only)) {
1671 fr_strerror_printf("%s dictionary has been marked as read only", fr_dict_root(da->dict)->name);
1672 return -1;
1673 }
1674
1675 if (unlikely(da->state.finalised == false)) {
1676 fr_strerror_const("Attribute has not been finalised");
1677 return -1;
1678 }
1679
1680 /*
1681 * Check that the definition is valid.
1682 */
1683 if (!dict_attr_valid(da)) return -1;
1684
1685 /*
1686 * Don't allow duplicate names
1687 *
1688 * Previously we allowed duplicate names, but only if the
1689 * attributes were compatible (we'd just ignore the operation).
1690 *
1691 * But as attribute parsing may have generated fixups, which
1692 * we'd now need to unpick, it's easier just to error out
1693 * and have the user fix the duplicate.
1694 */
1695 exists = fr_dict_attr_by_name(NULL, da->parent, da->name);
1696 if (exists) {
1697 fr_strerror_printf("Duplicate attribute name '%s' in namespace '%s'. "
1698 "Originally defined %s[%d]", da->name, da->parent->name,
1699 exists->filename, exists->line);
1700 return -1;
1701 }
1702
1703 /*
1704 * In some cases name_only attributes may have explicitly
1705 * assigned numbers. Ensure that there are no conflicts
1706 * between auto-assigned and explkicitly assigned.
1707 */
1708 if (da->flags.name_only) {
1709 if (da->state.attr_set) {
1711
1712 if (da->attr > da->parent->last_child_attr) {
1713 parent->last_child_attr = da->attr;
1714
1715 /*
1716 * If the attribute is outside of the bounds of
1717 * the type size, then it MUST be an internal
1718 * attribute. Set the flag in this attribute, so
1719 * that the encoder doesn't have to do complex
1720 * checks.
1721 */
1722 if ((da->attr >= (((uint64_t)1) << (8 * parent->flags.type_size)))) da->flags.internal = true;
1723 }
1724 } else if (unlikely(dict_attr_num_init_name_only(da)) < 0) {
1725 return -1;
1726 }
1727 }
1728
1729 /*
1730 * Attributes can also be indexed by number. Ensure that
1731 * all attributes of the same number have the same
1732 * properties.
1733 */
1734 exists = fr_dict_attr_child_by_num(da->parent, da->attr);
1735 if (exists) {
1736 fr_strerror_printf("Duplicate attribute number %u in namespace '%s'. "
1737 "Originally defined by '%s' at %s[%d]",
1738 da->attr, da->parent->name, exists->name, exists->filename, exists->line);
1739 return -1;
1740 }
1741
1742 /*
1743 * Add in by number
1744 */
1745 if (dict_attr_child_add(UNCONST(fr_dict_attr_t *, da->parent), da) < 0) return -1;
1746
1747 /*
1748 * Add in by name
1749 */
1750 if (dict_attr_add_to_namespace(da->parent, da) < 0) return -1;
1751
1752#ifndef NDEBUG
1753 {
1754 fr_dict_attr_t const *found;
1755
1756 /*
1757 * Check if we added the attribute
1758 */
1759 found = dict_attr_child_by_num(da->parent, da->attr);
1760 if (!found) {
1761 fr_strerror_printf("FATAL - Failed to find attribute number %u we just added to namespace '%s'", da->attr, da->parent->name);
1762 return -1;
1763 }
1764
1765 if (!dict_attr_by_name(NULL, da->parent, da->name)) {
1766 fr_strerror_printf("FATAL - Failed to find attribute '%s' we just added to namespace '%s'", da->name, da->parent->name);
1767 return -1;
1768 }
1769 }
1770#endif
1771
1772 return 0;
1773}
1774
1775/** Add an attribute to the dictionary
1776 *
1777 * @param[in] dict of protocol context we're operating in.
1778 * If NULL the internal dictionary will be used.
1779 * @param[in] parent to add attribute under.
1780 * @param[in] name of the attribute.
1781 * @param[in] attr number.
1782 * @param[in] type of attribute.
1783 * @param[in] flags to set in the attribute.
1784 * @return
1785 * - 0 on success.
1786 * - -1 on failure.
1787 */
1789 char const *name, unsigned int attr, fr_type_t type, fr_dict_attr_flags_t const *flags)
1790{
1791 fr_dict_attr_t *da;
1792
1793 da = dict_attr_alloc_null(dict->pool, dict->proto);
1794 if (unlikely(!da)) return -1;
1795
1796 if (dict_attr_init(&da, parent, name,
1797 attr, type, &(dict_attr_args_t){ .flags = flags}) < 0) return -1;
1798
1800}
1801
1802/** Add an attribute to the dictionary
1803 *
1804 * @param[in] dict of protocol context we're operating in.
1805 * If NULL the internal dictionary will be used.
1806 * @param[in] parent to add attribute under.
1807 * @param[in] name of the attribute.
1808 * @param[in] type of attribute.
1809 * @param[in] flags to set in the attribute.
1810 * @return
1811 * - 0 on success.
1812 * - -1 on failure.
1813 */
1815 char const *name, fr_type_t type, fr_dict_attr_flags_t const *flags)
1816{
1817 fr_dict_attr_t *da;
1818
1819 da = dict_attr_alloc_null(dict->pool, dict->proto);
1820 if (unlikely(!da)) return -1;
1821
1822 if (dict_attr_init_name_only(&da, parent, name,type, &(dict_attr_args_t){ .flags = flags}) < 0) return -1;
1823
1825}
1826
1827
1829 fr_value_box_t const *value,
1830 bool coerce, bool takes_precedence,
1831 fr_dict_attr_t const *key_child_ref)
1832{
1833 size_t len;
1834 fr_dict_enum_value_t *enumv = NULL;
1835 fr_value_box_t *enum_value = NULL;
1837
1838 if (!da) {
1839 fr_strerror_printf("%s: Dictionary attribute not specified", __FUNCTION__);
1840 return -1;
1841 }
1842
1843 if (!*name) {
1844 fr_strerror_printf("%s: Empty names are not permitted", __FUNCTION__);
1845 return -1;
1846 }
1847
1848 len = strlen(name);
1849 if (len >= FR_DICT_ENUM_MAX_NAME_LEN) {
1850 fr_strerror_printf("VALUE name is too long");
1851 return -1;
1852 }
1853
1854 /*
1855 * If the parent isn't a key field, then we CANNOT add a child struct.
1856 */
1857 if (!fr_dict_attr_is_key_field(da) && key_child_ref) {
1858 fr_strerror_const("Child attributes cannot be defined for VALUEs which are not 'key' attributes");
1859 return -1;
1860 }
1861
1862#if 0
1863 /*
1864 * Commented out becuase of share/dictionary/dhcpv6/dictionary.rfc6607.
1865 *
1866 * That dictionary defines a value which is associated with a zero-sized child.
1867 * In order to enforce this check, we need to support zero-sized structures.
1868 *
1869 * Perhaps this can be done as a special case after we convert to UNIONs? Because then
1870 * we can allow ATTRIBUTE Global-VPN 255 struct[0].
1871 */
1872 if (fr_dict_attr_is_key_field(da) && !key_child_ref) {
1873 fr_strerror_const("Child attribute must be defined for VALUEs associated with a 'key' attribute");
1874 return -1;
1875 }
1876#endif
1877
1878 if (fr_type_is_structural(da->type) || (da->type == FR_TYPE_STRING)) {
1879 fr_strerror_printf("Enumeration names cannot be added for data type '%s'", fr_type_to_str(da->type));
1880 return -1;
1881 }
1882
1883 if (da->flags.is_alias) {
1884 fr_strerror_printf("Enumeration names cannot be added for ALIAS '%s'", da->name);
1885 return -1;
1886 }
1887
1889 if (!ext) {
1890 fr_strerror_printf("VALUE cannot be defined for %s", da->name);
1891 return -1;
1892 }
1893
1894 /*
1895 * Initialise enumv hash tables
1896 */
1897 if (!ext->value_by_name || !ext->name_by_value) {
1900 if (!ext->value_by_name) {
1901 fr_strerror_printf("Failed allocating \"value_by_name\" table");
1902 return -1;
1903 }
1904
1906 dict_enum_value_cmp, NULL);
1907 if (!ext->name_by_value) {
1908 fr_strerror_printf("Failed allocating \"name_by_value\" table");
1909 return -1;
1910 }
1911 }
1912
1913 /*
1914 * Allocate a structure to map between
1915 * the name and value.
1916 */
1917 enumv = talloc_zero_size(da, sizeof(fr_dict_enum_value_t) + sizeof(enumv->key_child_ref[0]) * fr_dict_attr_is_key_field(da));
1918 if (!enumv) {
1919 oom:
1920 fr_strerror_printf("%s: Out of memory", __FUNCTION__);
1921 return -1;
1922 }
1923 talloc_set_type(enumv, fr_dict_enum_value_t);
1924
1925 enumv->name = talloc_typed_strdup(enumv, name);
1926 enumv->name_len = len;
1927
1928 if (key_child_ref) enumv->key_child_ref[0] = key_child_ref;
1929 enum_value = fr_value_box_alloc(enumv, da->type, NULL);
1930 if (!enum_value) goto oom;
1931
1932 if (da->type != value->type) {
1933 if (!coerce) {
1934 fr_strerror_printf("Type mismatch between attribute (%s) and enum (%s)",
1935 fr_type_to_str(da->type),
1936 fr_type_to_str(value->type));
1937 return -1;
1938 }
1939
1940 if (fr_value_box_cast(enumv, enum_value, da->type, NULL, value) < 0) {
1941 fr_strerror_printf_push("Failed coercing enum type (%s) to attribute type (%s)",
1942 fr_type_to_str(value->type),
1943 fr_type_to_str(da->type));
1944
1945 return -1;
1946 }
1947 } else {
1948 if (unlikely(fr_value_box_copy(enum_value, enum_value, value) < 0)) {
1949 fr_strerror_printf_push("%s: Failed copying value into enum", __FUNCTION__);
1950 return -1;
1951 }
1952 }
1953
1954 enumv->value = enum_value;
1955
1956 /*
1957 * Add the value into the dictionary.
1958 */
1959 {
1960 fr_dict_attr_t *tmp;
1961 memcpy(&tmp, &enumv, sizeof(tmp));
1962
1963 if (!fr_hash_table_insert(ext->value_by_name, tmp)) {
1964 fr_dict_enum_value_t const *old;
1965
1966 /*
1967 * Suppress duplicates with the same
1968 * name and value. There are lots in
1969 * dictionary.ascend.
1970 */
1971 old = fr_dict_enum_by_name(da, name, -1);
1972 if (!fr_cond_assert(old)) return -1;
1973
1974 if (fr_value_box_cmp(old->value, enumv->value) == 0) {
1975 talloc_free(enumv);
1976 return 0;
1977 }
1978
1979 fr_strerror_printf("Duplicate VALUE name \"%s\" for Attribute '%s'. "
1980 "Old value was \"%pV\", new value was \"%pV\"", name, da->name,
1981 old->value, enumv->value);
1982 talloc_free(enumv);
1983 return -1;
1984 }
1985
1986 if (enumv->name_len > ext->max_name_len) ext->max_name_len = enumv->name_len;
1987 }
1988
1989 /*
1990 * There are multiple VALUE's, keyed by attribute, so we
1991 * take care of that here.
1992 */
1993 if (takes_precedence) {
1994 if (fr_hash_table_replace(NULL, ext->name_by_value, enumv) < 0) {
1995 fr_strerror_printf("%s: Failed inserting value %s", __FUNCTION__, name);
1996 return -1;
1997 }
1998 } else {
1999 (void) fr_hash_table_insert(ext->name_by_value, enumv);
2000 }
2001
2002 /*
2003 * Mark the attribute up as having an enumv
2004 */
2005 UNCONST(fr_dict_attr_t *, da)->flags.has_value = 1;
2006
2007 return 0;
2008}
2009
2010/** Add a value name
2011 *
2012 * Aliases are textual (string) names for a given value.
2013 *
2014 * Value names are not limited to integers, and may be added for any non-structural
2015 * attribute type.
2016 *
2017 * @param[in] da to add enumeration value to.
2018 * @param[in] name Name of value name.
2019 * @param[in] value to associate with name.
2020 * @param[in] coerce if the type of the value does not match the
2021 * type of the da, attempt to cast it to match
2022 * the type of the da. If this is false and there's
2023 * a type mismatch, we fail.
2024 * We also fail if the value cannot be coerced to
2025 * the attribute type.
2026 * @param[in] takes_precedence This name should take precedence over previous
2027 * names for the same value, when resolving value
2028 * to name.
2029 * @return
2030 * - 0 on success.
2031 * - -1 on failure.
2032 */
2034 fr_value_box_t const *value,
2035 bool coerce, bool takes_precedence)
2036{
2037 return dict_attr_enum_add_name(da, name, value, coerce, takes_precedence, NULL);
2038}
2039
2040/** Add an name to an integer attribute hashing the name for the integer value
2041 *
2042 * If the integer value conflicts with an existing name, it's incremented
2043 * until we find a free value.
2044 */
2046{
2047 fr_value_box_t v = {
2048 .type = da->type
2049 };
2050 fr_value_box_t s = {
2051 .type = da->type
2052 };
2053
2054 if (fr_dict_enum_by_name(da, name, -1)) return 0;
2055
2056 switch (da->type) {
2057 case FR_TYPE_INT8:
2058 v.vb_int8 = s.vb_int8 = fr_hash_string(name) & INT8_MAX;
2059 break;
2060
2061 case FR_TYPE_INT16:
2062 v.vb_int16 = s.vb_int16 = fr_hash_string(name) & INT16_MAX;
2063 break;
2064
2065 case FR_TYPE_INT32:
2066 v.vb_int32 = s.vb_int32 = fr_hash_string(name) & INT32_MAX;
2067 break;
2068
2069 case FR_TYPE_INT64:
2070 v.vb_int64 = s.vb_int64 = fr_hash_string(name) & INT64_MAX;
2071 break;
2072
2073 case FR_TYPE_UINT8:
2074 v.vb_uint8 = s.vb_uint8 = fr_hash_string(name) & UINT8_MAX;
2075 break;
2076
2077 case FR_TYPE_UINT16:
2078 v.vb_uint16 = s.vb_uint16 = fr_hash_string(name) & UINT16_MAX;
2079 break;
2080
2081 case FR_TYPE_UINT32:
2082 v.vb_uint32 = s.vb_uint32 = fr_hash_string(name) & UINT32_MAX;
2083 break;
2084
2085 case FR_TYPE_UINT64:
2086 v.vb_uint64 = s.vb_uint64 = fr_hash_string(name) & UINT64_MAX;
2087 break;
2088
2089 default:
2090 fr_strerror_printf("Attribute is wrong type for auto-numbering, expected numeric type, got %s",
2091 fr_type_to_str(da->type));
2092 return -1;
2093 }
2094
2095 /*
2096 * If there's no existing value, add an enum
2097 * with the hash value of the name.
2098 *
2099 * This helps with debugging as the values
2100 * are consistent.
2101 */
2102 if (!fr_dict_enum_by_value(da, &v)) {
2103 add:
2104 return fr_dict_enum_add_name(da, name, &v, false, false);
2105 }
2106
2107 for (;;) {
2109
2110 if (fr_value_box_cmp_op(T_OP_CMP_EQ, &v, &s) == 0) {
2111 fr_strerror_const("No free integer values for enumeration");
2112 return -1;
2113 }
2114
2115 if (!fr_dict_enum_by_value(da, &v)) goto add;
2116 }
2117 /* NEVER REACHED */
2118}
2119
2120/** Find a common ancestor that two TLV type attributes share
2121 *
2122 * @param[in] a first TLV attribute.
2123 * @param[in] b second TLV attribute.
2124 * @param[in] is_ancestor Enforce a->b relationship (a is parent or ancestor of b).
2125 * @return
2126 * - Common ancestor if one exists.
2127 * - NULL if no common ancestor exists.
2128 */
2130{
2131 unsigned int i;
2132 fr_dict_attr_t const *p_a, *p_b;
2133
2134 if (!a || !b) return NULL;
2135
2136 if (is_ancestor && (b->depth <= a->depth)) return NULL; /* fast_path */
2137
2138 /*
2139 * Find a common depth to work back from
2140 */
2141 if (a->depth > b->depth) {
2142 p_b = b;
2143 for (p_a = a, i = a->depth - b->depth; p_a && (i > 0); p_a = p_a->parent, i--);
2144 if (is_ancestor && (p_a != p_b)) return NULL;
2145 } else if (a->depth < b->depth) {
2146 p_a = a;
2147 for (p_b = b, i = b->depth - a->depth; p_b && (i > 0); p_b = p_b->parent, i--);
2148 if (is_ancestor && (p_a != p_b)) return NULL;
2149 } else {
2150 p_a = a;
2151 p_b = b;
2152 }
2153
2154 while (p_a && p_b) {
2155 if (p_a == p_b) return p_a;
2156
2157 p_a = p_a->parent;
2158 p_b = p_b->parent;
2159 }
2160
2161 return NULL;
2162}
2163
2164/** Process a single OID component
2165 *
2166 * @param[out] out Value of component.
2167 * @param[in] oid string to parse.
2168 * @return
2169 * - 0 on success.
2170 * - -1 on format error.
2171 */
2172int fr_dict_oid_component_legacy(unsigned int *out, char const **oid)
2173{
2174 char const *p = *oid;
2175 char *q;
2176 unsigned long num;
2177
2178 *out = 0;
2179
2180 num = strtoul(p, &q, 10);
2181 if ((p == q) || (num == ULONG_MAX)) {
2182 fr_strerror_printf("Invalid OID component \"%s\" (%lu)", p, num);
2183 return -1;
2184 }
2185
2186 switch (*q) {
2187 case '\0':
2188 case '.':
2189 *oid = q;
2190 *out = (unsigned int)num;
2191
2192 return 0;
2193
2194 default:
2195 fr_strerror_const("Unexpected text after OID component");
2196 *out = 0;
2197 return -1;
2198 }
2199}
2200
2201/** Get the leaf attribute of an OID string
2202 *
2203 * @note On error, vendor will be set (if present), parent will be the
2204 * maximum depth we managed to resolve to, and attr will be the child
2205 * we failed to resolve.
2206 *
2207 * @param[in] dict of protocol context we're operating in.
2208 * If NULL the internal dictionary will be used.
2209 * @param[out] attr Number we parsed.
2210 * @param[in,out] parent attribute (or root of dictionary).
2211 * Will be updated to the parent directly beneath the leaf.
2212 * @param[in] oid string to parse.
2213 * @return
2214 * - > 0 on success (number of bytes parsed).
2215 * - <= 0 on parse error (negative offset of parse error).
2216 */
2217ssize_t fr_dict_attr_by_oid_legacy(fr_dict_t const *dict, fr_dict_attr_t const **parent, unsigned int *attr, char const *oid)
2218{
2219 char const *p = oid;
2220 unsigned int num = 0;
2221 ssize_t slen;
2222
2223 if (!*parent) return -1;
2224
2225 /*
2226 * It's a partial OID. Grab it, and skip to the next bit.
2227 */
2228 if (p[0] == '.') {
2229 p++;
2230 }
2231
2232 *attr = 0;
2233
2234 if (fr_dict_oid_component_legacy(&num, &p) < 0) return oid - p;
2235
2236 /*
2237 * Record progress even if we error out.
2238 *
2239 * Don't change this, you will break things.
2240 */
2241 *attr = num;
2242
2243 switch ((*parent)->type) {
2244 case FR_TYPE_STRUCTURAL:
2245 break;
2246
2247 default:
2249 fr_strerror_printf("Attribute %s (%u) is not a TLV, so cannot contain a child attribute. "
2250 "Error at sub OID \"%s\"", (*parent)->name, (*parent)->attr, oid);
2251 return 0; /* We parsed nothing */
2252 }
2253
2254 /*
2255 * If it's not a vendor type, it must be between 0..8*type_size
2256 *
2257 * @fixme: find the TLV parent, and check it's size
2258 */
2259 if (((*parent)->type != FR_TYPE_VENDOR) && ((*parent)->type != FR_TYPE_VSA) && !(*parent)->flags.is_root &&
2260 (num > ((uint64_t) 1 << (8 * (*parent)->flags.type_size)))) {
2261 fr_strerror_printf("TLV attributes must be %" PRIu64 " bits or less", ((uint64_t)1 << (8 * (*parent)->flags.type_size)));
2262 return 0;
2263 }
2264
2265 switch (p[0]) {
2266 /*
2267 * We've not hit the leaf yet, so the attribute must be
2268 * defined already.
