The FreeRADIUS server $Id: 15bac2a4c627c01d1aa2047687b3418955ac7f00 $
Loading...
Searching...
No Matches
encode.c
Go to the documentation of this file.
1/*
2 * This library is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU Lesser General Public
4 * License as published by the Free Software Foundation; either
5 * version 2.1 of the License, or (at your option) any later version.
6 *
7 * This library is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * Lesser General Public License for more details.
11 *
12 * You should have received a copy of the GNU Lesser General Public
13 * License along with this library; if not, write to the Free Software
14 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
15 */
16
17/**
18 * $Id: e4b0151a1d66f63084bea97bed382f1bdf6d275e $
19 *
20 * @file protocols/radius/encode.c
21 * @brief Functions to encode RADIUS attributes
22 *
23 * @copyright 2000-2003,2006-2015 The FreeRADIUS server project
24 */
26RCSID("$Id: e4b0151a1d66f63084bea97bed382f1bdf6d275e $")
27
28#include <freeradius-devel/util/dbuff.h>
29#include <freeradius-devel/util/md5.h>
30#include <freeradius-devel/util/struct.h>
31#include <freeradius-devel/io/test_point.h>
32#include <freeradius-devel/protocol/radius/freeradius.internal.h>
33#include "attrs.h"
34
35#define TAG_VALID(x) ((x) > 0 && (x) < 0x20)
36
37static ssize_t encode_value(fr_dbuff_t *dbuff,
38 fr_da_stack_t *da_stack, unsigned int depth,
39 fr_dcursor_t *cursor, void *encode_ctx);
40
41static ssize_t encode_child(fr_dbuff_t *dbuff,
42 fr_da_stack_t *da_stack, unsigned int depth,
43 fr_dcursor_t *cursor, void *encode_ctx);
44
45/** "encrypt" a password RADIUS style
46 *
47 * Input and output buffers can be identical if in-place encryption is needed.
48 */
50{
51 fr_md5_ctx_t *md5_ctx, *md5_ctx_old;
53 uint8_t passwd[RADIUS_MAX_PASS_LENGTH] = {0};
54 size_t i, n;
55 size_t len;
56
57 /*
58 * If the length is zero, round it up.
59 */
60 len = inlen;
61
63
64 (void) fr_dbuff_out_memcpy(passwd, input, len);
65 if (len < sizeof(passwd)) memset(passwd + len, 0, sizeof(passwd) - len);
66
67 if (len == 0) len = AUTH_PASS_LEN;
68 else if ((len & 0x0f) != 0) {
69 len += 0x0f;
70 len &= ~0x0f;
71 }
72
74 md5_ctx_old = fr_md5_ctx_alloc_from_list();
75
76 fr_md5_update(md5_ctx, (uint8_t const *) packet_ctx->common->secret, packet_ctx->common->secret_length);
77 fr_md5_ctx_copy(md5_ctx_old, md5_ctx);
78
79 /*
80 * Do first pass.
81 */
83
84 for (n = 0; n < len; n += AUTH_PASS_LEN) {
85 if (n > 0) {
86 fr_md5_ctx_copy(md5_ctx, md5_ctx_old);
87 fr_md5_update(md5_ctx, passwd + n - AUTH_PASS_LEN, AUTH_PASS_LEN);
88 }
89
90 fr_md5_final(digest, md5_ctx);
91 for (i = 0; i < AUTH_PASS_LEN; i++) passwd[i + n] ^= digest[i];
92 }
93
95 fr_md5_ctx_free_from_list(&md5_ctx_old);
96
97 return fr_dbuff_in_memcpy(dbuff, passwd, len);
98}
99
100
102{
103 fr_md5_ctx_t *md5_ctx, *md5_ctx_old;
106 size_t i, n;
107 uint32_t r;
108 size_t output_len, encrypted_len, padding;
109 ssize_t slen;
111
112 /*
113 * Limit the maximum size of the input password. 2 bytes
114 * are taken up by the salt, and one by the encoded
115 * "length" field.
116 */
117 if (inlen > (RADIUS_MAX_STRING_LENGTH - 3)) {
118 fail:
119 fr_strerror_const("Input password is too large for tunnel password encoding");
120 return -(inlen + 3);
121 }
122
123 /*
124 * Length of the encrypted data is the clear-text
125 * password length plus one byte which encodes the length
126 * of the password. We round up to the nearest encoding
127 * block, and bound it by the size of the output buffer,
128 * while accounting for 2 bytes of salt.
129 *
130 * And also ensuring that we don't truncate the input
131 * password.
132 */
133 encrypted_len = ROUND_UP(inlen + 1, 16);
134 if (encrypted_len > (RADIUS_MAX_STRING_LENGTH - 2)) encrypted_len = (RADIUS_MAX_STRING_LENGTH - 2);
135
136 /*
137 * Get the number of padding bytes in the last block.
138 */
139 padding = encrypted_len - (inlen + 1);
140
141 output_len = encrypted_len + 2; /* account for the salt */
142
143 /*
144 * We will have up to 253 octets of data in the output
145 * buffer, some of which are padding.
146 *
147 * If we over-run the output buffer, see if we can drop
148 * some of the padding bytes. If not, we return an error
149 * instead of truncating the password.
150 *
151 * Otherwise we lower the amount of data we copy into the
152 * output buffer, because the last bit is just padding,
153 * and can be safely discarded.
154 */
155 slen = fr_dbuff_set(&work_dbuff, output_len);
156 if (slen < 0) {
157 if (((size_t) -slen) > padding) goto fail;
158
159 output_len += slen;
160 }
161 fr_dbuff_set_to_start(&work_dbuff);
162
163 /*
164 * Copy the password over, and fill the remainder with random data.
165 */
166 (void) fr_dbuff_out_memcpy(tpasswd + 3, in, inlen);
167
168 for (i = 3 + inlen; i < sizeof(tpasswd); i++) {
169 tpasswd[i] = fr_fast_rand(&packet_ctx->rand_ctx);
170 }
171
172 /*
173 * Generate salt. The RFCs say:
174 *
175 * The high bit of salt[0] must be set, each salt in a
176 * packet should be unique, and they should be random
177 *
178 * So, we set the high bit, add in a counter, and then
179 * add in some PRNG data. should be OK..
180 */
181 r = fr_fast_rand(&packet_ctx->rand_ctx);
182 tpasswd[0] = (0x80 | (((packet_ctx->salt_offset++) & 0x07) << 4) | ((r >> 8) & 0x0f));
183 tpasswd[1] = r & 0xff;
184 tpasswd[2] = inlen; /* length of the password string */
185
186 md5_ctx = fr_md5_ctx_alloc_from_list();
187 md5_ctx_old = fr_md5_ctx_alloc_from_list();
188
189 fr_md5_update(md5_ctx, (uint8_t const *) packet_ctx->common->secret, packet_ctx->common->secret_length);
190 fr_md5_ctx_copy(md5_ctx_old, md5_ctx);
191
193 fr_md5_update(md5_ctx, &tpasswd[0], 2);
194
195 /*
196 * Do various hashing, and XOR the length+password with
197 * the output of the hash blocks.
198 */
199 for (n = 0; n < encrypted_len; n += AUTH_PASS_LEN) {
200 size_t block_len;
201
202 if (n > 0) {
203 fr_md5_ctx_copy(md5_ctx, md5_ctx_old);
204 fr_md5_update(md5_ctx, tpasswd + 2 + n - AUTH_PASS_LEN, AUTH_PASS_LEN);
205 }
206 fr_md5_final(digest, md5_ctx);
207
208 block_len = encrypted_len - n;
209 if (block_len > AUTH_PASS_LEN) block_len = AUTH_PASS_LEN;
210
211 for (i = 0; i < block_len; i++) tpasswd[i + 2 + n] ^= digest[i];
212 }
213
215 fr_md5_ctx_free_from_list(&md5_ctx_old);
216
217 FR_DBUFF_IN_MEMCPY_RETURN(&work_dbuff, tpasswd, output_len);
218
219 return fr_dbuff_set(dbuff, &work_dbuff);
220}
221
222/*
223 * Encode the contents of an attribute of type TLV.
224 */
226 fr_da_stack_t *da_stack, unsigned int depth,
227 fr_dcursor_t *cursor, void *encode_ctx)
228{
229 ssize_t slen;
230 fr_pair_t const *vp = fr_dcursor_current(cursor);
231 fr_dict_attr_t const *da = da_stack->da[depth];
233
234 for (;;) {
235 FR_PROTO_STACK_PRINT(da_stack, depth);
236
237 /*
238 * This attribute carries sub-TLVs. The sub-TLVs
239 * can only carry a total of 253 bytes of data.
240 */
241
242 /*
243 * Determine the nested type and call the appropriate encoder
244 */
245 if (!da_stack->da[depth + 1]) {
246 fr_dcursor_t child_cursor;
247
248 if (vp->da != da_stack->da[depth]) {
249 fr_strerror_printf("%s: Can't encode empty TLV", __FUNCTION__);
250 return 0;
251 }
252
253 fr_pair_dcursor_child_iter_init(&child_cursor, &vp->vp_group, cursor);
254 vp = fr_dcursor_current(&child_cursor);
255 fr_proto_da_stack_build(da_stack, vp->da);
256
257 /*
258 * Call ourselves recursively to encode children.
259 */
260 slen = encode_tlv(&work_dbuff, da_stack, depth, &child_cursor, encode_ctx);
261 if (slen < 0) return slen;
262
263 vp = fr_dcursor_next(cursor);
264 fr_proto_da_stack_build(da_stack, vp ? vp->da : NULL);
265
266 } else {
267 slen = encode_child(&work_dbuff, da_stack, depth + 1, cursor, encode_ctx);
268 }
269 if (slen < 0) return slen;
270
271 /*
272 * If nothing updated the attribute, stop
273 */
274 if (!fr_dcursor_current(cursor) || (vp == fr_dcursor_current(cursor))) break;
275
276 /*
277 * We can encode multiple sub TLVs, if after
278 * rebuilding the TLV Stack, the attribute
279 * at this depth is the same.