2269 */
2270 case '.':
2271 {
2272 fr_dict_attr_t const *child;
2273 p++;
2274
2275 child = dict_attr_child_by_num(*parent, num);
2276 if (!child) {
2277 fr_strerror_printf("Unknown attribute '%u' in OID string \"%s\" for parent %s",
2278 num, oid, (*parent)->name);
2279 return 0; /* We parsed nothing */
2280 }
2281
2282 /*
2283 * Record progress even if we error out.
2284 *
2285 * Don't change this, you will break things.
2286 */
2287 *parent = child;
2288
2289 slen = fr_dict_attr_by_oid_legacy(dict, parent, attr, p);
2290 if (slen <= 0) return slen - (p - oid);
2291 return slen + (p - oid);
2292 }
2293
2294 /*
2295 * Hit the leaf, this is the attribute we need to define.
2296 */
2297 case '\0':
2298 *attr = num;
2299 return p - oid;
2300
2301 default:
2302 fr_strerror_printf("Malformed OID string, got trailing garbage '%s'", p);
2303 return oid - p;
2304 }
2305}
2306
2307/** Parse an OID component, resolving it to a defined attribute
2308 *
2309 * @note Will leave the sbuff pointing at the component the error occurred at
2310 * so that the caller can attempt to process the component in another way.
2311 *
2312 * @param[out] err The parsing error that occurred.
2313 * @param[out] out The deepest attribute we resolved.
2314 * @param[in] parent Where to resolve relative attributes from.
2315 * @param[in] in string to parse.
2316 * @param[in] tt Terminal strings.
2317 * @return
2318 * - >0 the number of bytes consumed.
2319 * - <0 Parse error occurred here.
2320 */
2322 fr_dict_attr_t const **out, fr_dict_attr_t const *parent,
2323 fr_sbuff_t *in, fr_sbuff_term_t const *tt)
2324{
2325 fr_sbuff_t our_in = FR_SBUFF(in);
2326 uint32_t num = 0;
2328 fr_dict_attr_t const *child;
2329
2330 if (err) *err = FR_DICT_ATTR_OK;
2331
2332 *out = NULL;
2333
2334 switch (parent->type) {
2335 case FR_TYPE_STRUCTURAL:
2336 break;
2337
2338 default:
2340 fr_strerror_printf("Attribute '%s' is type %s and cannot contain child attributes. "
2341 "Error at OID \"%.*s\"",
2342 parent->name,
2343 fr_type_to_str(parent->type),
2344 (int)fr_sbuff_remaining(&our_in),
2345 fr_sbuff_current(&our_in));
2347 FR_SBUFF_ERROR_RETURN(&our_in);
2348 }
2349
2350 fr_sbuff_out(&sberr, &num, &our_in);
2351 switch (sberr) {
2352 /*
2353 * Lookup by number
2354 */
2355 case FR_SBUFF_PARSE_OK:
2356 if (!fr_sbuff_is_char(&our_in, '.') && !fr_sbuff_is_terminal(&our_in, tt)) {
2357 fr_sbuff_set_to_start(&our_in);
2358 goto oid_str;
2359 }
2360
2361 child = dict_attr_child_by_num(parent, num);
2362 if (!child) {
2363 fr_strerror_printf("Failed resolving child %u in namespace '%s'",
2364 num, parent->name);
2366 FR_SBUFF_ERROR_RETURN(&our_in);
2367 }
2368 break;
2369
2370 /*
2371 * Lookup by name
2372 */
2375 {
2376 fr_dict_attr_err_t our_err;
2377 oid_str:
2378 /* Sets its own errors, don't override */
2379 if (fr_dict_attr_by_name_substr(&our_err, &child, parent, &our_in, tt) < 0) {
2380 if (err) *err = our_err;
2381 FR_SBUFF_ERROR_RETURN(&our_in);
2382 }
2383 }
2384 break;
2385
2386 default:
2387 fr_strerror_printf("Invalid OID component (%s) \"%.*s\"",
2389 (int)fr_sbuff_remaining(&our_in), fr_sbuff_current(&our_in));
2391 FR_SBUFF_ERROR_RETURN(&our_in);
2392 }
2393
2394 child = dict_attr_alias(err, child);
2395 if (unlikely(!child)) FR_SBUFF_ERROR_RETURN(&our_in);
2396
2397 *out = child;
2398
2399 FR_SBUFF_SET_RETURN(in, &our_in);
2400}
2401
2402/** Resolve an attribute using an OID string
2403 *
2404 * @note Will leave the sbuff pointing at the component the error occurred at
2405 * so that the caller can attempt to process the component in another way.
2406 * An err pointer should be provided in order to determine if an error
2407 * occurred.
2408 *
2409 * @param[out] err The parsing error that occurred.
2410 * @param[out] out The deepest attribute we resolved.
2411 * @param[in] parent Where to resolve relative attributes from.
2412 * @param[in] in string to parse.
2413 * @param[in] tt Terminal strings.
2414 * @return The number of bytes of name consumed.
2415 */
2417 fr_dict_attr_t const **out, fr_dict_attr_t const *parent,
2418 fr_sbuff_t *in, fr_sbuff_term_t const *tt)
2419{
2420 fr_sbuff_t our_in = FR_SBUFF(in);
2422 fr_dict_attr_t const *our_parent = parent;
2423
2424 fr_sbuff_marker(&m_c, &our_in);
2425
2426 /*
2427 * If the OID doesn't begin with '.' we
2428 * resolve it from the root.
2429 */
2430#if 0
2431 if (!fr_sbuff_next_if_char(&our_in, '.')) our_parent = fr_dict_root(fr_dict_by_da(parent));
2432#else
2433 (void) fr_sbuff_next_if_char(&our_in, '.');
2434#endif
2435 *out = NULL;
2436
2437 for (;;) {
2438 fr_dict_attr_t const *child;
2439
2440 if ((fr_dict_oid_component(err, &child, our_parent, &our_in, tt) < 0) || !child) {
2441 *out = our_parent;
2442 fr_sbuff_set(&our_in, &m_c); /* Reset to the start of the last component */
2443 break; /* Resolved as much as we can */
2444 }
2445
2446 our_parent = child;
2447 *out = child;
2448
2449 fr_sbuff_set(&m_c, &our_in);
2450 if (!fr_sbuff_next_if_char(&our_in, '.')) break;
2451 }
2452
2453 FR_SBUFF_SET_RETURN(in, &our_in);
2454}
2455
2456/** Resolve an attribute using an OID string
2457 *
2458 * @param[out] err The parsing error that occurred.
2459 * @param[in] parent Where to resolve relative attributes from.
2460 * @param[in] oid string to parse.
2461 * @return
2462 * - NULL if we couldn't resolve the attribute.
2463 * - The resolved attribute.
2464 */
2466{
2467 fr_sbuff_t sbuff = FR_SBUFF_IN(oid, strlen(oid));
2468 fr_dict_attr_t const *da;
2469
2470 if (fr_dict_attr_by_oid_substr(err, &da, parent, &sbuff, NULL) <= 0) return NULL;
2471 if (err && *err != FR_DICT_ATTR_OK) return NULL;
2472
2473 /*
2474 * If we didn't parse the entire string, then the parsing stopped at an unknown child.
2475 * e.g. Vendor-Specific.Cisco.Foo. In that case, the full attribute wasn't found.
2476 */
2477 if (fr_sbuff_remaining(&sbuff) > 0) {
2479 return NULL;
2480 }
2481
2482 return da;
2483}
2484
2485/** Return the root attribute of a dictionary
2486 *
2487 * @param dict to return root for.
2488 * @return the root attribute of the dictionary.
2489 *
2490 * @hidecallergraph
2491 */
2493{
2494 return dict->root;
2495}
2496
2498{
2499 return dict->read_only;
2500}
2501
2503{
2504 return dict->dl;
2505}
2506
2508 fr_dict_t **out, fr_sbuff_t *name, fr_dict_t const *dict_def)
2509{
2510 fr_dict_attr_t root;
2511
2512 fr_sbuff_t our_name;
2513 fr_dict_t *dict;
2514 fr_slen_t slen;
2515 char buffer[FR_DICT_ATTR_MAX_NAME_LEN + 1 + 1]; /* +1 \0 +1 for "too long" */
2516
2517 if (!dict_gctx || !name || !out) {
2518 if (err) *err = FR_DICT_ATTR_EINVAL;
2520 return 0;
2521 }
2522
2523 our_name = FR_SBUFF(name);
2524 memset(&root, 0, sizeof(root));
2525
2526 /*
2527 * Advance p until we get something that's not part of
2528 * the dictionary attribute name.
2529 */
2531 &our_name, SIZE_MAX,
2533 if (slen == 0) {
2534 fr_strerror_const("Zero length attribute name");
2536 FR_SBUFF_ERROR_RETURN(&our_name);
2537 }
2538 if (slen > FR_DICT_ATTR_MAX_NAME_LEN) {
2539 fr_strerror_const("Attribute name too long");
2541 FR_SBUFF_ERROR_RETURN(&our_name);
2542 }
2543
2544 /*
2545 * The remaining operations don't generate errors
2546 */
2547 if (err) *err = FR_DICT_ATTR_OK;
2548
2549 /*
2550 * If what we stopped at wasn't a '.', then there
2551 * can't be a protocol name in this string.
2552 */
2553 if (*(our_name.p) && (*(our_name.p) != '.')) {
2554 memcpy(out, &dict_def, sizeof(*out));
2555 return 0;
2556 }
2557
2558 root.name = buffer;
2559 dict = fr_hash_table_find(dict_gctx->protocol_by_name, &(fr_dict_t){ .root = &root });
2560
2561 if (!dict) {
2562 if (strcasecmp(root.name, "internal") != 0) {
2563 fr_strerror_printf("Unknown protocol '%s'", root.name);
2564 memcpy(out, &dict_def, sizeof(*out));
2565 fr_sbuff_set_to_start(&our_name);
2566 FR_SBUFF_ERROR_RETURN(&our_name);
2567 }
2568
2569 dict = dict_gctx->internal;
2570 }
2571
2572 *out = dict;
2573
2574 FR_SBUFF_SET_RETURN(name, &our_name);
2575}
2576
2577/** Look up a protocol name embedded in another string
2578 *
2579 * @param[out] err Parsing error.
2580 * @param[out] out the resolve dictionary or NULL if the dictionary
2581 * couldn't be resolved.
2582 * @param[in] name string start.
2583 * @param[in] dict_def The dictionary to return if no dictionary qualifier was found.
2584 * @return
2585 * - 0 and *out != NULL. Couldn't find a dictionary qualifier, so returned dict_def.
2586 * - < 0 on error and (*out == NULL) (offset as negative integer)
2587 * - > 0 on success (number of bytes parsed).
2588 */
2593
2594/** Internal version of #fr_dict_by_protocol_name
2595 *
2596 * @note For internal use by the dictionary API only.
2597 *
2598 * @copybrief fr_dict_by_protocol_name
2599 */
2601{
2602 if (!dict_gctx || !name) return NULL;
2603
2605 &(fr_dict_t){ .root = &(fr_dict_attr_t){ .name = name } });
2606}
2607
2608/** Internal version of #fr_dict_by_protocol_num
2609 *
2610 * @note For internal use by the dictionary API only.
2611 *
2612 * @copybrief fr_dict_by_protocol_num
2613 */
2615{
2616 if (!dict_gctx) return NULL;
2617
2619 &(fr_dict_t) { .root = &(fr_dict_attr_t){ .attr = num } });
2620}
2621
2622/** Internal version of #fr_dict_by_da
2623 *
2624 * @note For internal use by the dictionary API only.
2625 *
2626 * @copybrief fr_dict_by_da
2627 */
2629{
2630#ifndef NDEBUG
2631 {
2632 fr_dict_attr_t const *da_p = da;
2633 fr_dict_t const *dict;
2634
2635 dict = da->dict;
2636 while (da_p->parent) {
2637 da_p = da_p->parent;
2638 fr_cond_assert_msg(da_p->dict == dict, "Inconsistent dict membership. "
2639 "Expected %s, got %s",
2640 !da_p->dict ? "(null)" : fr_dict_root(da_p->dict)->name,
2641 !dict ? "(null)" : fr_dict_root(dict)->name);
2642 DA_VERIFY(da_p);
2643 }
2644
2645 if (!da_p->flags.is_root) {
2646 fr_strerror_printf("%s: Attribute %s has not been inserted into a dictionary",
2647 __FUNCTION__, da->name);
2648 return NULL;
2649 }
2650 }
2651#endif
2652
2653 /*
2654 * Parent of the root attribute must
2655 * be the dictionary.
2656 */
2657 return talloc_get_type_abort(da->dict, fr_dict_t);
2658}
2659
2660/** Lookup a protocol by its name
2661 *
2662 * @note For internal use by the dictionary API only.
2663 *
2664 * @param[in] name of the protocol to locate.
2665 * @return
2666 * - Attribute matching name.
2667 * - NULL if no matching protocol could be found.
2668 */
2670{
2672}
2673
2674/** Lookup a protocol by its number
2675 *
2676 * Returns the #fr_dict_t belonging to the protocol with the specified number
2677 * if any have been registered.
2678 *
2679 * @param[in] num to search for.
2680 * @return dictionary representing the protocol (if it exists).
2681 */
2682fr_dict_t const *fr_dict_by_protocol_num(unsigned int num)
2683{
2684 return dict_by_protocol_num(num);
2685}
2686
2687/** Attempt to locate the protocol dictionary containing an attribute
2688 *
2689 * @note Unlike fr_dict_by_attr_name, doesn't search through all the dictionaries,
2690 * just uses the fr_dict_attr_t hierarchy and the talloc hierarchy to locate
2691 * the dictionary (much much faster and more scalable).
2692 *
2693 * @param[in] da To get the containing dictionary for.
2694 * @return
2695 * - The dictionary containing da.
2696 * - NULL.
2697 */
2699{
2700 return dict_by_da(da);
2701}
2702
2703/** See if two dictionaries have the same end parent
2704 *
2705 * @param[in] dict1 one dictionary
2706 * @param[in] dict2 two dictionary
2707 * @return
2708 * - true the dictionaries have the same end parent
2709 * - false the dictionaries do not have the same end parent.
2710 */
2711bool fr_dict_compatible(fr_dict_t const *dict1, fr_dict_t const *dict2)
2712{
2713 while (dict1->next) dict1 = dict1->next;
2714
2715 while (dict2->next) dict2 = dict2->next;
2716
2717 return (dict1 == dict2);
2718}
2719
2720/** Look up a vendor by one of its child attributes
2721 *
2722 * @param[in] da The vendor attribute.
2723 * @return
2724 * - The vendor.
2725 * - NULL if no vendor with that number was registered for this protocol.
2726 */
2728{
2729 fr_dict_t *dict;
2731
2733 if (!dv.pen) return NULL;
2734
2735 dict = dict_by_da(da);
2736
2737 return fr_hash_table_find(dict->vendors_by_num, &dv);
2738}
2739
2740/** Look up a vendor by its name
2741 *
2742 * @param[in] dict of protocol context we're operating in.
2743 * If NULL the internal dictionary will be used.
2744 * @param[in] name to search for.
2745 * @return
2746 * - The vendor.
2747 * - NULL if no vendor with that name was registered for this protocol.
2748 */
2750{
2751 fr_dict_vendor_t *found;
2752
2753 INTERNAL_IF_NULL(dict, NULL);
2754
2755 if (!name) return 0;
2756
2757 found = fr_hash_table_find(dict->vendors_by_name, &(fr_dict_vendor_t) { .name = name });
2758 if (!found) return 0;
2759
2760 return found;
2761}
2762
2763/** Look up a vendor by its PEN
2764 *
2765 * @param[in] dict of protocol context we're operating in.
2766 * If NULL the internal dictionary will be used.
2767 * @param[in] vendor_pen to search for.
2768 * @return
2769 * - The vendor.
2770 * - NULL if no vendor with that number was registered for this protocol.
2771 */
2773{
2774 INTERNAL_IF_NULL(dict, NULL);
2775
2776 return fr_hash_table_find(dict->vendors_by_num, &(fr_dict_vendor_t) { .pen = vendor_pen });
2777}
2778
2779/** Return vendor attribute for the specified dictionary and pen
2780 *
2781 * @param[in] vendor_root of the vendor root attribute. Could be 26 (for example) in RADIUS.
2782 * @param[in] vendor_pen to find.
2783 * @return
2784 * - NULL if vendor does not exist.
2785 * - A fr_dict_attr_t representing the vendor in the dictionary hierarchy.
2786 */
2788{
2789 fr_dict_attr_t const *vendor;
2790
2791 switch (vendor_root->type) {
2792 case FR_TYPE_VSA: /* Vendor specific attribute */
2793 break;
2794
2795 default:
2796 fr_strerror_printf("Wrong type for vendor root, expected '%s', got '%s'",
2798 fr_type_to_str(vendor_root->type));
2799 return NULL;
2800 }
2801
2802 vendor = dict_attr_child_by_num(vendor_root, vendor_pen);
2803 if (!vendor) {
2804 fr_strerror_printf("Vendor %u not defined", vendor_pen);
2805 return NULL;
2806 }
2807
2808 if (vendor->type != FR_TYPE_VENDOR) {
2809 fr_strerror_printf("Wrong type for vendor, expected '%s' got '%s'",
2810 fr_type_to_str(vendor->type),
2812 return NULL;
2813 }
2814
2815 return vendor;
2816}
2817
2818/** Callback function for resolving dictionary attributes
2819 *
2820 * @param[out] err Where to write error codes. Any error
2821 * other than FR_DICT_ATTR_NOTFOUND will
2822 * prevent resolution from continuing.
2823 * @param[out] out Where to write resolved DA.
2824 * @param[in] parent The dictionary root or other attribute to search from.
2825 * @param[in] in Contains the string to resolve.
2826 * @param[in] tt Terminal sequences to use to determine the portion
2827 * of in to search.
2828 * @return
2829 * - < 0 on failure.
2830 * - The number of bytes of name consumed on success.
2831 */
2833 fr_dict_attr_t const **out, fr_dict_attr_t const *parent,
2834 fr_sbuff_t *in, fr_sbuff_term_t const *tt);
2835
2836/** Internal function for searching for attributes in multiple dictionaries
2837 *
2838 * @param[out] err Any errors that occurred searching.
2839 * @param[out] out The attribute we found.
2840 * @param[in] dict_def The default dictionary to search in.
2841 * @param[in] in string to resolve to an attribute.
2842 * @param[in] tt terminals that indicate the end of the string.
2843 * @param[in] internal Resolve the attribute in the internal dictionary.
2844 * @param[in] foreign Resolve attribute in a foreign dictionary,
2845 * i.e. one other than dict_def.
2846 * @param[in] func to use for resolution.
2847 * @return
2848 * - <=0 on error (the offset of the error).
2849 * - >0 on success.
2850 */
2851static inline CC_HINT(always_inline)
2853 fr_dict_t const *dict_def,
2854 fr_sbuff_t *in, fr_sbuff_term_t const *tt,
2855 bool internal, bool foreign,
2857{
2859 fr_hash_iter_t iter;
2860 fr_dict_t *dict = NULL;
2861 fr_sbuff_t our_in = FR_SBUFF(in);
2862
2863 if (internal && !dict_gctx->internal) internal = false;
2864
2865 /*
2866 * Always going to fail...
2867 */
2868 if (unlikely(!internal && !foreign && !dict_def)) {
2869 if (err) *err = FR_DICT_ATTR_EINVAL;
2870 *out = NULL;
2871 return 0;
2872 }
2873
2874 /*
2875 * dict_def search in the specified dictionary
2876 */
2877 if (dict_def) {
2878 (void)func(&our_err, out, fr_dict_root(dict_def), &our_in, tt);
2879 switch (our_err) {
2880 case FR_DICT_ATTR_OK:
2881 FR_SBUFF_SET_RETURN(in, &our_in);
2882
2884 if (!internal && !foreign) goto error;
2885 break;
2886
2887 default:
2888 goto error;
2889 }
2890 }
2891
2892 /*
2893 * Next in the internal dictionary
2894 */
2895 if (internal) {
2896 (void)func(&our_err, out, fr_dict_root(dict_gctx->internal), &our_in, tt);
2897 switch (our_err) {
2898 case FR_DICT_ATTR_OK:
2899 FR_SBUFF_SET_RETURN(in, &our_in);
2900
2902 if (!foreign) goto error;
2903 break;
2904
2905 default:
2906 goto error;
2907 }
2908 }
2909
2910 /*
2911 * Now loop over the protocol dictionaries
2912 */
2914 dict;
2916 if (dict == dict_def) continue;
2917 if (dict == dict_gctx->internal) continue;
2918
2919 (void)func(&our_err, out, fr_dict_root(dict), &our_in, tt);
2920 switch (our_err) {
2921 case FR_DICT_ATTR_OK:
2922 FR_SBUFF_SET_RETURN(in, &our_in);
2923
2925 continue;
2926
2927 default:
2928 break;
2929 }
2930 }
2931
2932error:
2933 /*
2934 * Add a more helpful error message about
2935 * which dictionaries we tried to locate
2936 * the attribute in.
2937 */
2938 if (our_err == FR_DICT_ATTR_NOTFOUND) {
2939 fr_sbuff_marker_t start;
2940 char *list = NULL;
2941
2942#define DICT_NAME_APPEND(_in, _dict) \
2943do { \
2944 char *_n; \
2945 _n = talloc_strdup_append_buffer(_in, fr_dict_root(_dict)->name); \
2946 if (unlikely(!_n)) { \
2947 talloc_free(_in); \
2948 goto done; \
2949 } \
2950 _in = _n; \
2951 _n = talloc_strdup_append_buffer(_in, ", "); \
2952 if (unlikely(!_n)) { \
2953 talloc_free(_in); \
2954 goto done; \
2955 } \
2956 _in = _n; \
2957} while (0)
2958
2959 our_in = FR_SBUFF(in);
2960 fr_sbuff_marker(&start, &our_in);
2961
2962 list = talloc_strdup(NULL, "");
2963 if (unlikely(!list)) goto done;
2964
2965 if (dict_def) DICT_NAME_APPEND(list, dict_def);
2966 if (internal) DICT_NAME_APPEND(list, dict_gctx->internal);
2967
2968 if (foreign) {
2970 dict;
2972 if (dict == dict_def) continue;
2973 if (dict == dict_gctx->internal) continue;
2974
2975 if (internal) DICT_NAME_APPEND(list, dict);
2976 }
2977 }
2978
2979 fr_strerror_printf("Attribute '%pV' not found. Searched in: %pV",
2981 fr_sbuff_adv_until(&our_in, SIZE_MAX, tt, '\0')),
2982 fr_box_strvalue_len(list, talloc_array_length(list) - 3));
2983
2984 talloc_free(list);
2985 }
2986
2987done:
2988 if (err) *err = our_err;
2989 *out = NULL;
2990
2991 FR_SBUFF_ERROR_RETURN(&our_in);
2992}
2993
2994/** Internal function for searching for attributes in multiple dictionaries
2995 *
2996 * Unlike #dict_attr_search this function searches for a protocol name preceding
2997 * the attribute identifier.
2998 */
2999static inline CC_HINT(always_inline)
3001 fr_dict_t const *dict_def,
3002 fr_sbuff_t *in, fr_sbuff_term_t const *tt,
3003 bool internal, bool foreign,
3005{
3006 fr_sbuff_t our_in = FR_SBUFF(in);
3007 fr_dict_attr_err_t our_err;
3008 fr_dict_t *initial;
3009 fr_slen_t slen;
3010
3011 /*
3012 * Check for dictionary prefix
3013 */
3014 slen = dict_by_protocol_substr(&our_err, &initial, &our_in, dict_def);
3015 if (our_err != FR_DICT_ATTR_OK) {
3016 error:
3017 if (err) *err = our_err;
3018 *out = NULL;
3019 FR_SBUFF_ERROR_RETURN(&our_in);
3020 }
3021
3022 /*
3023 * Has dictionary qualifier, can't fallback
3024 */
3025 if (slen > 0) {
3026 /*
3027 * Next thing SHOULD be a '.'
3028 */
3029 if (!fr_sbuff_next_if_char(&our_in, '.')) {
3031 *out = NULL;
3032 FR_SBUFF_ERROR_RETURN(&our_in);
3033 }
3034
3035 internal = foreign = false;
3036 }
3037
3038 if (dict_attr_search(&our_err, out, initial, &our_in, tt, internal, foreign, func) < 0) goto error;
3039 if (err) *err = FR_DICT_ATTR_OK;
3040
3041 FR_SBUFF_SET_RETURN(in, &our_in);
3042}
3043
3044/** Locate a qualified #fr_dict_attr_t by its name and a dictionary qualifier
3045 *
3046 * This function will search through all loaded dictionaries, or a subset of
3047 * loaded dictionaries, for a matching attribute in the top level namespace.
3048 *
3049 * This attribute may be qualified with `<protocol>.` to selection an attribute
3050 * in a specific case.
3051 *
3052 * @note If calling this function from the server any list or request qualifiers
3053 * should be stripped first.
3054 *
3055 * @param[out] err Why parsing failed. May be NULL.
3056 * @see fr_dict_attr_err_t
3057 * @param[out] out Dictionary found attribute.
3058 * @param[in] dict_def Default dictionary for non-qualified dictionaries.
3059 * @param[in] name Dictionary/Attribute name.
3060 * @param[in] tt Terminal strings.
3061 * @param[in] internal If true, fallback to the internal dictionary.
3062 * @param[in] foreign If true, fallback to foreign dictionaries.
3063 * @return
3064 * - < 0 on failure.
3065 * - The number of bytes of name consumed on success.
3066 */
3068 fr_dict_t const *dict_def,
3069 fr_sbuff_t *name, fr_sbuff_term_t const *tt,
3070 bool internal, bool foreign)
3071{
3072 return dict_attr_search_qualified(err, out, dict_def, name, tt,
3073 internal, foreign, fr_dict_attr_by_name_substr);
3074}
3075
3076/** Locate a #fr_dict_attr_t by its name in the top level namespace of a dictionary
3077 *
3078 * This function will search through all loaded dictionaries, or a subset of
3079 * loaded dictionaries, for a matching attribute in the top level namespace.
3080 *
3081 * @note If calling this function from the server any list or request qualifiers
3082 * should be stripped first.
3083 *
3084 * @param[out] err Why parsing failed. May be NULL.
3085 * @see fr_dict_attr_err_t
3086 * @param[out] out Dictionary found attribute.
3087 * @param[in] dict_def Default dictionary for non-qualified dictionaries.
3088 * @param[in] name Dictionary/Attribute name.
3089 * @param[in] tt Terminal strings.
3090 * @param[in] internal If true, fallback to the internal dictionary.
3091 * @param[in] foreign If true, fallback to foreign dictionaries.
3092 * @return
3093 * - < 0 on failure.
3094 * - The number of bytes of name consumed on success.
3095 */
3097 fr_dict_t const *dict_def,
3098 fr_sbuff_t *name, fr_sbuff_term_t const *tt,
3099 bool internal, bool foreign)
3100{
3101 return dict_attr_search_qualified(err, out, dict_def, name, tt,
3102 internal, foreign, fr_dict_attr_by_name_substr);
3103}
3104
3105/** Locate a qualified #fr_dict_attr_t by a dictionary qualified OID string
3106 *
3107 * This function will search through all loaded dictionaries, or a subset of
3108 * loaded dictionaries, for a matching attribute.
3109 *
3110 * @note If calling this function from the server any list or request qualifiers
3111 * should be stripped first.
3112 *
3113 * @note err should be checked to determine if a parse error occurred.
3114 *
3115 * @param[out] err Why parsing failed. May be NULL.
3116 * @see fr_dict_attr_err_t
3117 * @param[out] out Dictionary found attribute.
3118 * @param[in] dict_def Default dictionary for non-qualified dictionaries.
3119 * @param[in] in Dictionary/Attribute name.
3120 * @param[in] tt Terminal strings.
3121 * @param[in] internal If true, fallback to the internal dictionary.
3122 * @param[in] foreign If true, fallback to foreign dictionaries.
3123 * @return The number of bytes of name consumed.
3124 */
3126 fr_dict_t const *dict_def,
3127 fr_sbuff_t *in, fr_sbuff_term_t const *tt,
3128 bool internal, bool foreign)
3129{
3130 return dict_attr_search_qualified(err, out, dict_def, in, tt,
3131 internal, foreign, fr_dict_attr_by_oid_substr);
3132}
3133
3134/** Locate a qualified #fr_dict_attr_t by a dictionary using a non-qualified OID string
3135 *
3136 * This function will search through all loaded dictionaries, or a subset of
3137 * loaded dictionaries, for a matching attribute.
3138 *
3139 * @note If calling this function from the server any list or request qualifiers
3140 * should be stripped first.
3141 *
3142 * @note err should be checked to determine if a parse error occurred.
3143 *
3144 * @param[out] err Why parsing failed. May be NULL.
3145 * @see fr_dict_attr_err_t
3146 * @param[out] out Dictionary found attribute.
3147 * @param[in] dict_def Default dictionary for non-qualified dictionaries.
3148 * @param[in] in Dictionary/Attribute name.
3149 * @param[in] tt Terminal strings.
3150 * @param[in] internal If true, fallback to the internal dictionary.
3151 * @param[in] foreign If true, fallback to foreign dictionaries.
3152 * @return The number of bytes of name consumed.
3153 */
3155 fr_dict_t const *dict_def,
3156 fr_sbuff_t *in, fr_sbuff_term_t const *tt,
3157 bool internal, bool foreign)
3158{
3159 return dict_attr_search_qualified(err, out, dict_def, in, tt,
3160 internal, foreign, fr_dict_attr_by_oid_substr);
3161}
3162
3163/** Locate a qualified #fr_dict_attr_t by its name and a dictionary qualifier
3164 *
3165 * @param[out] err Why parsing failed. May be NULL.
3166 * @see fr_dict_attr_err_t.
3167 * @param[in] dict_def Default dictionary for non-qualified dictionaries.
3168 * @param[in] name Dictionary/Attribute name.
3169 * @param[in] internal If true, fallback to the internal dictionary.
3170 * @param[in] foreign If true, fallback to foreign dictionaries.
3171 * @return an #fr_dict_attr_err_t value.
3172 */
3174 char const *name,
3175 bool internal, bool foreign)
3176{
3177 ssize_t slen;
3178 fr_sbuff_t our_name;
3179 fr_dict_attr_t const *da;
3180 fr_dict_attr_err_t our_err;
3181
3182 fr_sbuff_init_in(&our_name, name, strlen(name));
3183
3184 slen = fr_dict_attr_search_by_qualified_oid_substr(&our_err, &da, dict_def, &our_name, NULL, internal, foreign);
3185 if (our_err != FR_DICT_ATTR_OK) {
3186 if (err) *err = our_err;
3187 return NULL;
3188 }
3189 if ((size_t)slen != fr_sbuff_len(&our_name)) {
3190 fr_strerror_printf("Trailing garbage after attr string \"%s\"", name);
3192 return NULL;
3193 }
3194
3195 return da;
3196}
3197
3198/** Look up a dictionary attribute by a name embedded in another string
3199 *
3200 * Find the first invalid attribute name char in the string pointed
3201 * to by name.
3202 *
3203 * Copy the characters between the start of the name string and the first
3204 * none #fr_dict_attr_allowed_chars char to a buffer and perform a dictionary lookup
3205 * using that value.
3206 *
3207 * If the attribute exists, advance the pointer pointed to by name
3208 * to the first none #fr_dict_attr_allowed_chars char, and return the DA.
3209 *
3210 * If the attribute does not exist, don't advance the pointer and return
3211 * NULL.
3212 *
3213 * @param[out] err Why parsing failed. May be NULL.
3214 * @see fr_dict_attr_err_t
3215 * @param[out] out Where to store the resolve attribute.
3216 * @param[in] parent containing the namespace to search in.
3217 * @param[in] name string start.
3218 * @param[in] tt Terminal sequences to use to determine the portion
3219 * of in to search.
3220 * @return
3221 * - <= 0 on failure.
3222 * - The number of bytes of name consumed on success.
3223 */
3226{
3227 fr_dict_attr_t const *da;
3228 size_t len;
3229 fr_dict_attr_t const *ref;
3230 char const *p;
3231 char buffer[FR_DICT_ATTR_MAX_NAME_LEN + 1 + 1]; /* +1 \0 +1 for "too long" */
3232 fr_sbuff_t our_name = FR_SBUFF(name);
3233 fr_hash_table_t *namespace;
3234
3235 *out = NULL;
3236
3237#ifdef STATIC_ANALYZER
3238 memset(buffer, 0, sizeof(buffer));
3239#endif
3240
3242 &our_name, SIZE_MAX,
3244 if (len == 0) {
3245 fr_strerror_const("Zero length attribute name");
3247 FR_SBUFF_ERROR_RETURN(&our_name);
3248 }
3249 if (len > FR_DICT_ATTR_MAX_NAME_LEN) {
3250 fr_strerror_const("Attribute name too long");
3252 FR_SBUFF_ERROR_RETURN(&our_name);
3253 }
3254
3255 /*
3256 * Do a second pass, ensuring that the name has at least one alphanumeric character.
3257 */
3258 for (p = buffer; p < (buffer + len); p++) {
3259 if (sbuff_char_alpha_num[(uint8_t) *p]) break;
3260 }
3261
3262 if ((size_t) (p - buffer) == len) {
3263 fr_strerror_const("Invalid attribute name");
3265 FR_SBUFF_ERROR_RETURN(&our_name);
3266 }
3267
3268 ref = fr_dict_attr_ref(parent);
3269 if (ref) parent = ref;
3270
3271redo:
3272 namespace = dict_attr_namespace(parent);
3273 if (!namespace) {
3274 fr_strerror_printf("Attribute '%s' does not contain a namespace", parent->name);
3276 fr_sbuff_set_to_start(&our_name);
3277 FR_SBUFF_ERROR_RETURN(&our_name);
3278 }
3279
3280 da = fr_hash_table_find(namespace, &(fr_dict_attr_t){ .name = buffer });
3281 if (!da) {
3282 if (parent->flags.is_root) {
3283 fr_dict_t const *dict = fr_dict_by_da(parent);
3284
3285 if (dict->next) {
3286 parent = dict->next->root;
3287 goto redo;
3288 }
3289 }
3290
3292 fr_strerror_printf("Attribute '%s' not found in namespace '%s'", buffer, parent->name);
3293 fr_sbuff_set_to_start(&our_name);
3294 FR_SBUFF_ERROR_RETURN(&our_name);
3295 }
3296
3297 da = dict_attr_alias(err, da);
3298 if (unlikely(!da)) FR_SBUFF_ERROR_RETURN(&our_name);
3299
3300 *out = da;
3301 if (err) *err = FR_DICT_ATTR_OK;
3302
3303 FR_SBUFF_SET_RETURN(name, &our_name);
3304}
3305
3306/* Internal version of fr_dict_attr_by_name
3307 *
3308 */
3310{
3311 fr_hash_table_t *namespace;
3312 fr_dict_attr_t *da;
3313
3315
3316redo:
3317 namespace = dict_attr_namespace(parent);
3318 if (!namespace) {
3319 fr_strerror_printf("Attribute '%s' does not contain a namespace", parent->name);
3321 return NULL;
3322 }
3323
3324 da = fr_hash_table_find(namespace, &(fr_dict_attr_t) { .name = name });
3325 if (!da) {
3326 if (parent->flags.is_root) {
3327 fr_dict_t const *dict = fr_dict_by_da(parent);
3328
3329 if (dict->next) {
3330 parent = dict->next->root;
3331 goto redo;
3332 }
3333 }
3334
3336 fr_strerror_printf("Attribute '%s' not found in namespace '%s'", name, parent->name);
3337 return NULL;
3338 }
3339
3340 if (err) *err = FR_DICT_ATTR_OK;
3341
3342 return da;
3343}
3344
3345/** Locate a #fr_dict_attr_t by its name
3346 *
3347 * @param[out] err Why the lookup failed. May be NULL.
3348 * @see fr_dict_attr_err_t.
3349 * @param[in] parent containing the namespace we're searching in.
3350 * @param[in] name of the attribute to locate.
3351 * @return
3352 * - Attribute matching name.
3353 * - NULL if no matching attribute could be found.
3354 */
3356{
3357 fr_dict_attr_t const *da;
3358
3360
3362 if (!da) return NULL;
3363
3364 da = dict_attr_alias(err, da);
3365 if (unlikely(!da)) return NULL;
3366
3367 return da;
3368}
3369
3370/** Internal version of fr_dict_attr_child_by_num
3371 *
3372 */
3374{
3375 fr_dict_attr_t const *bin;
3376 fr_dict_attr_t const **children;
3377 fr_dict_attr_t const *ref;
3378
3380
3381 /*
3382 * Do any necessary dereferencing
3383 */
3384 ref = fr_dict_attr_ref(parent);
3385 if (ref) parent = ref;
3386
3387 children = dict_attr_children(parent);
3388 if (!children) return NULL;
3389
3390 /*
3391 * Child arrays may be trimmed back to save memory.
3392 * Check that so we don't SEGV.
3393 */
3394 if ((attr & 0xff) > talloc_array_length(children)) return NULL;
3395
3396 bin = children[attr & 0xff];
3397 for (;;) {
3398 if (!bin) return NULL;
3399 if (bin->attr == attr) {
3401
3402 memcpy(&out, &bin, sizeof(bin));
3403
3404 return out;
3405 }
3406 bin = bin->next;
3407 }
3408
3409 return NULL;
3410}
3411
3412/** Check if a child attribute exists in a parent using an attribute number
3413 *
3414 * @param[in] parent to check for child in.
3415 * @param[in] attr number to look for.
3416 * @return
3417 * - The child attribute on success.
3418 * - NULL if the child attribute does not exist.
3419 */
3421{
3422 fr_dict_attr_t const *da;
3423
3424 da = dict_attr_child_by_num(parent, attr);
3425 if (!da) return NULL;
3426
3427 da = dict_attr_alias(NULL, da);
3428 if (unlikely(!da)) return NULL;
3429
3430 return da;
3431}
3432
3433/** Iterate over all enumeration values for an attribute
3434 *
3435 * @param[in] da to iterate over.
3436 * @param[in] iter to use for iteration.
3437 * @return
3438 * - First #fr_dict_enum_value_t in the attribute.
3439 * - NULL if no enumeration values exist.
3440 */
3442{
3444
3446 if (!ext) {
3447 fr_strerror_printf("%s has no enumeration values to iterate over", da->name);
3448 return NULL;
3449 }
3450
3451 return fr_hash_table_iter_init(ext->value_by_name, iter);
3452}
3453
3454/* Iterate over next enumeration value for an attribute
3455 *
3456 * @param[in] da to iterate over.
3457 * @param[in] iter to use for iteration.
3458 * @return
3459 * - Next #fr_dict_enum_value_t in the attribute.
3460 * - NULL if no more enumeration values exist.
3461 */
3463{
3466 if (!ext) {
3467 fr_strerror_printf("%s has no enumeration values to iterate over", da->name);
3468 return NULL;
3469 }
3470
3471 return fr_hash_table_iter_next(ext->value_by_name, iter);;
3472}
3473
3474/** Lookup the structure representing an enum value in a #fr_dict_attr_t
3475 *
3476 * @param[in] da to search in.
3477 * @param[in] value to search for.
3478 * @return
3479 * - Matching #fr_dict_enum_value_t.
3480 * - NULL if no matching #fr_dict_enum_value_t could be found.
3481 */
3483{
3485
3487 if (!ext) {
3488 fr_strerror_printf("VALUE cannot be defined for %s attributes",
3489 fr_type_to_str(da->type));
3490 return NULL;
3491 }
3492
3493 /*
3494 * No values associated with this attribute
3495 */
3496 if (!ext->name_by_value) return NULL;
3497
3498 /*
3499 * Could be NULL or an unknown attribute, in which case
3500 * we want to avoid the lookup gracefully...
3501 */
3502 if (value->type != da->type) return NULL;
3503
3504 return fr_hash_table_find(ext->name_by_value, &(fr_dict_enum_value_t){ .value = value });
3505}
3506
3507/** Lookup the name of an enum value in a #fr_dict_attr_t
3508 *
3509 * @param[in] da to search in.