280 */
281 if ((da != da_stack->da[depth]) || (da_stack->depth < da->depth)) break;
282 vp = fr_dcursor_current(cursor);
283 }
284
285 return fr_dbuff_set(dbuff, &work_dbuff);
286}
287
288static ssize_t encode_pairs(fr_dbuff_t *dbuff, fr_pair_list_t const *vps, void *encode_ctx)
289{
290 ssize_t slen;
291 fr_pair_t const *vp;
292 fr_dcursor_t cursor;
293
294 /*
295 * Note that we skip tags inside of tags!
296 */
298 while ((vp = fr_dcursor_current(&cursor))) {
300
301 /*
302 * Encode an individual VP
303 */
304 slen = fr_radius_encode_pair(dbuff, &cursor, encode_ctx);
305 if (slen < 0) return slen;
306 }
307
308 return fr_dbuff_used(dbuff);
309}
310
311
312/** Encodes the data portion of an attribute
313 *
314 * @return
315 * > 0, Length of the data portion.
316 * = 0, we could not encode anything, skip this attribute (and don't encode the header)
317 * unless it's one of a list of exceptions.
318 * < 0, How many additional bytes we'd need as a negative integer.
319 * PAIR_ENCODE_FATAL_ERROR - Abort encoding the packet.
320 */
322 fr_da_stack_t *da_stack, unsigned int depth,
323 fr_dcursor_t *cursor, void *encode_ctx)
324{
325 ssize_t slen;
326 size_t len;
327 fr_pair_t const *vp = fr_dcursor_current(cursor);
328 fr_dict_attr_t const *da = da_stack->da[depth];
330 fr_dbuff_t work_dbuff = FR_DBUFF(dbuff);
331 fr_dbuff_t value_dbuff;
332 fr_dbuff_marker_t value_start, src, dest;
333 bool encrypted = false;
334
336 FR_PROTO_STACK_PRINT(da_stack, depth);
337
338 /*
339 * TLVs are just another type of value.
340 */
341 if (da->type == FR_TYPE_TLV) return encode_tlv(dbuff, da_stack, depth, cursor, encode_ctx);
342
343 if (da->type == FR_TYPE_GROUP) return fr_pair_ref_to_network(dbuff, da_stack, depth, cursor);
344
345 /*
346 * Catch errors early on.
347 */
348 if (fr_radius_flag_encrypted(vp->da) && !packet_ctx) {
349 fr_strerror_const("Asked to encrypt attribute, but no packet context provided");
351 }
352
353 /*
354 * This has special requirements.
355 */
356 if ((vp->vp_type == FR_TYPE_STRUCT) || (da->type == FR_TYPE_STRUCT)) {
357 slen = fr_struct_to_network(&work_dbuff, da_stack, depth, cursor, encode_ctx, encode_value, encode_child);
358 if (slen <= 0) return slen;
359
360 vp = fr_dcursor_current(cursor);
361 fr_proto_da_stack_build(da_stack, vp ? vp->da : NULL);
362 return fr_dbuff_set(dbuff, &work_dbuff);
363 }
364
365 /*
366 * If it's not a TLV, it should be a value type RFC
367 * attribute make sure that it is.
368 */
369 if (da_stack->da[depth + 1] != NULL) {
370 fr_strerror_printf("%s: Encoding value but not at top of stack", __FUNCTION__);
372 }
373
374 if (vp->da != da) {
375 fr_strerror_printf("%s: Top of stack does not match vp->da", __FUNCTION__);
377 }
378
379 if (fr_type_is_structural(da->type)) {
380 fr_strerror_printf("%s: Called with structural type %s", __FUNCTION__,
381 fr_type_to_str(da_stack->da[depth]->type));
383 }
384
385 /*
386 * Write tag byte
387 *
388 * The Tag field is one octet in length and is intended to provide a
389 * means of grouping attributes in the same packet which refer to the
390 * same tunnel. If the value of the Tag field is greater than 0x00
391 * and less than or equal to 0x1F, it SHOULD be interpreted as
392 * indicating which tunnel (of several alternatives) this attribute
393 * pertains. If the Tag field is greater than 0x1F, it SHOULD be
394 * interpreted as the first byte of the following String field.
395 *
396 * If the first byte of the string value looks like a
397 * tag, then we always encode a tag byte, even one that
398 * is zero.
399 */
400 if ((vp->vp_type == FR_TYPE_STRING) && fr_radius_flag_has_tag(vp->da)) {
401 if (packet_ctx->tag) {
402 FR_DBUFF_IN_RETURN(&work_dbuff, (uint8_t)packet_ctx->tag);
403 } else if (TAG_VALID(vp->vp_strvalue[0])) {
404 FR_DBUFF_IN_RETURN(&work_dbuff, (uint8_t)0x00);
405 }
406 }
407
408 /*
409 * Starting here is a value that may require encryption.
410 */
411 value_dbuff = FR_DBUFF(&work_dbuff);
412 fr_dbuff_marker(&value_start, &value_dbuff);
413 fr_dbuff_marker(&src, &value_dbuff);
414 fr_dbuff_marker(&dest, &value_dbuff);
415
416 switch (vp->vp_type) {
417 /*
418 * IPv4 addresses are normal, but IPv6 addresses are special to RADIUS.
419 */
421 if (vp->vp_ip.af == AF_INET) goto encode;
423
424 /*
425 * Common encoder might add scope byte, which we don't want.
426 */
428 FR_DBUFF_IN_MEMCPY_RETURN(&value_dbuff, vp->vp_ipv6addr, sizeof(vp->vp_ipv6addr));
429 break;
430
432 if (vp->vp_ip.af == AF_INET) goto ipv4_prefix;
434
435 /*
436 * Common encoder doesn't add reserved byte
437 */
439 len = fr_bytes_from_bits(vp->vp_ip.prefix);
440 FR_DBUFF_IN_BYTES_RETURN(&value_dbuff, 0x00, vp->vp_ip.prefix);
441 /* Only copy the minimum number of address bytes required */
442 FR_DBUFF_IN_MEMCPY_RETURN(&value_dbuff, (uint8_t const *)vp->vp_ipv6addr, len);
443 break;
444
445 /*
446 * Common encoder doesn't add reserved byte
447 */
449 ipv4_prefix:
450 FR_DBUFF_IN_BYTES_RETURN(&value_dbuff, 0x00, vp->vp_ip.prefix);
451 FR_DBUFF_IN_MEMCPY_RETURN(&value_dbuff, (uint8_t const *)&vp->vp_ipv4addr, sizeof(vp->vp_ipv4addr));
452 break;
453
454 /*
455 * Special handling for "abinary". Otherwise, fall
456 * through to using the common encoder.
457 */
458 case FR_TYPE_STRING:
459 if (fr_radius_flag_abinary(da)) {
460 slen = fr_radius_encode_abinary(vp, &value_dbuff);
461 if (slen <= 0) return slen;
462 break;
463 }
465
466 case FR_TYPE_OCTETS:
467
468 /*
469 * Simple data types use the common encoder.
470 */
471 default:
472 encode:
473 slen = fr_value_box_to_network(&value_dbuff, &vp->data);
474 if (slen < 0) return slen;
475 break;
476 }
477
478 /*
479 * No data: don't encode the value. The type and length should still
480 * be written.
481 */
482 if (fr_dbuff_used(&value_dbuff) == 0) {
483 return_0:
484 vp = fr_dcursor_next(cursor);
485 fr_proto_da_stack_build(da_stack, vp ? vp->da : NULL);
486 return 0;
487 }
488
489 /*
490 * Encrypt the various password styles
491 *
492 * Attributes with encrypted values MUST be less than
493 * 128 bytes long.
494 */
495 switch (fr_radius_flag_encrypted(da)) {
497 /*
498 * Encode the password in place
499 */
500 slen = encode_password(&work_dbuff, &value_start, fr_dbuff_used(&value_dbuff), packet_ctx);
501 if (slen < 0) return slen;
502 encrypted = true;
503 break;
504
506 {
507 bool has_tag = fr_radius_flag_has_tag(vp->da);
508
509 if (packet_ctx->disallow_tunnel_passwords) {
510 fr_strerror_const("Attributes with 'encrypt=Tunnel-Password' set cannot go into this packet.");
511 goto return_0;
512 }
513
514 /*
515 * Always encode the tag even if it's zero.
516 *
517 * The Tunnel-Password uses 2 salt fields which
518 * MAY have any value. As a result, we always
519 * encode a tag. If we would omit the tag, then
520 * perhaps one of the salt fields could be
521 * mistaken for the tag.
522 */
523 if (has_tag) fr_dbuff_advance(&work_dbuff, 1);
524
525 slen = encode_tunnel_password(&work_dbuff, &value_start, fr_dbuff_used(&value_dbuff), packet_ctx);
526 if (slen < 0) {
527 fr_strerror_printf("%s too long", vp->da->name);
528 return slen - has_tag;
529 }
530
531 /*
532 * Do this after so we don't mess up the input
533 * value.
534 */
535 if (has_tag) {
536 fr_dbuff_set_to_start(&value_start);
537 fr_dbuff_in(&value_start, (uint8_t) 0x00);
538 }
539 encrypted = true;
540 }
541 break;
542
543 /*
544 * The code above ensures that this attribute
545 * always fits.
546 */
548 /*
549 * @todo radius decoding also uses fr_radius_ascend_secret() (Vernam cipher
550 * is its own inverse). As part of converting decode, make sure the caller
551 * there can pass a marker so we can use it here, too.