3510 * @param[in] value number to search for.
3511 * @return
3512 * - Name of value.
3513 * - NULL if no matching value could be found.
3514 */
3516{
3517 fr_dict_enum_value_t const *dv;
3518
3519 dv = fr_dict_enum_by_value(da, value);
3520 if (!dv) return NULL;
3521
3522 return dv->name;
3523}
3524
3525/*
3526 * Get a value by its name, keyed off of an attribute.
3527 */
3529{
3531
3532 if (!name) return NULL;
3533
3535 if (!ext) {
3536 fr_strerror_printf("VALUE cannot be defined for %s attributes",
3537 fr_type_to_str(da->type));
3538 return NULL;
3539 }
3540
3541 /*
3542 * No values associated with this attribute
3543 */
3544 if (!ext->value_by_name) return NULL;
3545
3546 if (len < 0) len = strlen(name);
3547
3548 return fr_hash_table_find(ext->value_by_name, &(fr_dict_enum_value_t){ .name = name, .name_len = len});
3549}
3550
3551/*
3552 * Get a value by its name, keyed off of an attribute, from an sbuff
3553 */
3555{
3557 fr_sbuff_t our_in = FR_SBUFF(in);
3558 fr_dict_enum_value_t *found = NULL;
3559 size_t found_len = 0;
3560 uint8_t *p;
3562
3563 /*
3564 * No values associated with this attribute, do nothing.
3565 */
3567 if (!ext || !ext->value_by_name) return 0;
3568
3569 /*
3570 * Loop until we exhaust all of the possibilities.
3571 */
3572 for (p = name; (size_t) (p - name) < ext->max_name_len; p++) {
3573 int len = (p - name) + 1;
3574 fr_dict_enum_value_t *enumv;
3575
3576 *p = fr_sbuff_char(&our_in, '\0');
3577 if (!fr_dict_enum_allowed_chars[*p]) {
3578 break;
3579 }
3580 fr_sbuff_next(&our_in);
3581
3582 enumv = fr_hash_table_find(ext->value_by_name, &(fr_dict_enum_value_t){ .name = (char const *) name,
3583 .name_len = len});
3584
3585 /*
3586 * Return the LONGEST match, as there may be
3587 * overlaps. e.g. "Framed", and "Framed-User".
3588 */
3589 if (enumv) {
3590 found = enumv;
3591 found_len = len;
3592 }
3593 }
3594
3595 if (found) {
3596 *out = found;
3597 FR_SBUFF_SET_RETURN(in, found_len);
3598 }
3599
3600 return 0;
3601}
3602
3603/** Extract an enumeration name from a string
3604 *
3605 * This function defines the canonical format for an enumeration name.
3606 *
3607 * An enumeration name is made up of one or more fr_dict_attr_allowed_chars
3608 * with at least one character in the sequence not being a special character
3609 * i.e. [-+/_] or a number.
3610 *
3611 * This disambiguates enumeration identifiers from mathematical expressions.
3612 *
3613 * If we allowed enumeration names consisting of sequences of numbers separated
3614 * by special characters it would not be possible to determine if the special
3615 * character were an operator in a subexpression.
3616 *
3617 * For example take:
3618 *
3619 * &My-Enum-Attr == 01234-5678
3620 *
3621 * Without having access to the enumeration values of My-Enum-Attr (which we
3622 * might not have during tokenisation), we cannot tell if this is:
3623 *
3624 * (&My-Enum-Attr == 01234-5678)
3625 *
3626 * OR
3627 *
3628 * ((&My-Enum-Attr == 01234) - 5678)
3629 *
3630 * If an alpha character occurs anywhere in the string i.e:
3631 *
3632 * (&My-Enum-Attr == 01234-A5678)
3633 *
3634 * we know 01234-A5678 can't be a mathematical sub-expression because the
3635 * second potential operand can no longer be parsed as an integer constant.
3636 *
3637 * @param[out] out The name string we managed to extract.
3638 * May be NULL in which case only the length of the name
3639 * will be returned.
3640 * @param[out] err Type of parsing error which occurred. May be NULL.
3641 * @param[in] in The string containing the enum identifier.
3642 * @param[in] tt If non-null verify that a terminal sequence occurs
3643 * after the enumeration name.
3644 * @return
3645 * - <0 the offset at which the parse error occurred.
3646 * - >1 the number of bytes parsed.
3647 */
3649 fr_sbuff_t *in, fr_sbuff_term_t const *tt)
3650{
3651 fr_sbuff_t our_in = FR_SBUFF(in);
3652 bool seen_alpha = false;
3653
3654 while (fr_sbuff_is_in_charset(&our_in, fr_dict_enum_allowed_chars)) {
3655 if (fr_sbuff_is_alpha(&our_in)) seen_alpha = true;
3656 fr_sbuff_next(&our_in);
3657 }
3658
3659 if (!seen_alpha) {
3660 if (fr_sbuff_used(&our_in) == 0) {
3661 fr_strerror_const("VALUE name is empty");
3663 FR_SBUFF_ERROR_RETURN(&our_in);
3664 }
3665
3666 fr_strerror_const("VALUE name must contain at least one alpha character");
3668 fr_sbuff_set_to_start(&our_in); /* Marker should be at the start of the enum */
3669 FR_SBUFF_ERROR_RETURN(&our_in);
3670 }
3671
3672 /*
3673 * Check that the sequence is correctly terminated
3674 */
3675 if (tt && !fr_sbuff_is_terminal(&our_in, tt)) {
3676 fr_strerror_const("VALUE name has trailing text");
3678 FR_SBUFF_ERROR_RETURN(&our_in);
3679 }
3680
3681 if (out) return fr_sbuff_out_bstrncpy_exact(out, in, fr_sbuff_used(&our_in));
3682
3683 if (err) *err = FR_SBUFF_PARSE_OK;
3684
3685 FR_SBUFF_SET_RETURN(in, &our_in);
3686}
3687
3688int dict_dlopen(fr_dict_t *dict, char const *name)
3689{
3690 char *lib_name;
3691 char *sym_name;
3692 fr_dict_protocol_t *proto;
3693
3694 if (!name) return 0;
3695
3696 lib_name = talloc_typed_asprintf(NULL, "libfreeradius-%s", name);
3697 if (unlikely(lib_name == NULL)) {
3698 oom:
3699 fr_strerror_const("Out of memory");
3700 return -1;
3701 }
3702 talloc_bstr_tolower(lib_name);
3703
3704 dict->dl = dl_by_name(dict_gctx->dict_loader, lib_name, NULL, false);
3705 if (!dict->dl) {
3706 fr_strerror_printf_push("Failed loading dictionary validation library \"%s\"", lib_name);
3707 talloc_free(lib_name);
3708 return -1;
3709 }
3710 talloc_free(lib_name);
3711
3712 /*
3713 * The public symbol that contains per-protocol rules
3714 * and extensions.
3715 *
3716 * It ends up being easier to do this using dlsym to
3717 * resolve the symbol and not use the autoloader
3718 * callbacks as theoretically multiple dictionaries
3719 * could use the same protocol library, and then the
3720 * autoloader callback would only run for the first
3721 * dictionary which loaded the protocol.
3722 */
3723 sym_name = talloc_typed_asprintf(NULL, "libfreeradius_%s_dict_protocol", name);
3724 if (unlikely(sym_name == NULL)) {
3725 talloc_free(lib_name);
3726 goto oom;
3727 }
3728 talloc_bstr_tolower(sym_name);
3729
3730 /*
3731 * De-hyphenate the symbol name
3732 */
3733 {
3734 char *p, *q;
3735
3736 for (p = sym_name, q = p + (talloc_array_length(sym_name) - 1); p < q; p++) *p = *p == '-' ? '_' : *p;
3737 }
3738
3739 proto = dlsym(dict->dl->handle, sym_name);
3740 talloc_free(sym_name);
3741
3742 /*
3743 * Soft failure, not all protocol libraires provide
3744 * custom validation functions or flats.
3745 */
3746 if (!proto) return 0;
3747
3748 /*
3749 * Replace the default protocol with the custom one
3750 * if we have it...
3751 */
3752 dict->proto = proto;
3753
3754 return 0;
3755}
3756
3757/** Find a dependent in the tree of dependents
3758 *
3759 */
3760static int8_t _dict_dependent_cmp(void const *a, void const *b)
3761{
3762 fr_dict_dependent_t const *dep_a = a;
3763 fr_dict_dependent_t const *dep_b = b;
3764 int ret;
3765
3766 ret = strcmp(dep_a->dependent, dep_b->dependent);
3767 return CMP(ret, 0);
3768}
3769
3770/** Record a new dependency on a dictionary
3771 *
3772 * These are used to determine what is currently depending on a dictionary.
3773 *
3774 * @param[in] dict to record dependency on.
3775 * @param[in] dependent Either C src file, or another dictionary.
3776 * @return
3777 * - 0 on success.
3778 * - -1 on failure.
3779 */
3780int dict_dependent_add(fr_dict_t *dict, char const *dependent)
3781{
3782 fr_dict_dependent_t *found;
3783
3784 found = fr_rb_find(dict->dependents, &(fr_dict_dependent_t){ .dependent = dependent } );
3785 if (!found) {
3787
3788 new = talloc_zero(dict->dependents, fr_dict_dependent_t);
3789 if (unlikely(!new)) return -1;
3790
3791 /*
3792 * If the dependent is in a module that gets
3793 * unloaded, any strings in the text area also
3794 * get unloaded (including dependent locations).
3795 *
3796 * Strdup the string here so we don't get
3797 * random segfaults if a module forgets to unload
3798 * a dictionary.
3799 */
3800 new->dependent = talloc_typed_strdup(new, dependent);
3801 fr_rb_insert(dict->dependents, new);
3802
3803 new->count = 1;
3804
3805 return 0;
3806 }
3807
3808 found->count++; /* Increase ref count */
3809
3810 return 0;
3811}
3812
3813/** Manually increase the reference count for a dictionary
3814 *
3815 * This is useful if a previously loaded dictionary needs to
3816 * be bound to the lifetime of an additional object.
3817 *
3818 * @param[in] dict to increase the reference count for.
3819 * @param[in] dependent requesting the loading of the dictionary.
3820 * @return
3821 * - 0 on success.
3822 * - -1 on error.
3823 */
3824int fr_dict_dependent_add(fr_dict_t const *dict, char const *dependent)
3825{
3826 fr_dict_t *m_dict = fr_dict_unconst(dict);
3827
3828 if (unlikely(!m_dict)) return -1;
3829
3830 return dict_dependent_add(m_dict, dependent);
3831}
3832
3833/** Decrement ref count for a dependent in a dictionary
3834 *
3835 * @param[in] dict to remove dependency from.
3836 * @param[in] dependent Either C src, or another dictionary dependent.
3837 * What depends on this dictionary.
3838 */
3839int dict_dependent_remove(fr_dict_t *dict, char const *dependent)
3840{
3841 fr_dict_dependent_t *found;
3842
3843 found = fr_rb_find(dict->dependents, &(fr_dict_dependent_t){ .dependent = dependent } );
3844 if (!found) {
3845 fr_strerror_printf("Dependent \"%s\" not found in dictionary \"%s\"", dependent, dict->root->name);
3846 return -1;
3847 }
3848
3849 if (found->count == 0) {
3850 fr_strerror_printf("Zero ref count invalid for dependent \"%s\", dictionary \"%s\"",
3851 dependent, dict->root->name);
3852 return -1;
3853 }
3854
3855 if (--found->count == 0) {
3856 fr_rb_delete(dict->dependents, found);
3857 talloc_free(found);
3858 return 0;
3859 }
3860
3861 return 1;
3862}
3863
3864/** Check if a dictionary still has dependents
3865 *
3866 * @param[in] dict to check
3867 * @return
3868 * - true if there's still at least one dependent.
3869 * - false if there are no dependents.
3870 */
3872{
3873 return (fr_rb_num_elements(dict->dependents) > 0);
3874}
3875
3876#ifndef NDEBUG
3877static void dependent_debug(fr_dict_t *dict)
3878{
3881
3882 if (!dict_has_dependents(dict)) return;
3883
3884 fprintf(stderr, "DEPENDENTS FOR %s\n", dict->root->name);
3885
3886 for (dep = fr_rb_iter_init_inorder(&iter, dict->dependents);
3887 dep;
3888 dep = fr_rb_iter_next_inorder(&iter)) {
3889 fprintf(stderr, "\t<- %s (%d)\n", dep->dependent, dep->count);
3890 }
3891}
3892#endif
3893
3894
3896{
3897 fr_dict_t **refd_list;
3898 unsigned int i;
3899
3900 if (!dict->autoref) return 0;
3901
3902 if (fr_hash_table_flatten(dict->autoref, (void ***)&refd_list, dict->autoref) < 0) {
3903 fr_strerror_const("failed flattening autoref hash table");
3904 return -1;
3905 }
3906
3907 /*
3908 * Free the dictionary. It will call proto->free() if there's nothing more to do.
3909 */
3910 for (i = 0; i < talloc_array_length(refd_list); i++) {
3911 if (fr_dict_free(&refd_list[i], dict->root->name) < 0) {
3912 fr_strerror_printf("failed freeing autoloaded protocol %s", refd_list[i]->root->name);
3913 return -1;
3914 }
3915 }
3916
3917 TALLOC_FREE(dict->autoref);
3918
3919 return 0;
3920}
3921
3922static int _dict_free(fr_dict_t *dict)
3923{
3924 /*
3925 * We don't necessarily control the order of freeing
3926 * children.
3927 */
3928 if (dict != dict->gctx->internal) {
3929 fr_dict_attr_t const *da;
3930
3931 if (dict->gctx->attr_protocol_encapsulation && dict->root) {
3932 da = fr_dict_attr_child_by_num(dict->gctx->attr_protocol_encapsulation, dict->root->attr);
3933 if (da && fr_dict_attr_ref(da)) dict_attr_ref_null(da);
3934 }
3935 }
3936
3937#ifdef STATIC_ANALYZER
3938 if (!dict->root) {
3939 fr_strerror_const("dict root is missing");
3940 return -1;
3941 }
3942#endif
3943
3944 /*
3945 * If we called init(), then call free()
3946 */
3947 if (dict->proto && dict->proto->free) {
3948 dict->proto->free();
3949 }
3950
3951 if (!fr_cond_assert(!dict->in_protocol_by_name || fr_hash_table_delete(dict->gctx->protocol_by_name, dict))) {
3952 fr_strerror_printf("Failed removing dictionary from protocol hash \"%s\"", dict->root->name);
3953 return -1;
3954 }
3955 dict->in_protocol_by_name = false;
3956
3957 if (!fr_cond_assert(!dict->in_protocol_by_num || fr_hash_table_delete(dict->gctx->protocol_by_num, dict))) {
3958 fr_strerror_printf("Failed removing dictionary from protocol number_hash \"%s\"", dict->root->name);
3959 return -1;
3960 }
3961 dict->in_protocol_by_num = false;
3962
3963 if (dict_has_dependents(dict)) {
3966
3967 fr_strerror_printf("Refusing to free dictionary \"%s\", still has dependents", dict->root->name);
3968
3969 for (dep = fr_rb_iter_init_inorder(&iter, dict->dependents);
3970 dep;
3971 dep = fr_rb_iter_next_inorder(&iter)) {
3972 fr_strerror_printf_push("%s (%d)", dep->dependent, dep->count);
3973 }
3974
3975 return -1;
3976 }
3977
3978 /*
3979 * Free the hash tables with free functions first
3980 * so that the things the hash tables reference
3981 * are still there.
3982 */
3983 talloc_free(dict->vendors_by_name);
3984
3985 /*
3986 * Decrease the reference count on the validation
3987 * library we loaded.
3988 */
3989 dl_free(dict->dl);
3990
3991 if (dict == dict->gctx->internal) {
3992 dict->gctx->internal = NULL;
3993 dict->gctx->attr_protocol_encapsulation = NULL;
3994 }
3995
3996 return 0;
3997}
3998
3999/** Allocate a new dictionary
4000 *
4001 * @param[in] ctx to allocate dictionary in.
4002 * @return
4003 * - NULL on memory allocation error.
4004 */
4005fr_dict_t *dict_alloc(TALLOC_CTX *ctx)
4006{
4007 fr_dict_t *dict;
4008
4009 if (!dict_gctx) {
4010 fr_strerror_const("Initialise global dictionary ctx with fr_dict_global_ctx_init()");
4011 return NULL;
4012 }
4013
4014 dict = talloc_zero(ctx, fr_dict_t);
4015 if (!dict) {
4016 fr_strerror_const("Failed allocating memory for dictionary");
4017 error:
4018 talloc_free(dict);
4019 return NULL;
4020 }
4021 dict->gctx = dict_gctx; /* Record which global context this was allocated in */
4022 talloc_set_destructor(dict, _dict_free);
4023
4024 /*
4025 * A list of all the files that constitute this dictionary
4026 */
4027 fr_dlist_talloc_init(&dict->filenames, fr_dict_filename_t, entry);
4028
4029 /*
4030 * Pre-Allocate pool memory for rapid startup
4031 * As that's the working memory required during
4032 * dictionary initialisation.
4033 */
4034 dict->pool = talloc_pool(dict, DICT_POOL_SIZE);
4035 if (!dict->pool) {
4036 fr_strerror_const("Failed allocating talloc pool for dictionary");
4037 goto error;
4038 }
4039
4040 /*
4041 * Create the table of vendor by name. There MAY NOT
4042 * be multiple vendors of the same name.
4043 */
4045 if (!dict->vendors_by_name) {
4046 fr_strerror_printf("Failed allocating \"vendors_by_name\" table");
4047 goto error;
4048 }
4049 /*
4050 * Create the table of vendors by value. There MAY
4051 * be vendors of the same value. If there are, we
4052 * pick the latest one.
4053 */
4054 dict->vendors_by_num = fr_hash_table_alloc(dict, dict_vendor_pen_hash, dict_vendor_pen_cmp, NULL);
4055 if (!dict->vendors_by_num) {
4056 fr_strerror_printf("Failed allocating \"vendors_by_num\" table");
4057 goto error;
4058 }
4059
4060 /*
4061 * Inter-dictionary reference caching
4062 */
4064 if (!dict->autoref) {
4065 fr_strerror_printf("Failed allocating \"autoref\" table");
4066 goto error;
4067 }
4068
4069 /*
4070 * Who/what depends on this dictionary
4071 */
4072 dict->dependents = fr_rb_inline_alloc(dict, fr_dict_dependent_t, node, _dict_dependent_cmp, NULL);
4073
4074 /*
4075 * Set the default dictionary protocol, this can
4076 * be overriden by the protocol library.
4077 */
4078 dict->proto = &dict_proto_default;
4079
4080 return dict;
4081}
4082
4083/** Allocate a new local dictionary
4084 *
4085 * @param[in] parent parent dictionary and talloc ctx
4086 * @return
4087 * - NULL on memory allocation error.
4088 *
4089 * This dictionary cannot define vendors, or inter-dictionary
4090 * dependencies. However, we initialize the relevant fields just in
4091 * case. We should arguably just skip initializing those fields, and
4092 * just allow the server to crash if programmers do something stupid with it.
4093 */
4095{
4096 fr_dict_t *dict;
4097 fr_dict_attr_t *da;
4098
4099 fr_dict_attr_flags_t flags = {
4100 .is_root = true,
4101 .local = true,
4102 .internal = true,
4103 .type_size = 2,
4104 .length = 2
4105 };
4106
4107 dict = dict_alloc(UNCONST(fr_dict_t *, parent));
4108 if (!dict) return NULL;
4109
4110 /*
4111 * Allocate the root attribute. This dictionary is
4112 * always protocol "local", and number "0".
4113 */
4114 da = dict_attr_alloc_root(dict->pool, parent, "local", 0,
4115 &(dict_attr_args_t){ .flags = &flags });
4116 if (unlikely(!da)) {
4117 talloc_free(dict);
4118 return NULL;
4119 }
4120
4121 da->last_child_attr = fr_dict_root(parent)->last_child_attr;
4122
4123 dict->root = da;
4124 dict->root->dict = dict;
4125 dict->next = parent;
4126
4127 DA_VERIFY(dict->root);
4128
4129 return dict;
4130}
4131
4132/** Decrement the reference count on a previously loaded dictionary
4133 *
4134 * @param[in] dict to free.
4135 * @param[in] dependent that originally allocated this dictionary.
4136 * @return
4137 * - 0 on success (dictionary freed).
4138 * - 1 if other things still depend on the dictionary.
4139 * - -1 on error (dependent doesn't exist)
4140 */
4141int fr_dict_const_free(fr_dict_t const **dict, char const *dependent)
4142{
4143 fr_dict_t **our_dict = UNCONST(fr_dict_t **, dict);
4144
4145 return fr_dict_free(our_dict, dependent);
4146}
4147
4148/** Decrement the reference count on a previously loaded dictionary
4149 *
4150 * @param[in] dict to free.
4151 * @param[in] dependent that originally allocated this dictionary.
4152 * @return
4153 * - 0 on success (dictionary freed).
4154 * - 1 if other things still depend on the dictionary.
4155 * - -1 on error (dependent doesn't exist)
4156 */
4157int fr_dict_free(fr_dict_t **dict, char const *dependent)
4158{
4159 if (!*dict) return 0;
4160
4161 switch (dict_dependent_remove(*dict, dependent)) {
4162 case 0: /* dependent has no more refs */
4163 if (!dict_has_dependents(*dict)) {
4164 talloc_free(*dict);
4165 return 0;
4166 }
4168
4169 case 1: /* dependent has more refs */
4170 return 1;
4171
4172 default: /* error */
4173 return -1;
4174 }
4175}
4176
4177/** Process a dict_attr_autoload element to load/verify a dictionary attribute
4178 *
4179 * @param[in] to_load attribute definition
4180 * @return
4181 * - 0 on success.
4182 * - -1 on failure.
4183 */
4185{
4186 fr_dict_enum_autoload_t const *p = to_load;
4187 fr_dict_enum_value_t const *enumv;
4188
4189 for (p = to_load; p->out; p++) {
4190 if (unlikely(!p->attr)) {
4191 fr_strerror_printf("Invalid attribute autoload entry for \"%s\", missing attribute pointer", p->name);
4192 return -1;
4193 }
4194
4195 if (unlikely(!*p->attr)) {
4196 fr_strerror_printf("Can't resolve value \"%s\", attribute not loaded", p->name);
4197 fr_strerror_printf_push("Check fr_dict_attr_autoload_t struct has "
4198 "an entry to load the attribute \"%s\" is located in, and that "
4199 "the fr_dict_autoload_attr_t symbol name is correct", p->name);
4200 return -1;
4201 }
4202
4203 enumv = fr_dict_enum_by_name(*(p->attr), p->name, -1);
4204 if (!enumv) {
4205 fr_strerror_printf("Value '%s' not found in \"%s\" attribute",
4206 p->name, (*(p->attr))->name);
4207 return -1;
4208 }
4209
4210 if (p->out) *(p->out) = enumv->value;
4211 }
4212
4213 return 0;
4214}
4215
4216/** Process a dict_attr_autoload element to load/verify a dictionary attribute
4217 *
4218 * @param[in] to_load attribute definition
4219 * @return
4220 * - 0 on success.
4221 * - -1 on failure.
4222 */
4224{
4225 fr_dict_attr_t const *da;
4226 fr_dict_attr_autoload_t const *p = to_load;
4227
4228 for (p = to_load; p->out; p++) {
4229 if (!p->dict) {
4230 fr_strerror_printf("Invalid attribute autoload entry for \"%s\", missing dictionary pointer", p->name);
4231 return -1;
4232 }
4233
4234 if (!*p->dict) {
4235 fr_strerror_printf("Autoloader autoloader can't resolve attribute \"%s\", dictionary not loaded", p->name);
4236 fr_strerror_printf_push("Check fr_dict_autoload_t struct has "
4237 "an entry to load the dictionary \"%s\" is located in, and that "
4238 "the fr_dict_autoload_t symbol name is correct", p->name);
4239 return -1;
4240 }
4241
4242 da = fr_dict_attr_by_oid(NULL, fr_dict_root(*p->dict), p->name);
4243 if (!da) {
4244 fr_strerror_printf("Autoloader attribute \"%s\" not found in \"%s\" dictionary", p->name,
4245 *p->dict ? (*p->dict)->root->name : "internal");
4246 return -1;
4247 }
4248
4249 if (da->type != p->type) {
4250 fr_strerror_printf("Autoloader attribute \"%s\" should be type %s, but defined as type %s", da->name,
4251 fr_type_to_str(p->type),
4252 fr_type_to_str(da->type));
4253 return -1;
4254 }
4255
4256 DA_VERIFY(da);
4257
4258 if (p->out) *(p->out) = da;
4259 }
4260
4261 return 0;
4262}
4263
4264/** Process a dict_autoload element to load a protocol
4265 *
4266 * @param[in] to_load dictionary definition.
4267 * @param[in] dependent that is loading this dictionary.
4268 * @return
4269 * - 0 on success.
4270 * - -1 on failure.
4271 */
4272int _fr_dict_autoload(fr_dict_autoload_t const *to_load, char const *dependent)
4273{
4274 fr_dict_autoload_t const *p;
4275
4276 for (p = to_load; p->out; p++) {
4277 fr_dict_t *dict = NULL;
4278
4279 if (unlikely(!p->proto)) {
4280 fr_strerror_const("autoload missing parameter proto");
4281 return -1;
4282 }
4283
4284 /*
4285 * Load the internal dictionary
4286 */
4287 if (strcmp(p->proto, "freeradius") == 0) {
4288 if (fr_dict_internal_afrom_file(&dict, p->proto, dependent) < 0) return -1;
4289 } else {
4290 if (fr_dict_protocol_afrom_file(&dict, p->proto, p->base_dir, dependent) < 0) return -1;
4291 }
4292
4293 *(p->out) = dict;
4294 }
4295
4296 return 0;
4297}
4298
4299
4300/** Decrement the reference count on a previously loaded dictionary
4301 *
4302 * @param[in] to_free previously loaded dictionary to free.
4303 * @param[in] dependent that originally allocated this dictionary
4304 */
4305int _fr_dict_autofree(fr_dict_autoload_t const *to_free, char const *dependent)
4306{
4307 fr_dict_autoload_t const *p;
4308
4309 for (p = to_free; p->out; p++) {
4310 int ret;
4311
4312 if (!*p->out) continue;
4313 ret = fr_dict_const_free(p->out, dependent);
4314
4315 if (ret == 0) *p->out = NULL;
4316 if (ret < 0) return -1;
4317 }
4318
4319 return 0;
4320}
4321
4322/** Structure used to managed the lifetime of a dictionary
4323 *
4324 * This should only be used when dictionaries are being dynamically loaded during
4325 * compilation. It should not be used to load dictionaries at runtime, or if
4326 * modules need to load dictionaries (use static fr_dict_autoload_t defs).
4327
4328 */
4330 fr_dict_autoload_t load[2]; //!< Autoloader def.
4331 char const *dependent; //!< Dependent that loaded the dictionary.
4332};
4333
4334/** Talloc destructor to automatically free dictionaries
4335 *
4336 * @param[in] to_free dictionary autoloader definition describing the dictionary to free.
4337 */
4339{
4340 return _fr_dict_autofree(to_free->load, to_free->dependent);
4341}
4342
4343/** Autoload a dictionary and bind the lifetime to a talloc chunk
4344 *
4345 * Mainly useful for resolving "forward" references from unlang immediately.
4346 *
4347 * @note If the talloc chunk is freed it does not mean the dictionary will
4348 * be immediately freed. It will be freed when all other references
4349 * to the dictionary are gone.
4350 *
4351 * @param[in] ctx to bind the dictionary lifetime to.
4352 * @param[out] out pointer to the loaded dictionary.
4353 * @param[in] proto to load.
4354 * @param[in] dependent to register this reference to. Will be dupd.
4355 */
4356fr_dict_autoload_talloc_t *_fr_dict_autoload_talloc(TALLOC_CTX *ctx, fr_dict_t const **out, char const *proto, char const *dependent)
4357{
4358 fr_dict_autoload_talloc_t *dict_ref;
4359 int ret;
4360
4361 dict_ref = talloc(ctx, fr_dict_autoload_talloc_t);
4362 if (unlikely(dict_ref == NULL)) {
4363 oom:
4364 fr_strerror_const("Out of memory");
4365 return NULL;
4366 }
4367
4368 dict_ref->load[0] = (fr_dict_autoload_t){ .proto = proto, .out = out};
4369 dict_ref->load[1] = (fr_dict_autoload_t){ NULL };
4370 dict_ref->dependent = talloc_strdup(dict_ref, dependent);
4371 if (unlikely(dict_ref->dependent == NULL)) {
4372 talloc_free(dict_ref);
4373 goto oom;
4374 }
4375
4376 ret = _fr_dict_autoload(dict_ref->load, dependent);
4377 if (ret < 0) {
4378 talloc_free(dict_ref);
4379 return NULL;
4380 }
4381
4382 return dict_ref;
4383}
4384
4385/** Callback to automatically resolve enum values
4386 *
4387 * @param[in] module being loaded.
4388 * @param[in] symbol An array of fr_dict_enum_autoload_t to load.
4389 * @param[in] user_ctx unused.
4390 * @return
4391 * - 0 on success.
4392 * - -1 on failure.
4393 */
4394int fr_dl_dict_enum_autoload(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
4395{
4396 if (fr_dict_enum_autoload((fr_dict_enum_autoload_t *)symbol) < 0) return -1;
4397
4398 return 0;
4399}
4400
4401/** Callback to automatically resolve attributes and check the types are correct
4402 *
4403 * @param[in] module being loaded.
4404 * @param[in] symbol An array of fr_dict_attr_autoload_t to load.
4405 * @param[in] user_ctx unused.
4406 * @return
4407 * - 0 on success.
4408 * - -1 on failure.
4409 */
4410int fr_dl_dict_attr_autoload(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
4411{
4412 if (fr_dict_attr_autoload((fr_dict_attr_autoload_t *)symbol) < 0) return -1;
4413
4414 return 0;
4415}
4416
4417/** Callback to automatically load dictionaries required by modules
4418 *
4419 * @param[in] module being loaded.
4420 * @param[in] symbol An array of fr_dict_autoload_t to load.
4421 * @param[in] user_ctx unused.
4422 * @return
4423 * - 0 on success.
4424 * - -1 on failure.
4425 */
4426int fr_dl_dict_autoload(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
4427{
4428 if (fr_dict_autoload((fr_dict_autoload_t const *)symbol) < 0) return -1;
4429
4430 return 0;
4431}
4432
4433/** Callback to automatically free a dictionary when the module is unloaded
4434 *
4435 * @param[in] module being loaded.
4436 * @param[in] symbol An array of fr_dict_autoload_t to load.
4437 * @param[in] user_ctx unused.
4438 */
4439void fr_dl_dict_autofree(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
4440{
4442}
4443
4444static int _dict_global_free_at_exit(void *uctx)
4445{
4446 return talloc_free(uctx);
4447}
4448
4450{
4451 fr_hash_iter_t iter;
4452 fr_dict_t *dict;
4453 bool still_loaded = false;
4454
4455 /*
4456 * Make sure this doesn't fire later and mess
4457 * things up...
4458 */
4460
4461 /*
4462 * Free up autorefs first, which will free up inter-dictionary dependencies.
4463 */
4464 for (dict = fr_hash_table_iter_init(gctx->protocol_by_name, &iter);
4465 dict;
4466 dict = fr_hash_table_iter_next(gctx->protocol_by_name, &iter)) {
4467 (void)talloc_get_type_abort(dict, fr_dict_t);
4468
4469 if (dict_autoref_free(dict) < 0) return -1;
4470 }
4471
4472 for (dict = fr_hash_table_iter_init(gctx->protocol_by_name, &iter);
4473 dict;
4474 dict = fr_hash_table_iter_next(gctx->protocol_by_name, &iter)) {
4475 (void)talloc_get_type_abort(dict, fr_dict_t);
4476 dict_dependent_remove(dict, "global"); /* remove our dependency */
4477
4478 if (talloc_free(dict) < 0) {
4479#ifndef NDEBUG
4480 FR_FAULT_LOG("gctx failed to free dictionary %s - %s", dict->root->name, fr_strerror());
4481#endif
4482 still_loaded = true;
4483 }
4484 }
4485
4486 /*
4487 * Free the internal dictionary as the last step, after all of the protocol dictionaries and
4488 * libraries have freed their references to it.
4489 */
4490 if (gctx->internal) {
4491 dict_dependent_remove(gctx->internal, "global"); /* remove our dependency */
4492
4493 if (talloc_free(gctx->internal) < 0) still_loaded = true;
4494 }
4495
4496 if (still_loaded) {
4497#ifndef NDEBUG
4498 fr_dict_gctx_debug(stderr, gctx);
4499#endif
4500 return -1;
4501 }
4502
4503 /*
4504 * Set this to NULL just in case the caller tries to use
4505 * dict_global_init() again.
4506 */
4507 if (gctx == dict_gctx) dict_gctx = NULL; /* In case the active context isn't this one */
4508
4509 return 0;
4510}
4511
4512/** Initialise the global protocol hashes
4513 *
4514 * @note Must be called before any other dictionary functions.
4515 *
4516 * @param[in] ctx to allocate global resources in.
4517 * @param[in] free_at_exit Install an at_exit handler to free the global ctx.
4518 * This is useful when dictionaries are held by other
4519 * libraries which free them using atexit handlers.
4520 * @param[in] dict_dir the default location for the dictionaries.
4521 * @return
4522 * - A pointer to the new global context on success.
4523 * - NULL on failure.
4524 */
4525fr_dict_gctx_t *fr_dict_global_ctx_init(TALLOC_CTX *ctx, bool free_at_exit, char const *dict_dir)
4526{
4527 fr_dict_gctx_t *new_ctx;
4528
4529 if (!dict_dir) {
4530 fr_strerror_const("No dictionary location provided");
4531 return NULL;
4532 }
4533
4534 new_ctx = talloc_zero(ctx, fr_dict_gctx_t);
4535 if (!new_ctx) {
4536 fr_strerror_const("Out of Memory");
4537 return NULL;
4538 }
4539 new_ctx->perm_check = true; /* Check file permissions by default */
4540
4542 if (!new_ctx->protocol_by_name) {
4543 fr_strerror_const("Failed initializing protocol_by_name hash");
4544 error:
4545 talloc_free(new_ctx);
4546 return NULL;
4547 }
4548
4550 if (!new_ctx->protocol_by_num) {
4551 fr_strerror_const("Failed initializing protocol_by_num hash");
4552 goto error;
4553 }
4554
4555 new_ctx->dict_dir_default = talloc_strdup(new_ctx, dict_dir);
4556 if (!new_ctx->dict_dir_default) goto error;
4557
4558 new_ctx->dict_loader = dl_loader_init(new_ctx, NULL, false, false);
4559 if (!new_ctx->dict_loader) goto error;
4560
4561 new_ctx->free_at_exit = free_at_exit;
4562
4563 talloc_set_destructor(new_ctx, _dict_global_free);
4564
4565 if (!dict_gctx) dict_gctx = new_ctx; /* Set as the default */
4566
4567 if (free_at_exit) fr_atexit_global(_dict_global_free_at_exit, new_ctx);
4568
4569 return new_ctx;
4570}
4571
4572/** Set whether we check dictionary file permissions
4573 *
4574 * @param[in] gctx to alter.
4575 * @param[in] enable Whether we should check file permissions as they're loaded.
4576 */
4578{
4579 gctx->perm_check = enable;
4580}
4581
4582/** Set a new, active, global dictionary context
4583 *
4584 * @param[in] gctx To set.
4585 */
4587{
4588 memcpy(&dict_gctx, &gctx, sizeof(dict_gctx));
4589}
4590
4591/** Explicitly free all data associated with a global dictionary context
4592 *
4593 * @note You should *NOT* ignore the return code of this function.
4594 * You should use perror() or PERROR() to print out the reason
4595 * why freeing failed.
4596 *
4597 * @param[in] gctx To set.
4598 * @return
4599 * - 0 on success.
4600 * - -1 on failure.
4601 */
4603{
4604 if (dict_gctx == gctx) dict_gctx = NULL;
4605
4606 return talloc_const_free(gctx);
4607}
4608
4609/** Allow the default dict dir to be changed after initialisation
4610 *
4611 * @param[in] dict_dir New default dict dir to use.
4612 * @return
4613 * - 0 on success.
4614 * - -1 on failure.
4615 */
4616int fr_dict_global_ctx_dir_set(char const *dict_dir)
4617{
4618 if (!dict_gctx) return -1;
4619
4620 talloc_free(dict_gctx->dict_dir_default); /* Free previous value */
4621 dict_gctx->dict_dir_default = talloc_strdup(dict_gctx, dict_dir);
4622 if (!dict_gctx->dict_dir_default) return -1;
4623
4624 return 0;
4625}
4626
4627char const *fr_dict_global_ctx_dir(void)
4628{
4630}
4631
4632/** Mark all dictionaries and the global dictionary ctx as read only
4633 *
4634 * Any attempts to add new attributes will now fail.
4635 */
4637{
4638 fr_hash_iter_t iter;
4639 fr_dict_t *dict;
4640
4641 if (!dict_gctx) return;
4642
4643 /*
4644 * Set everything to read only
4645 */
4647 dict;
4650 dict->read_only = true;
4651 }
4652
4653 dict = dict_gctx->internal;
4655 dict->read_only = true;
4656 dict_gctx->read_only = true;
4657}
4658
4659/** Dump information about currently loaded dictionaries
4660 *
4661 * Intended to be called from a debugger
4662 */
4663void fr_dict_gctx_debug(FILE *fp, fr_dict_gctx_t const *gctx)
4664{
4665 fr_hash_iter_t dict_iter;
4666 fr_dict_t *dict;
4667 fr_rb_iter_inorder_t dep_iter;
4669
4670 if (gctx == NULL) gctx = dict_gctx;
4671
4672 if (!gctx) {
4673 fprintf(fp, "gctx not initialised\n");
4674 return;
4675 }
4676
4677 fprintf(fp, "gctx %p report\n", dict_gctx);
4678 for (dict = fr_hash_table_iter_init(gctx->protocol_by_num, &dict_iter);
4679 dict;
4680 dict = fr_hash_table_iter_next(gctx->protocol_by_num, &dict_iter)) {
4681 for (dep = fr_rb_iter_init_inorder(&dep_iter, dict->dependents);
4682 dep;
4683 dep = fr_rb_iter_next_inorder(&dep_iter)) {
4684 fprintf(fp, "\t%s is referenced from %s count (%d)\n",
4685 dict->root->name, dep->dependent, dep->count);
4686 }
4687 }
4688
4689 if (gctx->internal) {
4690 for (dep = fr_rb_iter_init_inorder(&dep_iter, gctx->internal->dependents);
4691 dep;
4692 dep = fr_rb_iter_next_inorder(&dep_iter)) {
4693 fprintf(fp, "\t%s is referenced from %s count (%d)\n",
4694 gctx->internal->root->name, dep->dependent, dep->count);
4695 }
4696 }
4697}
4698
4699/** Iterate protocols by name
4700 *
4701 */
4708
4715
4716
4717/** Coerce to non-const
4718 *
4719 */
4721{
4722 if (unlikely(dict->read_only)) {
4723 fr_strerror_printf("%s dictionary has been marked as read only", fr_dict_root(dict)->name);
4724 return NULL;
4725 }
4726 return UNCONST(fr_dict_t *, dict);
4727}
4728
4729/** Coerce to non-const
4730 *
4731 */
4733{
4734 fr_dict_t *dict;
4735
4736 dict = dict_by_da(da);
4737 if (unlikely(dict->read_only)) {
4738 fr_strerror_printf("%s dictionary has been marked as read only", fr_dict_root(dict)->name);
4739 return NULL;
4740 }
4741
4742 return UNCONST(fr_dict_attr_t *, da);
4743}
4744
4746{
4747 if (!dict_gctx) return NULL;
4748
4749 return dict_gctx->internal;
4750}
4751
4752/*
4753 * Check for the allowed characters.