552 */
553 slen = fr_radius_ascend_secret(&work_dbuff, fr_dbuff_current(&value_start), fr_dbuff_used(&value_dbuff),
554 packet_ctx->common->secret, packet_ctx->request_authenticator);
555 if (slen < 0) return slen;
556 encrypted = true;
557 break;
558
560 break;
561
563 fr_strerror_const("Invalid encryption type");
565 }
566
567 if (!encrypted) {
568 fr_dbuff_set(&work_dbuff, &value_dbuff);
569 fr_dbuff_set(&value_start, fr_dbuff_start(&value_dbuff));
570 }
571
572 /*
573 * High byte of 32bit integers gets set to the tag
574 * value.
575 *
576 * The Tag field is one octet in length and is intended to provide a
577 * means of grouping attributes in the same packet which refer to the
578 * same tunnel. Valid values for this field are 0x01 through 0x1F,
579 * inclusive. If the Tag field is unused, it MUST be zero (0x00).
580 */
581 if ((vp->vp_type == FR_TYPE_UINT32) && fr_radius_flag_has_tag(vp->da)) {
582 uint8_t msb = 0;
583 /*
584 * Only 24bit integers are allowed here
585 */
586 fr_dbuff_set(&src, &value_start);
587 (void) fr_dbuff_out(&msb, &src);
588 if (msb != 0) {
589 fr_strerror_const("Integer overflow for tagged uint32 attribute");
590 goto return_0;
591 }
592 fr_dbuff_set(&dest, &value_start);
593 fr_dbuff_in(&dest, packet_ctx->tag);
594 }
595
596 FR_PROTO_HEX_DUMP(fr_dbuff_start(&work_dbuff), fr_dbuff_used(&work_dbuff), "value %s",
597 fr_type_to_str(vp->vp_type));
598
599 /*
600 * Rebuilds the TLV stack for encoding the next attribute
601 */
602 vp = fr_dcursor_next(cursor);
603 fr_proto_da_stack_build(da_stack, vp ? vp->da : NULL);
604
605 return fr_dbuff_set(dbuff, &work_dbuff);
606}
607
608/** Breaks down large data into pieces, each with a header
609 *
610 * @param[out] data we're fragmenting.
611 * @param[in] data_len the amount of data in the dbuff that makes up the value we're
612 * splitting.
613 * @param[in,out] hdr marker that points at said header
614 * @param[in] hdr_len length of the headers that will be added
615 * @param[in] flag_offset offset within header of a flag byte whose MSB is set for all
616 * but the last piece.
617 * @param[in] vsa_offset if non-zero, the offset of a length field in a (sub?)-header
618 * of size 3 that also needs to be adjusted to include the number
619 * of bytes of data in the piece
620 * @return
621 * - <0 the number of bytes we would have needed to create
622 * space for another attribute header in the buffer.
623 * - 0 data was not modified.
624 * - >0 the number additional bytes we used inserting extra
625 * headers.
626 */
627static ssize_t attr_fragment(fr_dbuff_t *data, size_t data_len, fr_dbuff_marker_t *hdr, size_t hdr_len,
628 int flag_offset, int vsa_offset)
629{
630 unsigned int num_fragments, i = 0;
631 size_t max_frag_data = UINT8_MAX - hdr_len;
632 fr_dbuff_t frag_data = FR_DBUFF_ABS(hdr);
633 fr_dbuff_marker_t frag_hdr, frag_hdr_p;
634
635 if (unlikely(!data_len)) return 0; /* Shouldn't have been called */
636
637 num_fragments = ROUND_UP_DIV(data_len, max_frag_data);
638 if (num_fragments == 1) return 0; /* Nothing to do */
639
640 fr_dbuff_marker(&frag_hdr, &frag_data);
641 fr_dbuff_marker(&frag_hdr_p, &frag_data);
642
643 fr_dbuff_advance(&frag_data, hdr_len);
644
645 FR_PROTO_HEX_DUMP(fr_dbuff_current(hdr), hdr_len + data_len, "attr_fragment in");
646 for (;;) {
647 bool last = (i + 1) == num_fragments;
648 uint8_t frag_len;
649
650 /*
651 * How long is this fragment?
652 */
653 if (last) {
654 frag_len = (data_len - (max_frag_data * (num_fragments - 1)));
655 } else {
656 frag_len = max_frag_data;
657 }
658
659 /*
660 * Update the "outer" header to reflect the actual
661 * length of the fragment
662 */
663 fr_dbuff_set(&frag_hdr_p, &frag_hdr);
664 fr_dbuff_advance(&frag_hdr_p, 1);
665 fr_dbuff_in(&frag_hdr_p, (uint8_t)(hdr_len + frag_len));
666
667 /*
668 * Update the "inner" header. The length here is
669 * the inner VSA header length (3) + the fragment
670 * length.
671 */
672 if (vsa_offset) {
673 fr_dbuff_set(&frag_hdr_p, fr_dbuff_current(&frag_hdr) + vsa_offset);
674 fr_dbuff_in(&frag_hdr_p, (uint8_t)(3 + frag_len));
675 }
676
677 /*
678 * Just over-ride the flag field. Nothing else
679 * uses it.
680 */
681 if (flag_offset) {
682 fr_dbuff_set(&frag_hdr_p, fr_dbuff_current(&frag_hdr) + flag_offset);
683 fr_dbuff_in(&frag_hdr_p, (uint8_t)(!last << 7));
684 }
685
686 FR_PROTO_HEX_DUMP(fr_dbuff_current(hdr), frag_len + hdr_len,
687 "attr_fragment fragment %u/%u", i + 1, num_fragments);
688
689 fr_dbuff_advance(&frag_data, frag_len); /* Go to the start of the next fragment */
690 if (last) break;
691
692 /*
693 * There's still trailing data after this
694 * fragment. Move the trailing data to *past*
695 * the next header. And after there's room, copy
696 * the header over.
697 *
698 * This process leaves the next header in place,
699 * ready for the next iteration of the loop.
700 *
701 * Yes, moving things multiple times is less than
702 * efficient. Oh well. it's ~1K memmoved()
703 * maybe 4 times. We are nowhere near the CPU /
704 * electrical requirements of Bitcoin.
705 */
706 i++;
707
708 fr_dbuff_set(&frag_hdr, &frag_data); /* Remember where the header should be */
709 fr_dbuff_advance(&frag_data, hdr_len); /* Advance past the header */
710
711 /*
712 * Shift remaining data by hdr_len.
713 */
714 FR_DBUFF_IN_MEMCPY_RETURN(&FR_DBUFF(&frag_data), &frag_hdr, data_len - (i * max_frag_data));
715 fr_dbuff_in_memcpy(&FR_DBUFF(&frag_hdr), hdr, hdr_len); /* Copy the old header over */
716 }
717
718 return fr_dbuff_set(data, &frag_data);
719}
720
721/** Encode an "extended" attribute
722 *
723 */
725 fr_da_stack_t *da_stack, NDEBUG_UNUSED unsigned int depth,
726 fr_dcursor_t *cursor, void *encode_ctx)
727{
728 ssize_t slen;
729 uint8_t hlen;
730 size_t vendor_hdr;
731 bool extra;
732 int my_depth;
733 fr_dict_attr_t const *da;
734 fr_dbuff_marker_t hdr, length_field;
735 fr_pair_t const *vp = fr_dcursor_current(cursor);
736 fr_dbuff_t work_dbuff;
737
739 FR_PROTO_STACK_PRINT(da_stack, depth);
740
741 extra = fr_radius_flag_long_extended(da_stack->da[0]);
742
743 /*
744 * The data used here can be more than 255 bytes, but only for the
745 * "long" extended type.
746 */
747 if (extra) {
748 work_dbuff = FR_DBUFF_BIND_CURRENT(dbuff);
749 } else {
750 work_dbuff = FR_DBUFF_MAX_BIND_CURRENT(dbuff, UINT8_MAX);
751 }
752 fr_dbuff_marker(&hdr, &work_dbuff);
753
754 /*
755 * Encode the header for "short" or "long" attributes
756 */
757 hlen = 3 + extra;
758 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, (uint8_t)da_stack->da[0]->attr);
759 fr_dbuff_marker(&length_field, &work_dbuff);
760 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, hlen); /* this gets overwritten later*/
761
762 /*
763 * Encode which extended attribute it is.
764 */
765 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, (uint8_t)da_stack->da[1]->attr);
766
767 if (extra) FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, 0x00); /* flags start off at zero */
768
769 FR_PROTO_STACK_PRINT(da_stack, depth);
770
771 /*
772 * Handle VSA as "VENDOR + attr"
773 */
774 if (da_stack->da[1]->type == FR_TYPE_VSA) {
775 fr_assert(da_stack->da[2]);
776 fr_assert(da_stack->da[2]->type == FR_TYPE_VENDOR);
777
778 FR_DBUFF_IN_RETURN(&work_dbuff, (uint32_t) da_stack->da[2]->attr);
779
780 fr_assert(da_stack->da[3]);
781
782 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, (uint8_t)da_stack->da[3]->attr);
783
784 hlen += 5;
785 vendor_hdr = 5;
786
787 FR_PROTO_STACK_PRINT(da_stack, depth);
788 FR_PROTO_HEX_DUMP(fr_dbuff_current(&hdr), hlen, "header extended vendor specific");
789
790 my_depth = 3;
791 } else {
792 vendor_hdr = 0;
793 FR_PROTO_HEX_DUMP(fr_dbuff_current(&hdr), hlen, "header extended");
794
795 my_depth = 1;
796 }
797
798 /*
799 * We're at the point where we need to encode something.
800 */
801 da = da_stack->da[my_depth];
802 fr_assert(vp->da == da);
803
804 if (da->type != FR_TYPE_STRUCT) {
805 slen = encode_value(&work_dbuff, da_stack, my_depth, cursor, encode_ctx);
806
807 } else {
808 slen = fr_struct_to_network(&work_dbuff, da_stack, my_depth, cursor, encode_ctx, encode_value, encode_child);
809 }
810 if (slen <= 0) return slen;
811
812 /*
813 * There may be more than 255 octets of data encoded in
814 * the attribute. If so, move the data up in the packet,
815 * and copy the existing header over. Set the "M" flag ONLY
816 * after copying the rest of the data.
817 *
818 * Note that we add "vendor_hdr" to the length of the
819 * encoded data. That 5 octet field is logically part of
820 * the data, and not part of the header.
821 */
822 if (slen > (UINT8_MAX - hlen)) {
823 slen = attr_fragment(&work_dbuff, (size_t)vendor_hdr + slen, &hdr, 4, 3, 0);
824 if (slen <= 0) return slen;
825
826 return fr_dbuff_set(dbuff, &work_dbuff);
827 }
828
829 fr_dbuff_in_bytes(&length_field, (uint8_t) fr_dbuff_used(&work_dbuff));
830 FR_PROTO_HEX_DUMP(fr_dbuff_current(&hdr), hlen, "header extended");
831
832 return fr_dbuff_set(dbuff, &work_dbuff);
833}
834
835/*
836 * The encode_extended() function expects to see the TLV or
837 * STRUCT inside of the extended attribute, in which case it
838 * creates the attribute header and calls encode_value() for the
839 * leaf type, or child TLV / struct.
840 *
841 * If we see VSA or VENDOR, then we recurse past that to a child
842 * which is either a leaf, or a TLV, or a STRUCT.
843 */
845 fr_da_stack_t *da_stack, unsigned int depth,
846 fr_dcursor_t *cursor, void *encode_ctx)
847{
848 ssize_t slen;
850 fr_dcursor_t child_cursor;
851 fr_dbuff_t work_dbuff = FR_DBUFF(dbuff);
852
853 parent = fr_dcursor_current(cursor);
855
856 (void) fr_pair_dcursor_child_iter_init(&child_cursor, &parent->vp_group, cursor);
857
858 FR_PROTO_STACK_PRINT(da_stack, depth);
859
860 while ((vp = fr_dcursor_current(&child_cursor)) != NULL) {
861 if ((vp->vp_type == FR_TYPE_VSA) || (vp->vp_type == FR_TYPE_VENDOR)) {
862 slen = encode_extended_nested(&work_dbuff, da_stack, depth + 1, &child_cursor, encode_ctx);
863
864 } else {
865 fr_proto_da_stack_build(da_stack, vp->da);
866 slen = encode_extended(&work_dbuff, da_stack, depth, &child_cursor, encode_ctx);
867 if (slen < 0) return slen;
868 }
869
870 if (slen < 0) return slen;
871 }
872
873 vp = fr_dcursor_next(cursor);
874
875 fr_proto_da_stack_build(da_stack, vp ? vp->da : NULL);
876
877 return fr_dbuff_set(dbuff, &work_dbuff);
878}
879
880
881/** Encode an RFC format attribute, with the "concat" flag set
882 *
883 * If there isn't enough freespace in the packet, the data is
884 * truncated to fit.
885 *
886 * The attribute is split on 253 byte boundaries, with a header
887 * prepended to each chunk.
888 */
890 fr_da_stack_t *da_stack, unsigned int depth,
891 fr_dcursor_t *cursor, UNUSED void *encode_ctx)
892{
893 uint8_t const *p;
894 size_t data_len;
895 fr_pair_t const *vp = fr_dcursor_current(cursor);
896 fr_dbuff_t work_dbuff = FR_DBUFF(dbuff);
898
899 FR_PROTO_STACK_PRINT(da_stack, depth);
900
901 p = vp->vp_octets;
902 data_len = vp->vp_length;
903 fr_dbuff_marker(&hdr, &work_dbuff);
904
905 while (data_len > 0) {
906 size_t frag_len = (data_len > RADIUS_MAX_STRING_LENGTH) ? RADIUS_MAX_STRING_LENGTH : data_len;
907
908 fr_dbuff_set(&hdr, &work_dbuff);
909 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, (uint8_t) da_stack->da[depth]->attr, 0x00);
910
911 FR_DBUFF_IN_MEMCPY_RETURN(&work_dbuff, p, frag_len);
912
913 fr_dbuff_advance(&hdr, 1);
914 fr_dbuff_in(&hdr, (uint8_t) (2 + frag_len));
915
916 FR_PROTO_HEX_DUMP(fr_dbuff_current(&hdr) - 1, 2 + frag_len, "encode_concat fragment");
917
918 p += frag_len;
919 data_len -= frag_len;
920 }
921
922 vp = fr_dcursor_next(cursor);
923
924 /*
925 * @fixme: attributes with 'concat' MUST of type
926 * 'octets', and therefore CANNOT have any TLV data in them.
927 */
928 fr_proto_da_stack_build(da_stack, vp ? vp->da : NULL);
929
930 return fr_dbuff_set(dbuff, &work_dbuff);
931}
932
933/** Encode an RFC format attribute.
934 *
935 * This could be a standard attribute, or a TLV data type.
936 * If it's a standard attribute, then vp->da->attr == attribute.
937 * Otherwise, attribute may be something else.
938 */
940 fr_da_stack_t *da_stack, unsigned int depth,
941 fr_dcursor_t *cursor, void *encode_ctx)
942{
943 ssize_t slen;
944 uint8_t hlen;
946 fr_dbuff_t work_dbuff = FR_DBUFF_MAX(dbuff, UINT8_MAX);
947
948 FR_PROTO_STACK_PRINT(da_stack, depth);
949
950 fr_assert(da_stack->da[depth] != NULL);
951
952 fr_dbuff_marker(&hdr, &work_dbuff);
953
954 hlen = 2;
955 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, (uint8_t)da_stack->da[depth]->attr, hlen);
956
957 slen = encode_value(&work_dbuff, da_stack, depth, cursor, encode_ctx);
958 if (slen <= 0) return slen;
959
960 fr_dbuff_advance(&hdr, 1);
961 fr_dbuff_in_bytes(&hdr, (uint8_t)(hlen + slen));
962
963 FR_PROTO_HEX_DUMP(fr_dbuff_start(&work_dbuff), 2, "header rfc");
964
965 return fr_dbuff_set(dbuff, &work_dbuff);
966}
967
968
969/** Encode one full Vendor-Specific + Vendor-ID + Vendor-Attr + Vendor-Length + ...
970 */
972 fr_da_stack_t *da_stack, unsigned int depth,
973 fr_dcursor_t *cursor, void *encode_ctx)
974{
975 ssize_t slen;
976 size_t hdr_len;
977 fr_dbuff_marker_t hdr, length_field, vsa_length_field;
978 fr_dict_attr_t const *da, *dv;
979 fr_dbuff_t work_dbuff;
980
981 FR_PROTO_STACK_PRINT(da_stack, depth);
982
983 dv = da_stack->da[depth++];
984
985 if (dv->type != FR_TYPE_VENDOR) {
986 fr_strerror_const("Expected Vendor");
988 }
989
990 /*
991 * Now we encode one vendor attribute.
992 */
993 da = da_stack->da[depth];
994 fr_assert(da != NULL);
995
996 /*
997 * Most VSAs get limited to the one attribute. Only refs
998 * (e.g. DHCPv4, DHCpv6) can get fragmented.
999 */
1000 if (da->type != FR_TYPE_GROUP) {
1001 work_dbuff = FR_DBUFF_MAX(dbuff, UINT8_MAX);
1002 } else {
1003 work_dbuff = FR_DBUFF(dbuff);
1004 }
1005
1006 fr_dbuff_marker(&hdr, &work_dbuff);
1007
1008 /*
1009 * Build the Vendor-Specific header
1010 */
1011 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, FR_VENDOR_SPECIFIC);
1012
1013 fr_dbuff_marker(&length_field, &work_dbuff);
1014 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, 0);
1015
1016 FR_DBUFF_IN_RETURN(&work_dbuff, (uint32_t)dv->attr); /* Copy in the 32bit vendor ID */
1017
1018
1019 hdr_len = dv->flags.type_size + dv->flags.length;
1020
1021 /*
1022 * Vendors use different widths for their
1023 * attribute number fields.
1024 */
1025 switch (dv->flags.type_size) {
1026 default:
1027 fr_strerror_printf("%s: Internal sanity check failed, type %u", __FUNCTION__, (unsigned) dv->flags.type_size);
1029
1030 case 4:
1031 fr_dbuff_in(&work_dbuff, (uint32_t)da->attr);
1032 break;
1033
1034 case 2:
1035 fr_dbuff_in(&work_dbuff, (uint16_t)da->attr);
1036 break;
1037
1038 case 1:
1039 fr_dbuff_in(&work_dbuff, (uint8_t)da->attr);
1040 break;
1041 }
1042
1043 /*
1044 * The length fields will get over-written later.
1045 */
1046 switch (dv->flags.length) {
1047 default:
1048 fr_strerror_printf("%s: Internal sanity check failed, length %u", __FUNCTION__, (unsigned) dv->flags.length);
1050
1051 case 0:
1052 break;
1053
1054 case 2:
1055 fr_dbuff_in_bytes(&work_dbuff, 0);
1057
1058 case 1:
1059 /*
1060 * Length fields are set to zero, because they
1061 * will get over-ridden later.
1062 */
1063 fr_dbuff_marker(&vsa_length_field, &work_dbuff);
1064 fr_dbuff_in_bytes(&work_dbuff, 0);
1065 break;
1066 }
1067
1068 slen = encode_value(&work_dbuff, da_stack, depth, cursor, encode_ctx);
1069 if (slen <= 0) return slen;
1070
1071 /*
1072 * There may be more than 253 octets of data encoded in
1073 * the attribute. If so, move the data up in the packet,
1074 * and copy the existing header over. Set the "C" flag
1075 * ONLY after copying the rest of the data.
1076 *
1077 * Note that we do NOT check 'slen' here, as it's only
1078 * the size of the sub-sub attribute, and doesn't include
1079 * the RADIUS attribute header, or Vendor-ID.