4754 */
4756{
4757 char const *p = name, *end;
4758 bool unknown = false;
4759 bool alnum = false;
4760
4761 if (len < 0) len = strlen(name);
4762
4763 if (len > FR_DICT_ATTR_MAX_NAME_LEN) {
4764 fr_strerror_const("Attribute name is too long");
4765 return -1;
4766 }
4767
4768 end = p + len;
4769
4770 /*
4771 * Unknown attributes can have '.' in their name.
4772 */
4773 if ((len > 5) && (memcmp(name, "Attr-", 5) == 0)) unknown = true;
4774
4775 while (p < end) {
4776 if ((*p == '.') && unknown) p++;
4777
4779 fr_strerror_printf("Invalid character '%pV' in attribute name \"%pV\"",
4781
4782 return -(p - name);
4783 }
4784
4785 alnum |= sbuff_char_alpha_num[(uint8_t)*p];
4786
4787 p++;
4788 }
4789
4790 if (!alnum) {
4791 fr_strerror_const("Invalid attribute name");
4792 return -1;
4793 }
4794
4795 return len;
4796}
4797
4799{
4800 char const *p = name, *end;
4801 bool alnum = false;
4802
4803 if (len < 0) len = strlen(name);
4804 end = p + len;
4805
4806 do {
4807 if (!fr_dict_attr_allowed_chars[(uint8_t)*p] && (*p != '.')) {
4808 fr_strerror_printf("Invalid character '%pV' in oid string \"%pV\"",
4810
4811 return -(p - name);
4812 }
4813
4814 alnum |= sbuff_char_alpha_num[(uint8_t)*p];
4815 p++;
4816 } while (p < end);
4817
4818 if (!alnum) return 0;
4819
4820 return len;
4821}
4822
4823/** Iterate over children of a DA.
4824 *
4825 * @param[in] parent the parent da to iterate over
4826 * @param[in,out] prev pointer to NULL to start, otherwise pointer to the previously returned child
4827 * @return
4828 * - NULL for end of iteration
4829 * - !NULL for a valid child. This child MUST be passed to the next loop.
4830 */
4832{
4833 fr_dict_attr_t const * const *bin;
4834 fr_dict_attr_t const **children;
4835 fr_dict_attr_t const *ref;
4836 size_t len, i, start;
4837
4838 if (!parent || !prev) return NULL;
4839
4840 ref = fr_dict_attr_ref(parent);
4841 if (ref) parent = ref;
4842
4843 children = dict_attr_children(parent);
4844 if (!children) return NULL;
4845
4846 if (!*prev) {
4847 start = 0;
4848
4849 } else if ((*prev)->next) {
4850 /*
4851 * There are more children in this bin, return
4852 * the next one.
4853 */
4854 return (*prev)->next;
4855
4856 } else {
4857 /*
4858 * Figure out which bin we were in. If it was
4859 * the last one, we're done.
4860 */
4861 start = (*prev)->attr & 0xff;
4862 if (start == 255) return NULL;
4863
4864 /*
4865 * Start at the next bin.
4866 */
4867 start++;
4868 }
4869
4870 /*
4871 * Look for a non-empty bin, and return the first child
4872 * from there.
4873 */
4874 len = talloc_array_length(children);
4875 for (i = start; i < len; i++) {
4876 bin = &children[i & 0xff];
4877
4878 if (*bin) return *bin;
4879 }
4880
4881 return NULL;
4882}
4883
4884/** Call the specified callback for da and then for all its children
4885 *
4886 */
4887static int dict_walk(fr_dict_attr_t const *da, fr_dict_walk_t callback, void *uctx)
4888{
4889 size_t i, len;
4890 fr_dict_attr_t const **children;
4891
4892 children = dict_attr_children(da);
4893
4894 if (fr_dict_attr_ref(da) || !children) return callback(da, uctx);
4895
4896 len = talloc_array_length(children);
4897 for (i = 0; i < len; i++) {
4898 int ret;
4899 fr_dict_attr_t const *bin;
4900
4901 if (!children[i]) continue;
4902
4903 for (bin = children[i]; bin; bin = bin->next) {
4904 ret = dict_walk(bin, callback, uctx);
4905 if (ret < 0) return ret;
4906 }
4907 }
4908
4909 return 0;
4910}
4911
4912int fr_dict_walk(fr_dict_attr_t const *da, fr_dict_walk_t callback, void *uctx)
4913{
4914 return dict_walk(da, callback, uctx);
4915}
4916
4917
4918void fr_dict_attr_verify(char const *file, int line, fr_dict_attr_t const *da)
4919{
4920 int i;
4921 fr_dict_attr_t const *da_p;
4922
4923 if (!da) fr_fatal_assert_fail("CONSISTENCY CHECK FAILED %s[%d]: fr_dict_attr_t pointer was NULL", file, line);
4924
4926
4927 if ((!da->flags.is_root) && (da->depth == 0)) {
4928 fr_fatal_assert_fail("CONSISTENCY CHECK FAILED %s[%d]: fr_dict_attr_t %s vendor: %u, attr %u: "
4929 "Is not root, but depth is 0",
4930 file, line, da->name, fr_dict_vendor_num_by_da(da), da->attr);
4931 }
4932
4933 if (da->depth > FR_DICT_MAX_TLV_STACK) {
4934 fr_fatal_assert_fail("CONSISTENCY CHECK FAILED %s[%d]: fr_dict_attr_t %s vendor: %u, attr %u: "
4935 "Indicated depth (%u) greater than TLV stack depth (%d)",
4936 file, line, da->name, fr_dict_vendor_num_by_da(da), da->attr,
4937 da->depth, FR_DICT_MAX_TLV_STACK);
4938 }
4939
4940 for (da_p = da; da_p; da_p = da_p->next) {
4942 }
4943
4944 for (i = da->depth, da_p = da; (i >= 0) && da; i--, da_p = da_p->parent) {
4945 if (!da_p) {
4946 fr_fatal_assert_fail("CONSISTENCY CHECK FAILED %s[%d]: fr_dict_attr_t %s vendor: %u, attr %u: "
4947 "Depth indicated there should be a parent, but parent is NULL",
4948 file, line, da->name, fr_dict_vendor_num_by_da(da), da->attr);
4949 }
4950 if (i != (int)da_p->depth) {
4951 fr_fatal_assert_fail("CONSISTENCY CHECK FAILED %s[%d]: fr_dict_attr_t %s vendor: %u, attr %u: "
4952 "Depth out of sequence, expected %i, got %u",
4953 file, line, da->name, fr_dict_vendor_num_by_da(da), da->attr, i, da_p->depth);
4954 }
4955
4956 }
4957
4958 if ((i + 1) < 0) {
4959 fr_fatal_assert_fail("CONSISTENCY CHECK FAILED %s[%d]: fr_dict_attr_t top of hierarchy was not at depth 0",
4960 file, line);
4961 }
4962
4963 if (da->parent && (da->parent->type == FR_TYPE_VENDOR) && !fr_dict_attr_has_ext(da, FR_DICT_ATTR_EXT_VENDOR)) {
4964 fr_fatal_assert_fail("CONSISTENCY CHECK FAILED %s[%d]: VSA missing 'vendor' extension", file, line);
4965 }
4966
4967 switch (da->type) {
4968 case FR_TYPE_STRUCTURAL:
4969 {
4970 fr_hash_table_t *ht;
4971
4972 if (da->type == FR_TYPE_GROUP) break;
4973
4975 "CONSISTENCY CHECK FAILED %s[%d]: %s missing 'children' extension",
4976 file, line,
4977 fr_type_to_str(da->type));
4978
4980 "CONSISTENCY CHECK FAILED %s[%d]: %s missing 'namespace' extension",
4981 file, line,
4982 fr_type_to_str(da->type));
4983
4984 /*
4985 * Check the namespace hash table is ok
4986 */
4987 ht = dict_attr_namespace(da);
4988 if (unlikely(!ht)) break;
4990 }
4991 break;
4992
4993 default:
4994 break;
4995 }
4996}
4997
4998/** See if a structural da is allowed to contain another da
4999 *
5000 * We have some complex rules with different structural types,
5001 * different protocol dictionaries, references to other protocols,
5002 * etc.
5003 *
5004 * @param[in] parent The parent da, must be structural
5005 * @param[in] child The alleged child
5006 * @return
5007 * - false - the child is not allowed to be contained by the parent
5008 * - true - the child is allowed to be contained by the parent
5009 */
5011{
5012 /*
5013 * This is the common case: child is from the parent.
5014 */
5015 if (child->parent == parent) return true;
5016
5017 if (child->flags.is_raw) return true; /* let people do stupid things */
5018
5019 /*
5020 * Child is a STRUCT which has a parent key field. The
5021 * child pair nesting, though, is in the grandparent.
5022 */
5023 if (fr_dict_attr_is_key_field(child->parent)) {
5024 fr_assert(child->parent->parent == parent);
5025
5026 return (child->parent->parent == parent);
5027 }
5028
5029 /*
5030 * Only structural types or key fields can have children.
5031 */
5032 if (!fr_type_structural[parent->type]) return false;
5033
5034 /*
5035 * An internal attribute can go into any other container.
5036 *
5037 * Any other attribute can go into an internal structural
5038 * attribute, because why not?
5039 */
5040 if (dict_gctx) {
5041 if (child->dict == dict_gctx->internal) return true;
5042
5043 if (parent->dict == dict_gctx->internal) return true;
5044 }
5045
5046 /*
5047 * Anything can go into internal groups.
5048 */
5049 if ((parent->type == FR_TYPE_GROUP) && parent->flags.internal) return true;
5050
5051 /*
5052 * Protocol attributes have to be in the same dictionary.
5053 *
5054 * Unless they're a cross-protocol grouping attribute.
5055 * In which case we check if the ref is the same.
5056 */
5057 if (child->dict != parent->dict) {
5058 fr_dict_attr_t const *ref;
5059
5060 ref = fr_dict_attr_ref(parent);
5061
5062 return (ref && (ref->dict == child->dict));
5063 }
5064
5065 /*
5066 * Key fields can have children, but everyone else thinks
5067 * that the struct is the parent. <sigh>
5068 */
5069 if ((parent->type == FR_TYPE_STRUCT) && child->parent->parent == parent) return true;
5070
5071 /*
5072 * We're in the same protocol dictionary, but the child
5073 * isn't directly from the parent. Therefore the only
5074 * type of same-protocol structure it can go into is a
5075 * group.
5076 */
5077 return (parent->type == FR_TYPE_GROUP);
5078}
5079
5080/** Return the protocol descriptor for the dictionary.
5081 *
5082 */
5084{
5085 return dict->proto;
5086}
5087
5088/*
5089 * Get the real protocol namespace behind a local one.
5090 */
5092{
5093 if (!da->flags.local) return da;
5094
5095 fr_assert(da->dict->root == da);
5096
5097 while (da->dict->next) {
5098 da = da->dict->next->root;
5099 }
5100
5101 return da;
5102}
5103
5104/*
5105 * Get the real protocol dictionary behind a local one.
5106 */
5108{
5109 while (dict->next) dict = dict->next;
5110
5111 return dict;
5112}
5113
5115{
5116 if ((*da_p)->type == FR_TYPE_GROUP) {
5118 return 0;
5119 }
5120
5121 (*da_p)->type = FR_TYPE_GROUP;
5122
5124
5126 return -1;
5127 }
5128
5129 return 0;
5130}
static int const char char buffer[256]
Definition acutest.h:576
int const char * file
Definition acutest.h:702
int n
Definition acutest.h:577
va_list args
Definition acutest.h:770
int const char int line
Definition acutest.h:702
unsigned int fr_atexit_global_disarm(bool uctx_scope, fr_atexit_t func, void const *uctx)
Remove a specific global destructor (without executing it)
Definition atexit.c:229
#define fr_atexit_global(_func, _uctx)
Add a free function to the global free list.
Definition atexit.h:59
#define UNCONST(_type, _ptr)
Remove const qualification from a pointer.
Definition build.h:167
#define RCSID(id)
Definition build.h:485
#define FALL_THROUGH
clang 10 doesn't recognised the FALL-THROUGH comment anymore
Definition build.h:324
#define CMP(_a, _b)
Same as CMP_PREFER_SMALLER use when you don't really care about ordering, you just want an ordering.
Definition build.h:112
#define unlikely(_x)
Definition build.h:383
#define UNUSED
Definition build.h:317
#define fr_fatal_assert_fail(_msg,...)
Calls panic_action ifndef NDEBUG, else logs error and causes the server to exit immediately with code...
Definition debug.h:183
#define fr_cond_assert(_x)
Calls panic_action ifndef NDEBUG, else logs error and evaluates to value of _x.
Definition debug.h:131
#define fr_assert_msg(_x, _msg,...)
Calls panic_action ifndef NDEBUG, else logs error and causes the server to exit immediately with code...
Definition debug.h:202
#define FR_FAULT_LOG(_fmt,...)
Definition debug.h:50
#define fr_cond_assert_msg(_x, _fmt,...)
Calls panic_action ifndef NDEBUG, else logs error and evaluates to value of _x.
Definition debug.h:148
size_t type
Length of type data.
Definition dict.h:255
size_t name_len
Allows for efficient name lookups when operating on partial buffers.
Definition dict.h:236
char const * name
of the attribute.
Definition dict.h:280
int fr_dict_internal_afrom_file(fr_dict_t **out, char const *internal_name, char const *dependent)
(Re-)Initialize the special internal dictionary
char const * name
Vendor name.
Definition dict.h:257
fr_dict_attr_t const ** attr
The protocol dictionary the attribute should be resolved in.
Definition dict.h:265
fr_dict_t const * fr_dict_by_da(fr_dict_attr_t const *da)
Attempt to locate the protocol dictionary containing an attribute.
Definition dict_util.c:2698
unsigned int is_root
Is root of a dictionary.
Definition dict.h:77
#define fr_dict_autofree(_to_free)
Definition dict.h:880
static fr_slen_t err
Definition dict.h:849
fr_value_box_t const ** out
Enumeration value.
Definition dict.h:264
fr_dict_t const ** dict
The protocol dictionary the attribute should be resolved in.
Definition dict.h:277
int fr_dict_protocol_afrom_file(fr_dict_t **out, char const *proto_name, char const *proto_dir, char const *dependent)
(Re)-initialize a protocol dictionary
int(* fr_dict_walk_t)(fr_dict_attr_t const *da, void *uctx)
Definition dict.h:957
fr_dict_attr_t const ** out
Where to write a pointer to the resolved fr_dict_attr_t.
Definition dict.h:275
fr_dict_t const ** out
Where to write a pointer to the loaded/resolved fr_dict_t.
Definition dict.h:288
#define DA_VERIFY(_x)
Definition dict.h:68
char const * name
of the attribute.
Definition dict.h:268
fr_value_box_t const * value
Enum value (what name maps to).
Definition dict.h:238
struct fr_dict_protocol_t::@127 attr
uint32_t pen
Private enterprise number.
Definition dict.h:253
fr_type_t type
of the attribute. Mismatch is a fatal error.
Definition dict.h:281
#define FR_DICT_DA_STACK_CACHE_MAX
Maximum level of da stack caching.
Definition dict.h:489
size_t length
Length of length data.
Definition dict.h:256
char const * base_dir
Directory structure beneath share.
Definition dict.h:290
@ FR_DICT_ATTR_EXT_PROTOCOL_SPECIFIC
Protocol specific extensions.
Definition dict.h:178
@ FR_DICT_ATTR_EXT_ENUMV
Enumeration values.
Definition dict.h:176
@ FR_DICT_ATTR_EXT_NAMESPACE
Attribute has its own namespace.
Definition dict.h:177
@ FR_DICT_ATTR_EXT_DA_STACK
Cached da stack.
Definition dict.h:175
@ FR_DICT_ATTR_EXT_REF
Attribute references another attribute and/or dictionary.
Definition dict.h:171
@ FR_DICT_ATTR_EXT_VENDOR
Cached vendor pointer.
Definition dict.h:174
@ FR_DICT_ATTR_EXT_NAME
Name of the attribute.
Definition dict.h:169
@ FR_DICT_ATTR_EXT_CHILDREN
Attribute has children.
Definition dict.h:170
#define fr_dict_autoload(_to_load)
Definition dict.h:877
#define FR_DICT_MAX_TLV_STACK
Maximum TLV stack size.
Definition dict.h:501
fr_dict_attr_err_t
Errors returned by attribute lookup functions.
Definition dict.h:297
@ FR_DICT_ATTR_OK
No error.
Definition dict.h:298
@ FR_DICT_ATTR_NOTFOUND
Attribute couldn't be found.
Definition dict.h:299
@ FR_DICT_ATTR_EINVAL
Invalid arguments.
Definition dict.h:309
@ FR_DICT_ATTR_NO_CHILDREN
Child lookup in attribute with no children.
Definition dict.h:308
@ FR_DICT_ATTR_PARSE_ERROR
Attribute string couldn't be parsed.
Definition dict.h:301
@ FR_DICT_ATTR_INTERNAL_ERROR
Internal error occurred.
Definition dict.h:302
#define FR_DICT_ENUM_MAX_NAME_LEN
Maximum length of a enum value.
Definition dict.h:479
char const * proto
The protocol dictionary name.
Definition dict.h:291
fr_dict_attr_t const * key_child_ref[]
for key fields
Definition dict.h:242
#define fr_dict_attr_is_key_field(_da)
Definition dict.h:159
char const * name
Enum name.
Definition dict.h:235
static fr_slen_t in
Definition dict.h:849
char const * name
name of this protocol
Definition dict.h:436
#define FR_DICT_VENDOR_MAX_NAME_LEN
Maximum length of a vendor name.
Definition dict.h:480
#define FR_DICT_ATTR_MAX_NAME_LEN
Maximum length of a attribute name.
Definition dict.h:481
unsigned int is_alias
This isn't a real attribute, it's a reference to to one.
Definition dict.h:87
Specifies an attribute which must be present for the module to function.
Definition dict.h:274
Values of the encryption flags.
Specifies a dictionary which must be loaded/loadable for the module to function.
Definition dict.h:287
Specifies a value which must be present for the module to function.
Definition dict.h:263
Value of an enumerated attribute.
Definition dict.h:234
Protocol-specific callbacks in libfreeradius-PROTOCOL.
Definition dict.h:435
Private enterprise.
Definition dict.h:252
size_t max_name_len
maximum length of a name
Definition dict_ext.h:109
fr_dict_attr_t const * vendor
ancestor which has type FR_TYPE_VENDOR
Definition dict_ext.h:89
fr_dict_attr_ref_type_t type
The state of the reference.
Definition dict_ext.h:78
fr_hash_table_t * name_by_value
Lookup a name by value.
Definition dict_ext.h:111
static void * fr_dict_attr_ext(fr_dict_attr_t const *da, fr_dict_attr_ext_t ext)
Definition dict_ext.h:141
fr_hash_table_t * value_by_name
Lookup an enumeration value by name.
Definition dict_ext.h:110
fr_dict_attr_t const * da_stack[]
Stack of dictionary attributes.
Definition dict_ext.h:102
static fr_dict_attr_t const * fr_dict_attr_ref(fr_dict_attr_t const *da)
Return the reference associated with a group type attribute.
Definition dict_ext.h:185
static bool fr_dict_attr_has_ext(fr_dict_attr_t const *da, fr_dict_attr_ext_t ext)
Return whether a da has a given extension or not.
Definition dict_ext.h:156
@ FR_DICT_ATTR_REF_ALIAS
The attribute is an alias for another attribute.
Definition dict_ext.h:60
@ FR_DICT_ATTR_REF_NONE
No ref set.
Definition dict_ext.h:59
static uint32_t fr_dict_vendor_num_by_da(fr_dict_attr_t const *da)
Return the vendor number for an attribute.
Definition dict_ext.h:213
Attribute extension - Holds children for an attribute.
Definition dict_ext.h:52
Attribute extension - Stack of dictionary attributes that describe the path back to the root of the d...
Definition dict_ext.h:95
Attribute extension - Holds enumeration values.
Definition dict_ext.h:108
Attribute extension - Holds a hash table with the names of all children of this attribute.
Definition dict_ext.h:117
Attribute extension - Holds a reference to an attribute in another dictionary.
Definition dict_ext.h:77
Attribute extension - Cached vendor pointer.