1080 */
1081 if (fr_dbuff_used(&work_dbuff) > UINT8_MAX) {
1082 size_t length_offset = 0;
1083
1084 if (dv->flags.length) length_offset = 6 + hdr_len - 1;
1085
1086 slen = attr_fragment(&work_dbuff, (size_t)slen, &hdr, 6 + hdr_len, 0, length_offset);
1087 if (slen <= 0) return slen;
1088 } else {
1089 if (dv->flags.length) {
1090 fr_dbuff_in(&vsa_length_field, (uint8_t)(hdr_len + slen));
1091 }
1092
1093 fr_dbuff_in(&length_field, (uint8_t) fr_dbuff_used(&work_dbuff));
1094 }
1095
1096 FR_PROTO_HEX_DUMP(fr_dbuff_current(&hdr), 6 + hdr_len, "header vsa");
1097
1098 return fr_dbuff_set(dbuff, &work_dbuff);
1099}
1100
1101/** Encode a WiMAX attribute
1102 *
1103 */
1105 fr_da_stack_t *da_stack, unsigned int depth,
1106 fr_dcursor_t *cursor, void *encode_ctx)
1107{
1108 ssize_t slen;
1109 fr_dbuff_t work_dbuff = FR_DBUFF(dbuff);
1110 fr_dbuff_marker_t hdr, length_field, vsa_length_field;
1111 fr_dict_attr_t const *dv;
1112 fr_pair_t const *vp = fr_dcursor_current(cursor);
1113
1114 fr_dbuff_marker(&hdr, &work_dbuff);
1115
1116 PAIR_VERIFY(vp);
1117 FR_PROTO_STACK_PRINT(da_stack, depth);
1118
1119 dv = da_stack->da[depth++];
1120
1121 if (dv->type != FR_TYPE_VENDOR) {
1122 fr_strerror_const("Expected Vendor");
1124 }
1125
1126 FR_PROTO_STACK_PRINT(da_stack, depth);
1127
1128 /*
1129 * Build the Vendor-Specific header
1130 */
1131 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, FR_VENDOR_SPECIFIC);
1132 fr_dbuff_marker(&length_field, &work_dbuff);
1133 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, 0x09);
1134
1135 FR_DBUFF_IN_RETURN(&work_dbuff, (uint32_t) dv->attr);
1136
1137 /*
1138 * Encode the first attribute
1139 */
1140 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, (uint8_t)da_stack->da[depth]->attr);
1141
1142 fr_dbuff_marker(&vsa_length_field, &work_dbuff);
1143 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, 0x03, 0x00); /* length + continuation, both may be overwritten later */
1144
1145 /*
1146 * We don't bound the size of work_dbuff; it can use more than UINT8_MAX bytes
1147 * because of the "continuation" byte.
1148 */
1149 slen = encode_value(&work_dbuff, da_stack, depth, cursor, encode_ctx);
1150 if (slen <= 0) return slen;
1151
1152 /*
1153 * There may be more than 253 octets of data encoded in
1154 * the attribute. If so, move the data up in the packet,
1155 * and copy the existing header over. Set the "C" flag
1156 * ONLY after copying the rest of the data.
1157 *
1158 * Note that we do NOT check 'slen' here, as it's only
1159 * the size of the sub-sub attribute, and doesn't include
1160 * the RADIUS attribute header, or Vendor-ID.
1161 */
1162 if (fr_dbuff_used(&work_dbuff) > UINT8_MAX) {
1163 slen = attr_fragment(&work_dbuff, (size_t)slen, &hdr, 9, 8, 7);
1164 if (slen <= 0) return slen;
1165
1166 return fr_dbuff_set(dbuff, &work_dbuff);
1167 }
1168
1169 fr_dbuff_in_bytes(&vsa_length_field, (uint8_t) (fr_dbuff_used(&work_dbuff) - 6));
1170 fr_dbuff_in_bytes(&length_field, (uint8_t) fr_dbuff_used(&work_dbuff));
1171
1172 FR_PROTO_HEX_DUMP(fr_dbuff_current(&hdr), 9, "header wimax");
1173
1174 return fr_dbuff_set(dbuff, &work_dbuff);
1175}
1176
1178 fr_da_stack_t *da_stack, unsigned int depth,
1179 fr_dcursor_t *cursor, void *encode_ctx)
1180{
1181 fr_dict_attr_t const *da = da_stack->da[depth];
1182 ssize_t slen;
1183 fr_pair_t *vp;
1184 fr_dict_vendor_t const *dv;
1185 fr_dcursor_t child_cursor;
1186 fr_dbuff_t work_dbuff;
1187
1188 FR_PROTO_STACK_PRINT(da_stack, depth);
1189
1190 if (da->type != FR_TYPE_VENDOR) {
1191 fr_strerror_printf("%s: Expected type \"vendor\" got \"%s\"", __FUNCTION__,
1192 fr_type_to_str(da->type));
1194 }
1195
1196 dv = fr_dict_vendor_by_da(da_stack->da[depth]);
1197
1198 /*
1199 * Flat hierarchy, encode one attribute at a time.
1200 *
1201 * Note that there's no attempt to encode multiple VSAs
1202 * into one attribute. We can add that back as a flag,
1203 * once all of the nested attribute conversion has been
1204 * done.
1205 */
1206 if (da_stack->da[depth + 1]) {
1207 if (dv && dv->continuation) {
1208 return encode_wimax(dbuff, da_stack, depth, cursor, encode_ctx);
1209 }
1210
1211 return encode_vendor_attr(dbuff, da_stack, depth, cursor, encode_ctx);
1212 }
1213
1214 /*
1215 * Loop over the children of this attribute of type Vendor.
1216 */
1217 vp = fr_dcursor_current(cursor);
1218 fr_assert(vp->da == da);
1219 work_dbuff = FR_DBUFF(dbuff);
1220
1221 fr_pair_dcursor_child_iter_init(&child_cursor, &vp->vp_group, cursor);
1222 while ((vp = fr_dcursor_current(&child_cursor)) != NULL) {
1223 fr_proto_da_stack_build(da_stack, vp->da);
1224
1225 if (dv && dv->continuation) {
1226 slen = encode_wimax(&work_dbuff, da_stack, depth, &child_cursor, encode_ctx);
1227 } else {
1228 slen = encode_vendor_attr(&work_dbuff, da_stack, depth, &child_cursor, encode_ctx);
1229 }
1230 if (slen < 0) return slen;
1231 }
1232
1233 vp = fr_dcursor_next(cursor);
1234 fr_proto_da_stack_build(da_stack, vp ? vp->da : NULL);
1235
1236 return fr_dbuff_set(dbuff, &work_dbuff);
1237}
1238
1239/** Encode a Vendor-Specific attribute
1240 *
1241 */
1243 fr_da_stack_t *da_stack, unsigned int depth,
1244 fr_dcursor_t *cursor, void *encode_ctx)
1245{
1246 ssize_t slen;
1247 fr_pair_t *vp;
1248 fr_dcursor_t child_cursor;
1249 fr_dict_attr_t const *da = da_stack->da[depth];
1250 fr_dbuff_t work_dbuff;
1251
1252 FR_PROTO_STACK_PRINT(da_stack, depth);
1253
1254 if (da->type != FR_TYPE_VSA) {
1255 fr_strerror_printf("%s: Expected type \"vsa\" got \"%s\"", __FUNCTION__,
1256 fr_type_to_str(da->type));
1258 }
1259
1260 /*
1261 * Loop over the contents of Vendor-Specific, each of
1262 * which MUST be of type FR_TYPE_VENDOR.
1263 */
1264 if (da_stack->da[depth + 1]) {
1265 return encode_vendor(dbuff, da_stack, depth + 1, cursor, encode_ctx);
1266 }
1267
1268 work_dbuff = FR_DBUFF(dbuff);
1269
1270 vp = fr_dcursor_current(cursor);
1271 if (vp->da != da_stack->da[depth]) {
1272 fr_strerror_printf("%s: Can't encode empty Vendor-Specific", __FUNCTION__);
1273 return 0;
1274 }
1275
1276 /*
1277 * Loop over the children of this Vendor-Specific
1278 * attribute.
1279 */
1280 fr_pair_dcursor_child_iter_init(&child_cursor, &vp->vp_group, cursor);
1281 while ((vp = fr_dcursor_current(&child_cursor)) != NULL) {
1282 fr_proto_da_stack_build(da_stack, vp->da);
1283
1284 fr_assert(da_stack->da[depth + 1]->type == FR_TYPE_VENDOR);
1285
1286 slen = encode_vendor(&work_dbuff, da_stack, depth + 1, &child_cursor, encode_ctx);
1287 if (slen < 0) return slen;
1288 }
1289
1290 /*
1291 * Fix up the da stack, and return the data we've encoded.
1292 */
1293 vp = fr_dcursor_next(cursor);
1294 fr_proto_da_stack_build(da_stack, vp ? vp->da : NULL);
1295
1296 FR_PROTO_HEX_DUMP(fr_dbuff_start(&work_dbuff), 6, "header vsa");
1297
1298 return fr_dbuff_set(dbuff, &work_dbuff);
1299}
1300
1301/** Encode NAS-Filter-Rule
1302 *
1303 * Concatenating the string attributes together, separated by a 0x00 byte,
1304 */
1306 fr_da_stack_t *da_stack, NDEBUG_UNUSED unsigned int depth,
1307 fr_dcursor_t *cursor, UNUSED void *encode_ctx)
1308{
1309 fr_dbuff_t work_dbuff = FR_DBUFF(dbuff);
1310 fr_dbuff_marker_t hdr, frag_hdr;
1311 fr_pair_t *vp = fr_dcursor_current(cursor);
1312 size_t attr_len = 2;
1313
1314 FR_PROTO_STACK_PRINT(da_stack, depth);
1315
1316 fr_assert(vp);
1317 fr_assert(vp->da);
1318
1319 fr_dbuff_marker(&hdr, &work_dbuff);
1320 fr_dbuff_marker(&frag_hdr, &work_dbuff);
1321 fr_dbuff_advance(&hdr, 1);
1322 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, (uint8_t)vp->da->attr, 0x00);
1323
1325
1326 while (true) {
1327 size_t data_len = vp->vp_length;
1328 size_t frag_len;
1329 char const *p = vp->vp_strvalue;
1330
1331 /*
1332 * Keep encoding this attribute until it's done.
1333 */
1334 while (data_len > 0) {
1335 frag_len = data_len;
1336
1337 /*
1338 * This fragment doesn't overflow the
1339 * attribute. Copy it over, update the
1340 * length, but leave the marker at the
1341 * current header.
1342 */
1343 if ((attr_len + frag_len) <= UINT8_MAX) {
1344 FR_DBUFF_IN_MEMCPY_RETURN(&work_dbuff, p, frag_len);
1345 attr_len += frag_len;
1346
1347 fr_dbuff_set(&frag_hdr, &hdr);
1348 fr_dbuff_in(&frag_hdr, (uint8_t) attr_len); /* there's no fr_dbuff_in_no_advance() */
1349 break;
1350 }
1351
1352 /*
1353 * This fragment overflows the attribute.
1354 * Copy the fragment in, and create a new
1355 * attribute header.
1356 */
1357 frag_len = UINT8_MAX - attr_len;
1358 FR_DBUFF_IN_MEMCPY_RETURN(&work_dbuff, p, frag_len);
1359 fr_dbuff_in(&hdr, (uint8_t) UINT8_MAX);
1360
1361 fr_dbuff_marker(&hdr, &work_dbuff);
1362 fr_dbuff_advance(&hdr, 1);
1363 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, (uint8_t)vp->da->attr, 0x02);
1364 attr_len = 2;
1365
1366 p += frag_len;
1367 data_len -= frag_len;
1368 }
1369
1370 /*
1371 * If we have nothing more to do here, then stop.
1372 */
1373 vp = fr_dcursor_next(cursor);
1374 if (!vp || (vp->da != attr_nas_filter_rule)) {
1375 break;
1376 }
1377
1378 /*
1379 * We have to add a zero byte. If it doesn't
1380 * overflow the current attribute, then just add
1381 * it in.
1382 */
1383 if (attr_len < UINT8_MAX) {
1384 attr_len++;
1385 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, 0x00);
1386
1387 fr_dbuff_set(&frag_hdr, &hdr);
1388 fr_dbuff_in(&frag_hdr, (uint8_t) attr_len); /* there's no fr_dbuff_in_no_advance() */
1389 continue;
1390 }
1391
1392 /*
1393 * The zero byte causes the current attribute to
1394 * overflow. Create a new header with the zero
1395 * byte already populated, and keep going.
1396 */
1397 fr_dbuff_marker(&hdr, &work_dbuff);
1398 fr_dbuff_advance(&hdr, 1);
1399 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, (uint8_t)vp->da->attr, 0x00, 0x00);
1400 attr_len = 3;
1401 }
1402
1403 vp = fr_dcursor_current(cursor);
1404 fr_proto_da_stack_build(da_stack, vp ? vp->da : NULL);
1405
1406 return fr_dbuff_set(dbuff, &work_dbuff);
1407}
1408
1409/** Encode an RFC standard attribute 1..255
1410 *
1411 * This function is not the same as encode_child(), because this
1412 * one treats some "top level" attributes as special. e.g.
1413 * Message-Authenticator.
1414 */
1415static ssize_t encode_rfc(fr_dbuff_t *dbuff, fr_da_stack_t *da_stack, unsigned int depth,
1416 fr_dcursor_t *cursor, void *encode_ctx)
1417{
1418 fr_pair_t const *vp = fr_dcursor_current(cursor);
1419 fr_dbuff_t work_dbuff = FR_DBUFF(dbuff);
1420 fr_dbuff_marker_t start;
1421 fr_radius_encode_ctx_t *packet_ctx = encode_ctx;
1422
1423 fr_dbuff_marker(&start, &work_dbuff);
1424
1425 /*
1426 * Sanity checks
1427 */
1428 PAIR_VERIFY(vp);
1429 FR_PROTO_STACK_PRINT(da_stack, depth);
1430
1431 switch (da_stack->da[depth]->type) {
1432 case FR_TYPE_TLV:
1433 case FR_TYPE_VSA:
1434 case FR_TYPE_VENDOR:
1435 /* FR_TYPE_STRUCT is actually allowed... */
1436 fr_strerror_printf("%s: Expected leaf type got \"%s\"", __FUNCTION__,
1437 fr_type_to_str(da_stack->da[depth]->type));
1439
1440 default:
1441 /*
1442 * Attribute 0 is fine as a TLV leaf, or VSA, but not
1443 * in the original standards space.
1444 */
1445 if (((fr_dict_vendor_num_by_da(da_stack->da[depth]) == 0) && (da_stack->da[depth]->attr == 0)) ||
1446 (da_stack->da[depth]->attr > UINT8_MAX)) {
1447 fr_strerror_printf("%s: Called with non-standard attribute %u", __FUNCTION__, vp->da->attr);
1448 return 0;
1449 }
1450 break;
1451 }
1452
1453 /*
1454 * Only CUI is allowed to have zero length.
1455 * Thank you, WiMAX!
1456 */
1457 if ((vp->da == attr_chargeable_user_identity) && (vp->vp_length == 0)) {
1458 fr_dbuff_in_bytes(&work_dbuff, (uint8_t)vp->da->attr, 0x02);
1459
1460 FR_PROTO_HEX_DUMP(fr_dbuff_current(&start), 2, "header rfc");
1461
1462 vp = fr_dcursor_next(cursor);
1463 fr_proto_da_stack_build(da_stack, vp ? vp->da : NULL);
1464 return fr_dbuff_set(dbuff, &work_dbuff);
1465 }
1466
1467 /*
1468 * Message-Authenticator is hard-coded.
1469 */
1471 if (!packet_ctx->seen_message_authenticator) {
1472 FR_DBUFF_IN_BYTES_RETURN(&work_dbuff, (uint8_t)vp->da->attr, 18);
1474
1476 "message-authenticator");
1477 FR_PROTO_HEX_DUMP(fr_dbuff_current(&start), 2, "header rfc");
1478
1479 packet_ctx->seen_message_authenticator = true;
1480 }
1481
1482 vp = fr_dcursor_next(cursor);
1483 fr_proto_da_stack_build(da_stack, vp ? vp->da : NULL);
1484 return fr_dbuff_set(dbuff, &work_dbuff);
1485 }
1486
1487 /*
1488 * NAS-Filter-Rule has a stupid format in order to save
1489 * one byte per attribute.
1490 */
1491 if (vp->da == attr_nas_filter_rule) {
1492 return encode_nas_filter_rule(dbuff, da_stack, depth, cursor, encode_ctx);
1493 }
1494
1495 /*
1496 * Once we've checked for various top-level magic, RFC attributes are just TLVs.
1497 */
1498 return encode_child(dbuff, da_stack, depth, cursor, encode_ctx);
1499}
1500
1501/** Encode a data structure into a RADIUS attribute
1502 *
1503 * This is the main entry point into the encoder. It sets up the encoder array
1504 * we use for tracking our TLV/VSA nesting and then calls the appropriate
1505 * dispatch function.
1506 *
1507 * @param[out] dbuff Where to write encoded data.
1508 * @param[in] cursor Specifying attribute to encode.
1509 * @param[in] encode_ctx Additional data such as the shared secret to use.
1510 * @return
1511 * - >0 The number of bytes written to out.
1512 * - 0 Nothing to encode (or attribute skipped).
1513 * - <0 an error occurred.
1514 */
1516{
1517 fr_pair_t const *vp;
1518 ssize_t slen;
1519 fr_dbuff_t work_dbuff = FR_DBUFF(dbuff);
1520
1521 fr_da_stack_t da_stack;
1522 fr_dict_attr_t const *da = NULL;
1523
1524 if (!cursor) return PAIR_ENCODE_FATAL_ERROR;
1525
1526 vp = fr_dcursor_current(cursor);
1527 if (!vp) return 0;
1528
1529 PAIR_VERIFY(vp);
1530
1531 if (vp->da->depth > FR_DICT_MAX_TLV_STACK) {
1532 fr_strerror_printf("%s: Attribute depth %u exceeds maximum nesting depth %i",
1533 __FUNCTION__, vp->da->depth, FR_DICT_MAX_TLV_STACK);
1535 }
1536
1537 /*
1538 * Tags are *top-level*, and are never nested.
1539 */
1540 if ((vp->vp_type == FR_TYPE_GROUP) && vp->da->flags.internal &&
1541 (vp->da->attr > FR_TAG_BASE) && (vp->da->attr < (FR_TAG_BASE + 0x20))) {
1542 fr_radius_encode_ctx_t *packet_ctx = encode_ctx;
1543
1544 packet_ctx->tag = vp->da->attr - FR_TAG_BASE;
1545 fr_assert(packet_ctx->tag > 0);
1546 fr_assert(packet_ctx->tag < 0x20);
1547
1548 // recurse to encode the children of this attribute
1549 slen = encode_pairs(&work_dbuff, &vp->vp_group, encode_ctx);
1550 packet_ctx->tag = 0;
1551 if (slen < 0) return slen;
1552
1553 fr_dcursor_next(cursor); /* skip the tag attribute */
1554 return fr_dbuff_set(dbuff, &work_dbuff);
1555 }
1556
1557 /*
1558 * Check for zero-length attributes.
1559 */
1560 switch (vp->vp_type) {
1561 default:
1562 break;
1563
1564 /*
1565 * Only variable length data types can be
1566 * variable sized. All others have fixed size.
1567 */
1568 case FR_TYPE_STRING:
1569 case FR_TYPE_OCTETS:
1570 /*
1571 * Zero-length strings are allowed for CUI
1572 * (thanks WiMAX!), and for
1573 * Message-Authenticator, because we will
1574 * automagically generate that one ourselves.