Definition dict_ext.h:88
static int dict_attr_ref_set(fr_dict_attr_t const *da, fr_dict_attr_t const *ref, fr_dict_attr_ref_type_t type)
static int dict_attr_children_set(fr_dict_attr_t const *da, fr_dict_attr_t const **children)
static fr_hash_table_t * dict_attr_namespace(fr_dict_attr_t const *da)
Return the namespace hash table associated with the attribute.
static int dict_attr_ref_null(fr_dict_attr_t const *da)
static int dict_attr_ext_copy_all(fr_dict_attr_t **da_out_p, fr_dict_attr_t const *da_in)
Copy all attribute extensions from one attribute to another.
static void * dict_attr_ext_copy(fr_dict_attr_t **da_out_p, fr_dict_attr_t const *da_in, fr_dict_attr_ext_t ext)
Copy a single attribute extension from one attribute to another.
static fr_dict_attr_t const ** dict_attr_children(fr_dict_attr_t const *da)
static void * dict_attr_ext_alloc_size(fr_dict_attr_t **da_p, fr_dict_attr_ext_t ext, size_t ext_len)
Allocate an attribute extension of a particular size.
static int dict_attr_ref_aset(fr_dict_attr_t **da_p, fr_dict_attr_t const *ref, fr_dict_attr_ref_type_t type)
static void * dict_attr_ext_alloc(fr_dict_attr_t **da_p, fr_dict_attr_ext_t ext)
Allocate an attribute extension.
void dict_hash_tables_finalise(fr_dict_t *dict)
Walk a dictionary finalising the hash tables in all attributes with a distinct namespace.
Definition dict_fixup.c:935
char * dict_dir_default
The default location for loading dictionaries if one wasn't provided.
Definition dict_priv.h:137
fr_hash_table_t * protocol_by_name
Hash containing names of all the registered protocols.
Definition dict_priv.h:142
#define dict_attr_alloc(_ctx, _parent, _name, _attr, _type, _args)
Definition dict_priv.h:239
#define INTERNAL_IF_NULL(_dict, _ret)
Set the internal dictionary if none was provided.
Definition dict_priv.h:45
fr_hash_table_t * protocol_by_num
Hash containing numbers of all the registered protocols.
Definition dict_priv.h:144
fr_dict_attr_t * root
Root attribute of this dictionary.
Definition dict_priv.h:109
#define DICT_POOL_SIZE
Definition dict_priv.h:37
dl_loader_t * dict_loader
for protocol validation
Definition dict_priv.h:140
#define dict_attr_init(_da_p, _parent, _name, _attr, _type, _args)
Full initialisation functions.
Definition dict_priv.h:215
char const * dependent
File holding the reference.
Definition dict_priv.h:62
bool dict_attr_valid(fr_dict_attr_t *da)
Validate a new attribute definition.
#define dict_attr_init_name_only(_da_p, _parent, _name, _type, _args)
Definition dict_priv.h:223
fr_dict_attr_t const * attr_protocol_encapsulation
Definition dict_priv.h:157
fr_dict_t * internal
Magic internal dictionary.
Definition dict_priv.h:155
bool free_at_exit
This gctx will be freed on exit.
Definition dict_priv.h:130
#define dict_attr_alloc_root(_ctx, _dict, _name, _attr, _args)
Definition dict_priv.h:231
bool perm_check
Whether we should check dictionary file permissions as they're loaded.
Definition dict_priv.h:132
int count
How many references are held by this file.
Definition dict_priv.h:60
Optional arguments for initialising/allocating attributes.
Definition dict_priv.h:175
Entry recording dictionary reference holders by file.
Definition dict_priv.h:58
Entry in the filename list of files associated with this dictionary.
Definition dict_priv.h:69
Test enumeration values.
Definition dict_test.h:92
static fr_dict_protocol_t dict_proto_default
Default protocol rules set for every dictionary.
Definition dict_util.c:103
int fr_dl_dict_attr_autoload(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
Callback to automatically resolve attributes and check the types are correct.
Definition dict_util.c:4410
fr_dict_t * fr_dict_global_ctx_iter_next(fr_dict_global_ctx_iter_t *iter)
Definition dict_util.c:4709
int fr_dict_enum_add_name(fr_dict_attr_t *da, char const *name, fr_value_box_t const *value, bool coerce, bool takes_precedence)
Add a value name.
Definition dict_util.c:2033
fr_slen_t fr_dict_attr_search_by_name_substr(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_t const *dict_def, fr_sbuff_t *name, fr_sbuff_term_t const *tt, bool internal, bool foreign)
Locate a fr_dict_attr_t by its name in the top level namespace of a dictionary.
Definition dict_util.c:3096
ssize_t fr_dict_attr_by_oid_legacy(fr_dict_t const *dict, fr_dict_attr_t const **parent, unsigned int *attr, char const *oid)
Get the leaf attribute of an OID string.
Definition dict_util.c:2217
fr_dict_gctx_t * fr_dict_global_ctx_init(TALLOC_CTX *ctx, bool free_at_exit, char const *dict_dir)
Initialise the global protocol hashes.
Definition dict_util.c:4525
int fr_dict_attr_add_initialised(fr_dict_attr_t *da)
A variant of fr_dict_attr_t that allows a pre-allocated, populated fr_dict_attr_t to be added.
Definition dict_util.c:1666
ssize_t fr_dict_valid_oid_str(char const *name, ssize_t len)
Definition dict_util.c:4798
int fr_dict_global_ctx_dir_set(char const *dict_dir)
Allow the default dict dir to be changed after initialisation.
Definition dict_util.c:4616
fr_slen_t fr_dict_enum_name_from_substr(fr_sbuff_t *out, fr_sbuff_parse_error_t *err, fr_sbuff_t *in, fr_sbuff_term_t const *tt)
Extract an enumeration name from a string.
Definition dict_util.c:3648
static int _dict_global_free_at_exit(void *uctx)
Definition dict_util.c:4444
static uint32_t dict_protocol_num_hash(void const *data)
Hash a protocol number.
Definition dict_util.c:178
static uint32_t dict_vendor_name_hash(void const *data)
Wrap name hash function for fr_dict_vendor_t.
Definition dict_util.c:287
#define DICT_NAME_APPEND(_in, _dict)
static int _dict_free(fr_dict_t *dict)
Definition dict_util.c:3922
fr_dict_t * fr_dict_unconst(fr_dict_t const *dict)
Coerce to non-const.
Definition dict_util.c:4720
static int dict_attr_init_common(char const *filename, int line, fr_dict_attr_t **da_p, fr_dict_attr_t const *parent, fr_type_t type, dict_attr_args_t const *args)
Definition dict_util.c:848
fr_dict_t const * fr_dict_by_da(fr_dict_attr_t const *da)
Attempt to locate the protocol dictionary containing an attribute.
Definition dict_util.c:2698
int fr_dict_enum_autoload(fr_dict_enum_autoload_t const *to_load)
Process a dict_attr_autoload element to load/verify a dictionary attribute.
Definition dict_util.c:4184
fr_dict_enum_value_t const * fr_dict_enum_iter_init(fr_dict_attr_t const *da, fr_dict_enum_iter_t *iter)
Iterate over all enumeration values for an attribute.
Definition dict_util.c:3441
int _fr_dict_autofree(fr_dict_autoload_t const *to_free, char const *dependent)
Decrement the reference count on a previously loaded dictionary.
Definition dict_util.c:4305
static int dict_autoref_free(fr_dict_t *dict)
Definition dict_util.c:3895
int fr_dict_walk(fr_dict_attr_t const *da, fr_dict_walk_t callback, void *uctx)
Definition dict_util.c:4912
fr_slen_t dict_by_protocol_substr(fr_dict_attr_err_t *err, fr_dict_t **out, fr_sbuff_t *name, fr_dict_t const *dict_def)
Definition dict_util.c:2507
fr_dict_attr_t const * fr_dict_unlocal(fr_dict_attr_t const *da)
Definition dict_util.c:5091
fr_dict_attr_t const * fr_dict_attr_common_parent(fr_dict_attr_t const *a, fr_dict_attr_t const *b, bool is_ancestor)
Find a common ancestor that two TLV type attributes share.
Definition dict_util.c:2129
static int dict_walk(fr_dict_attr_t const *da, fr_dict_walk_t callback, void *uctx)
Call the specified callback for da and then for all its children.
Definition dict_util.c:4887
fr_dict_attr_t * dict_attr_alloc_null(TALLOC_CTX *ctx, fr_dict_protocol_t const *proto)
Allocate a partially completed attribute.
Definition dict_util.c:985
int dict_attr_type_init(fr_dict_attr_t **da_p, fr_type_t type)
Initialise type specific fields within the dictionary attribute.
Definition dict_util.c:588
int dict_attr_parent_init(fr_dict_attr_t **da_p, fr_dict_attr_t const *parent)
Initialise fields which depend on a parent attribute.
Definition dict_util.c:682
static void dependent_debug(fr_dict_t *dict)
Definition dict_util.c:3877
fr_dict_t const * fr_dict_proto_dict(fr_dict_t const *dict)
Definition dict_util.c:5107
fr_dict_t * dict_alloc(TALLOC_CTX *ctx)
Allocate a new dictionary.
Definition dict_util.c:4005
static uint32_t dict_vendor_pen_hash(void const *data)
Hash a vendor number.
Definition dict_util.c:312
bool const fr_dict_attr_allowed_chars[UINT8_MAX+1]
Characters allowed in a single dictionary attribute name.
Definition dict_util.c:64
int8_t fr_dict_attr_ordered_cmp(fr_dict_attr_t const *a, fr_dict_attr_t const *b)
Compare two attributes by total order.
Definition dict_util.c:229
int fr_dict_attr_set_group(fr_dict_attr_t **da_p)
Definition dict_util.c:5114
fr_dict_protocol_t const * fr_dict_protocol(fr_dict_t const *dict)
Return the protocol descriptor for the dictionary.
Definition dict_util.c:5083
fr_dict_attr_t * _dict_attr_alloc_root(char const *filename, int line, TALLOC_CTX *ctx, fr_dict_t const *dict, char const *name, int proto_number, dict_attr_args_t const *args)
Allocate a dictionary root attribute on the heap.
Definition dict_util.c:1026
fr_dict_attr_t * _dict_attr_alloc(char const *filename, int line, TALLOC_CTX *ctx, fr_dict_attr_t const *parent, char const *name, int attr, fr_type_t type, dict_attr_args_t const *args)
Allocate a dictionary attribute on the heap.
Definition dict_util.c:1060
int fr_dict_attr_acopy_local(fr_dict_attr_t const *dst, fr_dict_attr_t const *src)
Definition dict_util.c:1144
void fr_dl_dict_autofree(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
Callback to automatically free a dictionary when the module is unloaded.
Definition dict_util.c:4439
fr_dict_autoload_talloc_t * _fr_dict_autoload_talloc(TALLOC_CTX *ctx, fr_dict_t const **out, char const *proto, char const *dependent)
Autoload a dictionary and bind the lifetime to a talloc chunk.
Definition dict_util.c:4356
static int dict_attr_da_stack_set(fr_dict_attr_t **da_p)
Initialise an attribute's da stack from its parent.
Definition dict_util.c:503
bool fr_dict_compatible(fr_dict_t const *dict1, fr_dict_t const *dict2)
See if two dictionaries have the same end parent.
Definition dict_util.c:2711
static fr_slen_t dict_attr_search_qualified(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_t const *dict_def, fr_sbuff_t *in, fr_sbuff_term_t const *tt, bool internal, bool foreign, dict_attr_resolve_func_t func)
Internal function for searching for attributes in multiple dictionaries.
Definition dict_util.c:3000
bool dict_attr_can_have_children(fr_dict_attr_t const *da)
See if a fr_dict_attr_t can have children.
Definition dict_util.c:1466
fr_dict_attr_t * fr_dict_attr_unconst(fr_dict_attr_t const *da)
Coerce to non-const.
Definition dict_util.c:4732
static int8_t _dict_dependent_cmp(void const *a, void const *b)
Find a dependent in the tree of dependents.
Definition dict_util.c:3760
fr_slen_t fr_dict_attr_by_oid_substr(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_attr_t const *parent, fr_sbuff_t *in, fr_sbuff_term_t const *tt)
Resolve an attribute using an OID string.
Definition dict_util.c:2416
void fr_dict_attr_verify(char const *file, int line, fr_dict_attr_t const *da)
Definition dict_util.c:4918
#define FNV_MAGIC_PRIME
Definition dict_util.c:115
bool fr_dict_attr_can_contain(fr_dict_attr_t const *parent, fr_dict_attr_t const *child)
See if a structural da is allowed to contain another da.
Definition dict_util.c:5010
void dict_attr_location_init(fr_dict_attr_t *da, char const *filename, int line)
Set where the dictionary attribute was defined.
Definition dict_util.c:763
fr_dict_t * dict_by_da(fr_dict_attr_t const *da)
Internal version of fr_dict_by_da.
Definition dict_util.c:2628
bool const fr_dict_attr_nested_allowed_chars[UINT8_MAX+1]
Characters allowed in a nested dictionary attribute name.
Definition dict_util.c:71
fr_dict_t * fr_dict_global_ctx_iter_init(fr_dict_global_ctx_iter_t *iter)
Iterate protocols by name.
Definition dict_util.c:4702
static int8_t dict_vendor_name_cmp(void const *one, void const *two)
Compare two attribute names.
Definition dict_util.c:299
fr_slen_t fr_dict_attr_search_by_qualified_name_substr(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_t const *dict_def, fr_sbuff_t *name, fr_sbuff_term_t const *tt, bool internal, bool foreign)
Locate a qualified fr_dict_attr_t by its name and a dictionary qualifier.
Definition dict_util.c:3067
fr_dict_attr_t const * fr_dict_root(fr_dict_t const *dict)
Return the root attribute of a dictionary.
Definition dict_util.c:2492
fr_dict_attr_t const * fr_dict_vendor_da_by_num(fr_dict_attr_t const *vendor_root, uint32_t vendor_pen)
Return vendor attribute for the specified dictionary and pen.
Definition dict_util.c:2787
int dict_attr_add_to_namespace(fr_dict_attr_t const *parent, fr_dict_attr_t *da)
Add an attribute to the name table for an attribute.
Definition dict_util.c:1600
fr_dict_attr_t * dict_attr_child_by_num(fr_dict_attr_t const *parent, unsigned int attr)
Internal version of fr_dict_attr_child_by_num.
Definition dict_util.c:3373
void fr_dict_global_ctx_set(fr_dict_gctx_t const *gctx)
Set a new, active, global dictionary context.
Definition dict_util.c:4586
int fr_dl_dict_autoload(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
Callback to automatically load dictionaries required by modules.
Definition dict_util.c:4426
static int8_t dict_attr_name_cmp(void const *one, void const *two)
Compare two attribute names.
Definition dict_util.c:211
static int8_t dict_vendor_pen_cmp(void const *one, void const *two)
Compare two vendor numbers.
Definition dict_util.c:321
static int8_t dict_enum_value_cmp(void const *one, void const *two)
Compare two dictionary enum values.
Definition dict_util.c:372
fr_dict_attr_t * dict_attr_by_name(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *name)
Definition dict_util.c:3309
static void hash_pool_free(void *to_free)
Definition dict_util.c:117
static uint32_t dict_attr_name_hash(void const *data)
Wrap name hash function for fr_dict_attr_t.
Definition dict_util.c:199
bool const fr_dict_enum_allowed_chars[UINT8_MAX+1]
Characters allowed in enumeration value names.
Definition dict_util.c:79
static int _fr_dict_autoload_talloc_free(fr_dict_autoload_talloc_t const *to_free)
Talloc destructor to automatically free dictionaries.
Definition dict_util.c:4338
fr_dict_t * dict_by_protocol_num(unsigned int num)
Internal version of fr_dict_by_protocol_num.
Definition dict_util.c:2614
fr_slen_t fr_dict_attr_search_by_qualified_oid_substr(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_t const *dict_def, fr_sbuff_t *in, fr_sbuff_term_t const *tt, bool internal, bool foreign)
Locate a qualified fr_dict_attr_t by a dictionary qualified OID string.
Definition dict_util.c:3125
dl_t * fr_dict_dl(fr_dict_t const *dict)
Definition dict_util.c:2502
static fr_slen_t dict_attr_search(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_t const *dict_def, fr_sbuff_t *in, fr_sbuff_term_t const *tt, bool internal, bool foreign, dict_attr_resolve_func_t func)
Internal function for searching for attributes in multiple dictionaries.
Definition dict_util.c:2852
char const * fr_dict_enum_name_by_value(fr_dict_attr_t const *da, fr_value_box_t const *value)
Lookup the name of an enum value in a fr_dict_attr_t.
Definition dict_util.c:3515
fr_dict_enum_value_t const * fr_dict_enum_iter_next(fr_dict_attr_t const *da, fr_dict_enum_iter_t *iter)
Definition dict_util.c:3462
int fr_dict_enum_add_name_next(fr_dict_attr_t *da, char const *name)
Add an name to an integer attribute hashing the name for the integer value.
Definition dict_util.c:2045
int dict_attr_child_add(fr_dict_attr_t *parent, fr_dict_attr_t *child)
Add a child to a parent.
Definition dict_util.c:1501
static int dict_attr_children_init(fr_dict_attr_t **da_p)
Add a child/nesting extension to an attribute.
Definition dict_util.c:468
fr_dict_autoload_t load[2]
Autoloader def.
Definition dict_util.c:4330
int fr_dict_free(fr_dict_t **dict, char const *dependent)
Decrement the reference count on a previously loaded dictionary.
Definition dict_util.c:4157
fr_dict_enum_value_t const * fr_dict_enum_by_value(fr_dict_attr_t const *da, fr_value_box_t const *value)
Lookup the structure representing an enum value in a fr_dict_attr_t.
Definition dict_util.c:3482
int dict_dependent_remove(fr_dict_t *dict, char const *dependent)
Decrement ref count for a dependent in a dictionary.
Definition dict_util.c:3839
int fr_dict_oid_component_legacy(unsigned int *out, char const **oid)
Process a single OID component.
Definition dict_util.c:2172
fr_slen_t fr_dict_enum_by_name_substr(fr_dict_enum_value_t **out, fr_dict_attr_t const *da, fr_sbuff_t *in)
Definition dict_util.c:3554
static int8_t dict_enum_name_cmp(void const *one, void const *two)
Compare two dictionary attribute enum values.
Definition dict_util.c:342
void fr_dict_global_ctx_perm_check(fr_dict_gctx_t *gctx, bool enable)
Set whether we check dictionary file permissions.
Definition dict_util.c:4577
void fr_dict_global_ctx_read_only(void)
Mark all dictionaries and the global dictionary ctx as read only.
Definition dict_util.c:4636
int _dict_attr_init_name_only(char const *filename, int line, fr_dict_attr_t **da_p, fr_dict_attr_t const *parent, char const *name, fr_type_t type, dict_attr_args_t const *args)
Initialise fields in a dictionary attribute structure.
Definition dict_util.c:933
fr_dict_attr_t const * fr_dict_attr_by_oid(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *oid)
Resolve an attribute using an OID string.
Definition dict_util.c:2465
int dict_vendor_add(fr_dict_t *dict, char const *name, unsigned int num)
Add a vendor to the dictionary.
Definition dict_util.c:1384
static int _dict_global_free(fr_dict_gctx_t *gctx)
Definition dict_util.c:4449
static int8_t dict_protocol_name_cmp(void const *one, void const *two)
Compare two protocol names.
Definition dict_util.c:165
static int dict_attr_enumv_init(fr_dict_attr_t **da_p)
Initialise a per-attribute enumeration table.
Definition dict_util.c:535
int fr_dict_const_free(fr_dict_t const **dict, char const *dependent)
Decrement the reference count on a previously loaded dictionary.
Definition dict_util.c:4141
int fr_dl_dict_enum_autoload(UNUSED dl_t const *module, void *symbol, UNUSED void *user_ctx)
Callback to automatically resolve enum values.
Definition dict_util.c:4394
int fr_dict_attr_autoload(fr_dict_attr_autoload_t const *to_load)
Process a dict_attr_autoload element to load/verify a dictionary attribute.
Definition dict_util.c:4223
fr_dict_t const * fr_dict_internal(void)
Definition dict_util.c:4745
fr_dict_attr_t * dict_attr_acopy(TALLOC_CTX *ctx, fr_dict_attr_t const *in, char const *new_name)
Copy a an existing attribute.