1575 */
1576 if ((vp->vp_length == 0) &&
1579 fr_dcursor_next(cursor);
1580 fr_strerror_const("Zero length string attributes not allowed");
1581 return 0;
1582 }
1583 break;
1584 }
1585
1586 /*
1587 * Nested structures of attributes can't be longer than
1588 * 255 bytes, so each call to an encode function can
1589 * only use 255 bytes of buffer space at a time.
1590 */
1591
1592 /*
1593 * Fast path for the common case.
1594 */
1595 if (vp->da->parent->flags.is_root && fr_radius_flag_encrypted(vp->da)) {
1596 switch (vp->vp_type) {
1597 case FR_TYPE_LEAF:
1598 da_stack.da[0] = vp->da;
1599 da_stack.da[1] = NULL;
1600 da_stack.depth = 1;
1601 FR_PROTO_STACK_PRINT(&da_stack, 0);
1602 slen = encode_rfc(&work_dbuff, &da_stack, 0, cursor, encode_ctx);
1603 if (slen < 0) return slen;
1604 return fr_dbuff_set(dbuff, &work_dbuff);
1605
1606 default:
1607 break;
1608 }
1609 }
1610
1611 /*
1612 * Do more work to set up the stack for the complex case.
1613 */
1614 fr_proto_da_stack_build(&da_stack, vp->da);
1615 FR_PROTO_STACK_PRINT(&da_stack, 0);
1616
1617 /*
1618 * Top-level attributes get treated specially. Things
1619 * like VSAs inside of extended attributes are handled
1620 * inside of type-specific encoders.
1621 */
1622 da = da_stack.da[0];
1623 switch (da->type) {
1624 case FR_TYPE_OCTETS:
1625 if (fr_radius_flag_concat(da)) {
1626 /*
1627 * Attributes like EAP-Message are marked as
1628 * "concat", which means that they are fragmented
1629 * using a different scheme than the "long
1630 * extended" one.
1631 */
1632 slen = encode_concat(&work_dbuff, &da_stack, 0, cursor, encode_ctx);
1633 if (slen < 0) return slen;
1634 break;
1635 }
1637
1638 default:
1639 slen = encode_rfc(&work_dbuff, &da_stack, 0, cursor, encode_ctx);
1640 if (slen < 0) return slen;
1641 break;
1642
1643 case FR_TYPE_VSA:
1644 slen = encode_vsa(&work_dbuff, &da_stack, 0, cursor, encode_ctx);
1645 if (slen < 0) return slen;
1646 break;
1647
1648 case FR_TYPE_TLV:
1649 if (!fr_radius_flag_extended(da)) {
1650 slen = encode_child(&work_dbuff, &da_stack, 0, cursor, encode_ctx);
1651
1652 } else if (vp->da != da) {
1653 fr_strerror_printf("extended attributes must be nested");
1655
1656 } else {
1657 slen = encode_extended_nested(&work_dbuff, &da_stack, 0, cursor, encode_ctx);
1658 }
1659 if (slen < 0) return slen;
1660 break;
1661
1662 case FR_TYPE_NULL:
1663 case FR_TYPE_VENDOR:
1664 case FR_TYPE_MAX:
1665 fr_strerror_printf("%s: Cannot encode attribute %s", __FUNCTION__, vp->da->name);
1667 }
1668
1669 /*
1670 * We couldn't do it, so we didn't do anything.
1671 */
1672 if (fr_dcursor_current(cursor) == vp) {
1673 fr_strerror_printf("%s: Nested attribute structure too large to encode", __FUNCTION__);
1675 }
1676
1677 return fr_dbuff_set(dbuff, &work_dbuff);
1678}
1679
1681{
1682 fr_radius_ctx_t common_ctx = {};
1684 .common = &common_ctx,
1685 };
1686
1687 /*
1688 * Just in case we need random numbers.
1689 */
1690 encode_ctx.rand_ctx.a = fr_rand();
1691 encode_ctx.rand_ctx.b = fr_rand();
1692
1693 /*
1694 * Encode the pairs.
1695 */
1696 return encode_pairs(dbuff, list, &encode_ctx);
1697}
1698
1699
1700static int encode_test_ctx(void **out, TALLOC_CTX *ctx, UNUSED fr_dict_t const *dict)
1701{
1702 static uint8_t vector[RADIUS_AUTH_VECTOR_LENGTH] = {
1703 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
1704 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f };
1705
1706 fr_radius_encode_ctx_t *test_ctx;
1707 fr_radius_ctx_t *common;
1708
1709 test_ctx = talloc_zero(ctx, fr_radius_encode_ctx_t);
1710 if (!test_ctx) return -1;
1711
1712 test_ctx->common = common = talloc_zero(test_ctx, fr_radius_ctx_t);
1713
1714 common->secret = talloc_strdup(test_ctx->common, "testing123");
1715 common->secret_length = talloc_array_length(test_ctx->common->secret) - 1;
1716
1717 /*
1718 * We don't want to automatically add Message-Authenticator
1719 */
1720 common->secure_transport = true;
1721
1722 test_ctx->request_authenticator = vector;
1723 test_ctx->rand_ctx.a = 6809;
1724 test_ctx->rand_ctx.b = 2112;
1725
1726 *out = test_ctx;
1727
1728 return 0;
1729}
1730
1731static ssize_t fr_radius_encode_proto(TALLOC_CTX *ctx, fr_pair_list_t *vps, uint8_t *data, size_t data_len, void *proto_ctx)
1732{
1733 fr_radius_encode_ctx_t *packet_ctx = talloc_get_type_abort(proto_ctx, fr_radius_encode_ctx_t);
1734 int packet_type = FR_RADIUS_CODE_ACCESS_REQUEST;
1735 fr_pair_t *vp;
1736 ssize_t slen;
1737
1739 if (vp) packet_type = vp->vp_uint32;
1740
1741 /*
1742 * Force specific values for testing.
1743 */
1744 if ((packet_type == FR_RADIUS_CODE_ACCESS_REQUEST) || (packet_type == FR_RADIUS_CODE_STATUS_SERVER)) {
1746 if (!vp) {
1747 int i;
1749
1750 for (i = 0; i < RADIUS_AUTH_VECTOR_LENGTH; i++) {
1751 data[4 + i] = fr_fast_rand(&packet_ctx->rand_ctx);
1752 }
1753
1754 fr_pair_list_append_by_da_len(ctx, vp, vps, attr_packet_authentication_vector, vector, sizeof(vector), false);
1755 }
1756 }
1757
1758 packet_ctx->code = packet_type;
1759
1760 /*
1761 * @todo - pass in packet_ctx to this function, so that we
1762 * can leverage a consistent random number generator.
1763 */
1764 slen = fr_radius_encode(&FR_DBUFF_TMP(data, data_len), vps, packet_ctx);
1765 if (slen <= 0) return slen;
1766
1767 if (fr_radius_sign(data, NULL, (uint8_t const *) packet_ctx->common->secret, talloc_array_length(packet_ctx->common->secret) - 1) < 0) {
1768 return -1;
1769 }
1770
1771 return slen;
1772}
1773
1774/*
1775 * No one else should be using this.
1776 */
1777extern void *fr_radius_next_encodable(fr_dlist_head_t *list, void *to_eval, void *uctx);
1778
1779/*
1780 * Test points
1781 */
1788
1789
ssize_t fr_radius_encode_abinary(fr_pair_t const *vp, fr_dbuff_t *dbuff)
Encode a string to abinary.
Definition abinary.c:1192
int n
Definition acutest.h:577
#define RCSID(id)
Definition build.h:483
#define NDEBUG_UNUSED
Definition build.h:326
#define FALL_THROUGH
clang 10 doesn't recognised the FALL-THROUGH comment anymore
Definition build.h:322
#define unlikely(_x)
Definition build.h:381
#define UNUSED
Definition build.h:315
#define fr_dbuff_advance(_dbuff_or_marker, _len)
Advance 'current' position in dbuff or marker by _len bytes.
Definition dbuff.h:1072
#define fr_dbuff_used(_dbuff_or_marker)
Return the number of bytes remaining between the start of the dbuff or marker and the current positio...
Definition dbuff.h:767
#define FR_DBUFF_ABS(_dbuff_or_marker)
Create a new dbuff pointing to the same underlying buffer.
Definition dbuff.h:231
struct fr_dbuff_marker_s fr_dbuff_marker_t
A position marker associated with a dbuff.
Definition dbuff.h:81
#define fr_dbuff_current(_dbuff_or_marker)
Return the 'current' position of a dbuff or marker.
Definition dbuff.h:911
#define fr_dbuff_set(_dst, _src)
Set the 'current' position in a dbuff or marker using another dbuff or marker, a char pointer,...
Definition dbuff.h:1004
#define fr_dbuff_start(_dbuff_or_marker)
Return the 'start' position of a dbuff or marker.
Definition dbuff.h:898
#define fr_dbuff_set_to_start(_dbuff_or_marker)
Reset the 'current' position of the dbuff or marker to the 'start' of the buffer.
Definition dbuff.h:1155
#define fr_dbuff_out_memcpy(_out, _dbuff_or_marker, _outlen)
Copy exactly _outlen bytes from the dbuff.
Definition dbuff.h:1732
#define FR_DBUFF_BIND_CURRENT(_dbuff_or_marker)
Create a new dbuff pointing to the same underlying buffer.
Definition dbuff.h:240
#define FR_DBUFF_MEMSET_RETURN(_dbuff_or_marker, _c, _inlen)
Set _inlen bytes of a dbuff or marker to _c returning if there is insufficient space.
Definition dbuff.h:1508
#define fr_dbuff_in_bytes(_dbuff_or_marker,...)
Copy a byte sequence into a dbuff or marker.
Definition dbuff.h:1465
static uint8_t * fr_dbuff_marker(fr_dbuff_marker_t *m, fr_dbuff_t *dbuff)
Initialises a new marker pointing to the 'current' position of the dbuff.