Definition dict_util.c:1089
fr_slen_t fr_dict_by_protocol_substr(fr_dict_attr_err_t *err, fr_dict_t const **out, fr_sbuff_t *name, fr_dict_t const *dict_def)
Look up a protocol name embedded in another string.
Definition dict_util.c:2589
int fr_dict_dependent_add(fr_dict_t const *dict, char const *dependent)
Manually increase the reference count for a dictionary.
Definition dict_util.c:3824
static int8_t dict_protocol_num_cmp(void const *one, void const *two)
Compare two protocol numbers.
Definition dict_util.c:186
int dict_attr_alias_add(fr_dict_attr_t const *parent, char const *alias, fr_dict_attr_t const *ref)
Add an alias to an existing attribute.
Definition dict_util.c:1249
fr_dict_t const * fr_dict_by_protocol_name(char const *name)
Lookup a protocol by its name.
Definition dict_util.c:2669
static uint32_t dict_protocol_name_hash(void const *data)
Wrap name hash function for fr_dict_protocol_t.
Definition dict_util.c:153
int dict_attr_finalise(fr_dict_attr_t **da_p, char const *name)
Set remaining fields in a dictionary attribute before insertion.
Definition dict_util.c:777
bool fr_dict_is_read_only(fr_dict_t const *dict)
Definition dict_util.c:2497
static uint32_t dict_hash_name(char const *name, size_t len)
Apply a simple (case insensitive) hashing function to the name of an attribute, vendor or protocol.
Definition dict_util.c:129
int fr_dict_attr_add_name_only(fr_dict_t *dict, fr_dict_attr_t const *parent, char const *name, fr_type_t type, fr_dict_attr_flags_t const *flags)
Add an attribute to the dictionary.
Definition dict_util.c:1814
#define FNV_MAGIC_INIT
Definition dict_util.c:114
int dict_attr_num_init(fr_dict_attr_t *da, unsigned int num)
Set the attribute number (if any)
Definition dict_util.c:733
static int dict_attr_namespace_init(fr_dict_attr_t **da_p)
Initialise a per-attribute namespace.
Definition dict_util.c:551
char const * fr_dict_global_ctx_dir(void)
Definition dict_util.c:4627
int dict_attr_num_init_name_only(fr_dict_attr_t *da)
Set the attribute number (if any)
Definition dict_util.c:751
static int _dict_attr_free(fr_dict_attr_t *da)
Definition dict_util.c:951
int fr_dict_global_ctx_free(fr_dict_gctx_t const *gctx)
Explicitly free all data associated with a global dictionary context.
Definition dict_util.c:4602
int dict_dlopen(fr_dict_t *dict, char const *name)
Definition dict_util.c:3688
fr_dict_t * dict_by_protocol_name(char const *name)
Internal version of fr_dict_by_protocol_name.
Definition dict_util.c:2600
int dict_attr_acopy_children(fr_dict_t *dict, fr_dict_attr_t *dst, fr_dict_attr_t const *src)
Copy the children of an existing attribute.
Definition dict_util.c:1177
fr_dict_vendor_t const * fr_dict_vendor_by_name(fr_dict_t const *dict, char const *name)
Look up a vendor by its name.
Definition dict_util.c:2749
fr_slen_t(* dict_attr_resolve_func_t)(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_attr_t const *parent, fr_sbuff_t *in, fr_sbuff_term_t const *tt)
Callback function for resolving dictionary attributes.
Definition dict_util.c:2832
void fr_dict_gctx_debug(FILE *fp, fr_dict_gctx_t const *gctx)
Dump information about currently loaded dictionaries.
Definition dict_util.c:4663
fr_dict_attr_t const * fr_dict_attr_iterate_children(fr_dict_attr_t const *parent, fr_dict_attr_t const **prev)
Iterate over children of a DA.
Definition dict_util.c:4831
static fr_dict_attr_t * dict_attr_acopy_dict(TALLOC_CTX *ctx, fr_dict_attr_t *parent, fr_dict_attr_t const *in)
Copy an existing attribute to a different dictionary.
Definition dict_util.c:1121
int dict_attr_enum_add_name(fr_dict_attr_t *da, char const *name, fr_value_box_t const *value, bool coerce, bool takes_precedence, fr_dict_attr_t const *key_child_ref)
Definition dict_util.c:1828
int _fr_dict_autoload(fr_dict_autoload_t const *to_load, char const *dependent)
Process a dict_autoload element to load a protocol.
Definition dict_util.c:4272
fr_dict_vendor_t const * fr_dict_vendor_by_num(fr_dict_t const *dict, uint32_t vendor_pen)
Look up a vendor by its PEN.
Definition dict_util.c:2772
fr_slen_t fr_dict_attr_search_by_oid_substr(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_t const *dict_def, fr_sbuff_t *in, fr_sbuff_term_t const *tt, bool internal, bool foreign)
Locate a qualified fr_dict_attr_t by a dictionary using a non-qualified OID string.
Definition dict_util.c:3154
ssize_t fr_dict_valid_name(char const *name, ssize_t len)
Definition dict_util.c:4755
#define DICT_ATTR_ALLOWED_CHARS
Definition dict_util.c:44
fr_dict_t * fr_dict_protocol_alloc(fr_dict_t const *parent)
Allocate a new local dictionary.
Definition dict_util.c:4094
fr_dict_attr_t const * fr_dict_attr_by_name(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *name)
Locate a fr_dict_attr_t by its name.
Definition dict_util.c:3355
fr_slen_t fr_dict_attr_by_name_substr(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_attr_t const *parent, fr_sbuff_t *name, UNUSED fr_sbuff_term_t const *tt)
Look up a dictionary attribute by a name embedded in another string.
Definition dict_util.c:3224
fr_dict_attr_t const * fr_dict_attr_child_by_num(fr_dict_attr_t const *parent, unsigned int attr)
Check if a child attribute exists in a parent using an attribute number.
Definition dict_util.c:3420
int dict_dependent_add(fr_dict_t *dict, char const *dependent)
Record a new dependency on a dictionary.
Definition dict_util.c:3780
fr_dict_enum_value_t const * fr_dict_enum_by_name(fr_dict_attr_t const *da, char const *name, ssize_t len)
Definition dict_util.c:3528
static int dict_attr_name_set(fr_dict_attr_t **da_p, char const *name)
Set a dictionary attribute's name.
Definition dict_util.c:415
fr_slen_t fr_dict_oid_component(fr_dict_attr_err_t *err, fr_dict_attr_t const **out, fr_dict_attr_t const *parent, fr_sbuff_t *in, fr_sbuff_term_t const *tt)
Parse an OID component, resolving it to a defined attribute.
Definition dict_util.c:2321
static int dict_attr_vendor_set(fr_dict_attr_t **da_p, fr_dict_attr_t const *vendor)
Cache the vendor pointer for an attribute.
Definition dict_util.c:485
static uint32_t dict_enum_name_hash(void const *data)
Hash a enumeration name.
Definition dict_util.c:332
int dict_protocol_add(fr_dict_t *dict)
Add a protocol to the global protocol table.
Definition dict_util.c:1311
static uint32_t dict_enum_value_hash(void const *data)
Hash a dictionary enum value.
Definition dict_util.c:362
fr_dict_attr_t const * fr_dict_attr_search_by_qualified_oid(fr_dict_attr_err_t *err, fr_dict_t const *dict_def, char const *name, bool internal, bool foreign)
Locate a qualified fr_dict_attr_t by its name and a dictionary qualifier.
Definition dict_util.c:3173
bool dict_has_dependents(fr_dict_t *dict)
Check if a dictionary still has dependents.
Definition dict_util.c:3871
fr_dict_gctx_t * dict_gctx
Top level structure containing global dictionary state.
Definition dict_util.c:42
fr_dict_t const * fr_dict_by_protocol_num(unsigned int num)
Lookup a protocol by its number.
Definition dict_util.c:2682
int dict_attr_acopy_enumv(fr_dict_attr_t *dst, fr_dict_attr_t const *src)
Copy the VALUEs of an existing attribute, by casting them.
Definition dict_util.c:1220
int fr_dict_attr_add(fr_dict_t *dict, fr_dict_attr_t const *parent, char const *name, unsigned int attr, fr_type_t type, fr_dict_attr_flags_t const *flags)
Add an attribute to the dictionary.
Definition dict_util.c:1788
char const * dependent
Dependent that loaded the dictionary.
Definition dict_util.c:4331
static fr_dict_attr_t const * dict_attr_alias(fr_dict_attr_err_t *err, fr_dict_attr_t const *da)
Resolve an alias attribute to the concrete attribute it points to.
Definition dict_util.c:390
fr_dict_vendor_t const * fr_dict_vendor_by_da(fr_dict_attr_t const *da)
Look up a vendor by one of its child attributes.
Definition dict_util.c:2727
int _dict_attr_init(char const *filename, int line, fr_dict_attr_t **da_p, fr_dict_attr_t const *parent, char const *name, unsigned int attr, fr_type_t type, dict_attr_args_t const *args)
Initialise fields in a dictionary attribute structure.
Definition dict_util.c:892
Structure used to managed the lifetime of a dictionary.
Definition dict_util.c:4329
dl_loader_t * dl_loader_init(TALLOC_CTX *ctx, void *uctx, bool uctx_free, bool defer_symbol_init)
Initialise structures needed by the dynamic linker.
Definition dl.c:885
int dl_free(dl_t const *dl)
"free" a dl handle, possibly actually freeing it, and unloading the library
Definition dl.c:678
dl_t * dl_by_name(dl_loader_t *dl_loader, char const *name, void *uctx, bool uctx_free)
Search for a dl's shared object in various locations.
Definition dl.c:470
Module handle.
Definition dl.h:58
#define fr_dlist_talloc_init(_head, _type, _field)
Initialise the head structure of a doubly linked list.
Definition dlist.h:275
void * fr_hash_table_iter_next(fr_hash_table_t *ht, fr_hash_iter_t *iter)
Iterate over entries in a hash table.
Definition hash.c:626
void * fr_hash_table_find(fr_hash_table_t *ht, void const *data)
Find data in a hash table.
Definition hash.c:429
void * fr_hash_table_iter_init(fr_hash_table_t *ht, fr_hash_iter_t *iter)
Initialise an iterator.
Definition hash.c:678
uint32_t fr_hash(void const *data, size_t size)
Definition hash.c:812
bool fr_hash_table_insert(fr_hash_table_t *ht, void const *data)
Insert data into a hash table.
Definition hash.c:468
int fr_hash_table_flatten(TALLOC_CTX *ctx, void **out[], fr_hash_table_t *ht)
Copy all entries out of a hash table into an array.
Definition hash.c:695
uint32_t fr_hash_string(char const *p)
Definition hash.c:865
bool fr_hash_table_delete(fr_hash_table_t *ht, void const *data)
Remove and free data (if a free function was specified)
Definition hash.c:594
void fr_hash_table_verify(fr_hash_table_t *ht)
Check hash table is sane.
Definition hash.c:897
int fr_hash_table_replace(void **old, fr_hash_table_t *ht, void const *data)
Replace old data with new data, OR insert if there is no old.
Definition hash.c:528
uint32_t fr_hash_table_num_elements(fr_hash_table_t *ht)
Definition hash.c:610
#define fr_hash_table_alloc(_ctx, _hash_node, _cmp_node, _free_node)
Definition hash.h:58
#define fr_hash_table_talloc_alloc(_ctx, _type, _hash_node, _cmp_node, _free_node)
Definition hash.h:61
Stores the state of the current iteration operation.
Definition hash.h:41
talloc_free(reap)
fr_type_t
@ FR_TYPE_TIME_DELTA
A period of time measured in nanoseconds.
@ FR_TYPE_INT8
8 Bit signed integer.
@ FR_TYPE_TLV
Contains nested attributes.
@ FR_TYPE_STRING
String of printable characters.
@ FR_TYPE_NULL
Invalid (uninitialised) attribute type.
@ FR_TYPE_UINT16
16 Bit unsigned integer.
@ FR_TYPE_INT64
64 Bit signed integer.
@ FR_TYPE_INT16
16 Bit signed integer.
@ FR_TYPE_DATE
Unix time stamp, always has value >2^31.
@ FR_TYPE_UINT8
8 Bit unsigned integer.
@ FR_TYPE_UINT32
32 Bit unsigned integer.
@ FR_TYPE_STRUCT
like TLV, but without T or L, and fixed-width children
@ FR_TYPE_INT32
32 Bit signed integer.
@ FR_TYPE_VENDOR
Attribute that represents a vendor in the attribute tree.
@ FR_TYPE_UINT64
64 Bit unsigned integer.
@ FR_TYPE_VSA
Vendor-Specific, for RADIUS attribute 26.
@ FR_TYPE_OCTETS
Raw octets.
@ FR_TYPE_GROUP
A grouping of other attributes.
unsigned int uint32_t
long int ssize_t
ssize_t fr_sbuff_out_bstrncpy_exact(fr_sbuff_t *out, fr_sbuff_t *in, size_t len)
unsigned char uint8_t
ssize_t fr_slen_t
unsigned long int size_t
#define UINT8_MAX
fr_sbuff_parse_error_t
@ FR_SBUFF_PARSE_ERROR_NOT_FOUND
String does not contain a token matching the output type.
@ FR_SBUFF_PARSE_ERROR_FORMAT
Format of data was invalid.
@ FR_SBUFF_PARSE_OK
No error.
@ FR_SBUFF_PARSE_ERROR_TRAILING
Trailing characters found.
size_t fr_sbuff_out_bstrncpy_allowed(fr_sbuff_t *out, fr_sbuff_t *in, size_t len, bool const allowed[static UINT8_MAX+1])
int strncasecmp(char *s1, char *s2, int n)
Definition missing.c:36
int strcasecmp(char *s1, char *s2)
Definition missing.c:66
#define fr_assert(_expr)
Definition rad_assert.h:38
static bool done
Definition radclient.c:81
uint32_t fr_rb_num_elements(fr_rb_tree_t *tree)
Return how many nodes there are in a tree.
Definition rb.c:781
void * fr_rb_iter_init_inorder(fr_rb_iter_inorder_t *iter, fr_rb_tree_t *tree)
Initialise an in-order iterator.
Definition rb.c:824
void * fr_rb_iter_next_inorder(fr_rb_iter_inorder_t *iter)
Return the next node.
Definition rb.c:850
void * fr_rb_find(fr_rb_tree_t const *tree, void const *data)
Find an element in the tree, returning the data, not the node.
Definition rb.c:577
bool fr_rb_insert(fr_rb_tree_t *tree, void const *data)
Insert data into a tree.
Definition rb.c:626
bool fr_rb_delete(fr_rb_tree_t *tree, void const *data)
Remove node and free data (if a free function was specified)
Definition rb.c:741
#define fr_rb_inline_alloc(_ctx, _type, _field, _data_cmp, _data_free)
Allocs a red black tree.
Definition rb.h:271
Iterator structure for in-order traversal of an rbtree.
Definition rb.h:321
static unsigned int hash(char const *username, unsigned int tablesize)
Definition rlm_passwd.c:132
static char const * name
bool fr_sbuff_is_terminal(fr_sbuff_t *in, fr_sbuff_term_t const *tt)
Efficient terminal string search.
Definition sbuff.c:2180
size_t fr_sbuff_adv_until(fr_sbuff_t *sbuff, size_t len, fr_sbuff_term_t const *tt, char escape_chr)
Wind position until we hit a character in the terminal set.
Definition sbuff.c:1880
fr_table_num_ordered_t const sbuff_parse_error_table[]
Definition sbuff.c:43
ssize_t fr_sbuff_in_sprintf(fr_sbuff_t *sbuff, char const *fmt,...)
Print using a fmt string to an sbuff.
Definition sbuff.c:1592
bool fr_sbuff_next_if_char(fr_sbuff_t *sbuff, char c)
Return true if the current char matches, and if it does, advance.
Definition sbuff.c:2116
bool const sbuff_char_alpha_num[UINT8_MAX+1]
Definition sbuff.c:98
#define fr_sbuff_set(_dst, _src)
#define FR_SBUFF_IN(_start, _len_or_end)
#define fr_sbuff_current(_sbuff_or_marker)
#define fr_sbuff_char(_sbuff_or_marker, _eob)
#define fr_sbuff_is_alpha(_sbuff_or_marker)
#define fr_sbuff_buff(_sbuff_or_marker)
#define fr_sbuff_is_char(_sbuff_or_marker, _c)
#define FR_SBUFF_ERROR_RETURN(_sbuff_or_marker)
#define FR_SBUFF_SET_RETURN(_dst, _src)
#define FR_SBUFF(_sbuff_or_marker)
#define fr_sbuff_out(_err, _out, _in)
#define fr_sbuff_init_in(_out, _start, _len_or_end)
#define fr_sbuff_remaining(_sbuff_or_marker)
#define fr_sbuff_len(_sbuff_or_marker)
#define FR_SBUFF_OUT(_start, _len_or_end)
#define fr_sbuff_used(_sbuff_or_marker)
Set of terminal elements.
fr_aka_sim_id_type_t type
#define fr_table_str_by_value(_table, _number, _def)
Convert an integer to a string.
Definition table.h:772
char * talloc_typed_asprintf(TALLOC_CTX *ctx, char const *fmt,...)
Call talloc vasprintf, setting the type on the new chunk correctly.
Definition talloc.c:514
char * talloc_typed_strdup(TALLOC_CTX *ctx, char const *p)
Call talloc_strdup, setting the type on the new chunk correctly.
Definition talloc.c:467
#define talloc_get_type_abort_const
Definition talloc.h:287
static int talloc_const_free(void const *ptr)
Free const'd memory.
Definition talloc.h:229
static void talloc_bstr_tolower(char *str)
Convert a talloced string to lowercase.
Definition talloc.h:128
@ FR_TIME_RES_SEC
Definition time.h:50
@ T_OP_CMP_EQ
Definition token.h:106
static fr_slen_t parent
Definition pair.h:841
char const * fr_strerror(void)
Get the last library error.
Definition strerror.c:553
#define fr_strerror_printf(_fmt,...)
Log to thread local error buffer.
Definition strerror.h:64
#define fr_strerror_printf_push(_fmt,...)
Add a message to an existing stack of messages at the tail.
Definition strerror.h:84
#define fr_strerror_const(_msg)
Definition strerror.h:223
bool const fr_type_fixed_size[FR_TYPE_MAX+1]
Definition types.c:189
bool const fr_type_structural[FR_TYPE_MAX+1]
Definition types.c:194
#define fr_type_is_non_leaf(_x)
Definition types.h:395
#define fr_type_is_variable_size(_x)
Definition types.h:389
#define fr_type_is_structural(_x)
Definition types.h:393
@ FR_TYPE_UNION
A union of limited children.
Definition types.h:82
#define FR_TYPE_STRUCTURAL
Definition types.h:317
#define fr_type_is_leaf(_x)
Definition types.h:394
static char const * fr_type_to_str(fr_type_t type)
Return a static string containing the type name.
Definition types.h:455
size_t fr_value_box_network_length(fr_value_box_t const *value)
Get the size of the value held by the fr_value_box_t.
Definition value.c:1430
uint32_t fr_value_box_hash(fr_value_box_t const *vb)
Hash the contents of a value box.
Definition value.c:6651
int fr_value_box_cast(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, fr_value_box_t const *src)
Convert one type of fr_value_box_t to another.
Definition value.c:3744
int8_t fr_value_box_cmp(fr_value_box_t const *a, fr_value_box_t const *b)
Compare two values.
Definition value.c:743
int fr_value_box_copy(TALLOC_CTX *ctx, fr_value_box_t *dst, const fr_value_box_t *src)
Copy value data verbatim duplicating any buffers.
Definition value.c:4162
int fr_value_box_cmp_op(fr_token_t op, fr_value_box_t const *a, fr_value_box_t const *b)
Compare two attributes using an operator.
Definition value.c:1008
void fr_value_box_increment(fr_value_box_t *vb)
Increment a boxed value.
Definition value.c:4970
#define fr_value_box_alloc(_ctx, _type, _enumv)
Allocate a value box of a specific type.
Definition value.h:643
static fr_slen_t data
Definition value.h:1291
#define fr_box_strvalue_len(_val, _len)
Definition value.h:308
#define fr_value_box_init(_vb, _type, _enumv, _tainted)
Initialise a fr_value_box_t.
Definition value.h:609
static size_t char ** out
Definition value.h:1023