Definition dbuff.h:1192
#define FR_DBUFF_IN_MEMCPY_RETURN(_dbuff_or_marker, _in, _inlen)
Copy exactly _inlen bytes into dbuff or marker returning if there's insufficient space.
Definition dbuff.h:1382
#define fr_dbuff_in_memcpy(_dbuff_or_marker, _in, _inlen)
Copy exactly _inlen bytes into a dbuff or marker.
Definition dbuff.h:1350
#define fr_dbuff_in(_dbuff_or_marker, _in)
Copy data from a fixed sized C type into a dbuff or marker.
Definition dbuff.h:1567
#define FR_DBUFF_IN_RETURN(_dbuff_or_marker, _in)
Copy data from a fixed sized C type into a dbuff returning if there is insufficient space.
Definition dbuff.h:1585
#define FR_DBUFF(_dbuff_or_marker)
Create a new dbuff pointing to the same underlying buffer.
Definition dbuff.h:222
#define FR_DBUFF_MAX(_dbuff_or_marker, _max)
Limit the maximum number of bytes available in the dbuff when passing it to another function.
Definition dbuff.h:301
#define FR_DBUFF_MAX_BIND_CURRENT(_dbuff_or_marker, _max)
Limit the maximum number of bytes available in the dbuff when passing it to another function.
Definition dbuff.h:318
#define fr_dbuff_out(_out, _dbuff_or_marker)
Copy data from a dbuff or marker to a fixed sized C type.
Definition dbuff.h:1799
#define FR_DBUFF_IN_BYTES_RETURN(_dbuff_or_marker,...)
Copy a byte sequence into a dbuff or marker returning if there's insufficient space.
Definition dbuff.h:1472
#define FR_DBUFF_TMP(_start, _len_or_end)
Creates a compound literal to pass into functions which accept a dbuff.
Definition dbuff.h:514
static void * fr_dcursor_next(fr_dcursor_t *cursor)
Advanced the cursor to the next item.
Definition dcursor.h:288
static void * fr_dcursor_current(fr_dcursor_t *cursor)
Return the item the cursor current points to.
Definition dcursor.h:337
@ FR_RADIUS_CODE_ACCESS_REQUEST
RFC2865 - Access-Request.
Definition defs.h:33
@ FR_RADIUS_CODE_STATUS_SERVER
RFC2865/RFC5997 - Status Server (request)
Definition defs.h:44
static fr_dict_attr_t const * attr_packet_type
Definition dhcpclient.c:89
bool continuation
we only have one flag for now, for WiMAX
Definition dict.h:247
#define FR_DICT_MAX_TLV_STACK
Maximum TLV stack size.
Definition dict.h:495
static fr_slen_t in
Definition dict.h:824
fr_dict_vendor_t const * fr_dict_vendor_by_da(fr_dict_attr_t const *da)
Look up a vendor by one of its child attributes.
Definition dict_util.c:2635
Private enterprise.
Definition dict.h:245
static uint32_t fr_dict_vendor_num_by_da(fr_dict_attr_t const *da)
Return the vendor number for an attribute.
Definition dict_ext.h:212
Head of a doubly linked list.
Definition dlist.h:51
#define PAIR_ENCODE_FATAL_ERROR
Fatal encoding error.
Definition pair.h:36
static ssize_t encode_value(fr_dbuff_t *dbuff, fr_da_stack_t *da_stack, int depth, fr_dcursor_t *cursor, void *encode_ctx)
Encodes the data portion of an attribute.
Definition encode.c:272
static ssize_t encode_tlv(fr_dbuff_t *dbuff, fr_da_stack_t *da_stack, unsigned int depth, fr_dcursor_t *cursor, void *encode_ctx)
Definition encode.c:736
static ssize_t encode_rfc(fr_dbuff_t *dbuff, fr_da_stack_t *da_stack, unsigned int depth, fr_dcursor_t *cursor, void *encode_ctx)
Encode an RFC format attribute header.
Definition encode.c:587
ssize_t fr_pair_ref_to_network(fr_dbuff_t *dbuff, fr_da_stack_t *da_stack, unsigned int depth, fr_dcursor_t *cursor)
Encode a foreign reference to the network.
Definition encode.c:123
#define ROUND_UP_DIV(_x, _y)
Get the ceiling value of integer division.
Definition math.h:153
#define ROUND_UP(_num, _mul)
Round up - Works in all cases, but is slower.
Definition math.h:148
fr_md5_update_t fr_md5_update
Definition md5.c:442
fr_md5_final_t fr_md5_final
Definition md5.c:443
void fr_md5_ctx_free_from_list(fr_md5_ctx_t **ctx)
Definition md5.c:522
fr_md5_ctx_copy_t fr_md5_ctx_copy
Definition md5.c:439
fr_md5_ctx_t * fr_md5_ctx_alloc_from_list(void)
Definition md5.c:477
void fr_md5_ctx_t
Definition md5.h:28
unsigned short uint16_t
@ FR_TYPE_TLV
Contains nested attributes.
@ FR_TYPE_IPV6_PREFIX
IPv6 Prefix.
@ FR_TYPE_STRING
String of printable characters.
@ FR_TYPE_MAX
Number of defined data types.
@ FR_TYPE_NULL
Invalid (uninitialised) attribute type.
@ FR_TYPE_COMBO_IP_PREFIX
IPv4 or IPv6 address prefix depending on length.
@ FR_TYPE_UINT32
32 Bit unsigned integer.
@ FR_TYPE_STRUCT
like TLV, but without T or L, and fixed-width children
@ FR_TYPE_VENDOR
Attribute that represents a vendor in the attribute tree.
@ FR_TYPE_IPV6_ADDR
128 Bit IPv6 Address.
@ FR_TYPE_IPV4_PREFIX
IPv4 Prefix.
@ FR_TYPE_VSA
Vendor-Specific, for RADIUS attribute 26.
@ FR_TYPE_COMBO_IP_ADDR
IPv4 or IPv6 address depending on length.
@ FR_TYPE_OCTETS
Raw octets.
@ FR_TYPE_GROUP
A grouping of other attributes.
unsigned int uint32_t
long int ssize_t
unsigned char uint8_t
#define UINT8_MAX
static uint8_t depth(fr_minmax_heap_index_t i)
Definition minmax_heap.c:83
static int encode(bio_handle_t *h, request_t *request, bio_request_t *u, uint8_t id)
Definition bio.c:1163
static unsigned int fr_bytes_from_bits(unsigned int bits)
Convert bits (as in prefix length) to bytes, rounding up.
Definition nbo.h:237
#define RADIUS_AUTH_VECTOR_LENGTH
Definition net.h:89
fr_pair_t * fr_pair_find_by_da(fr_pair_list_t const *list, fr_pair_t const *prev, fr_dict_attr_t const *da)
Find the first pair with a matching da.
Definition pair.c:693
void fr_proto_da_stack_build(fr_da_stack_t *stack, fr_dict_attr_t const *da)
Build a complete DA stack from the da back to the root.
Definition proto.c:118
void * fr_proto_next_encodable(fr_dlist_head_t *list, void *current, void *uctx)
Implements the default iterator to encode pairs belonging to a specific dictionary that are not inter...
Definition proto.c:100
static fr_internal_encode_ctx_t encode_ctx
static int encode_test_ctx(void **out, TALLOC_CTX *ctx, UNUSED fr_dict_t const *dict)
Definition encode.c:165
static ssize_t encode_child(fr_dbuff_t *dbuff, fr_da_stack_t *da_stack, unsigned int depth, fr_dcursor_t *cursor, void *encode_ctx)
Definition encode.c:358
HIDDEN fr_dict_attr_t const * attr_packet_authentication_vector
Definition base.c:54
HIDDEN fr_dict_attr_t const * attr_chargeable_user_identity
Definition base.c:56
HIDDEN fr_dict_attr_t const * attr_nas_filter_rule
Definition base.c:61
ssize_t fr_radius_ascend_secret(fr_dbuff_t *dbuff, uint8_t const *in, size_t inlen, char const *secret, uint8_t const *vector)
Do Ascend-Send / Recv-Secret calculation.
Definition base.c:247
int fr_radius_sign(uint8_t *packet, uint8_t const *vector, uint8_t const *secret, size_t secret_len)
Sign a previously encoded packet.
Definition base.c:358
ssize_t fr_radius_encode(fr_dbuff_t *dbuff, fr_pair_list_t *vps, fr_radius_encode_ctx_t *packet_ctx)
Definition base.c:953
static ssize_t encode_vsa(fr_dbuff_t *dbuff, fr_da_stack_t *da_stack, unsigned int depth, fr_dcursor_t *cursor, void *encode_ctx)
Encode a Vendor-Specific attribute.
Definition encode.c:1242
static ssize_t encode_wimax(fr_dbuff_t *dbuff, fr_da_stack_t *da_stack, unsigned int depth, fr_dcursor_t *cursor, void *encode_ctx)
Encode a WiMAX attribute.
Definition encode.c:1104
static ssize_t encode_pairs(fr_dbuff_t *dbuff, fr_pair_list_t const *vps, void *encode_ctx)
Definition encode.c:288
static ssize_t encode_tunnel_password(fr_dbuff_t *dbuff, fr_dbuff_marker_t *in, size_t inlen, fr_radius_encode_ctx_t *packet_ctx)
Definition encode.c:101
void * fr_radius_next_encodable(fr_dlist_head_t *list, void *to_eval, void *uctx)
Definition base.c:915
static ssize_t fr_radius_encode_proto(TALLOC_CTX *ctx, fr_pair_list_t *vps, uint8_t *data, size_t data_len, void *proto_ctx)
Definition encode.c:1731
#define TAG_VALID(x)
Definition encode.c:35
static ssize_t encode_concat(fr_dbuff_t *dbuff, fr_da_stack_t *da_stack, unsigned int depth, fr_dcursor_t *cursor, UNUSED void *encode_ctx)
Encode an RFC format attribute, with the "concat" flag set.
Definition encode.c:889
static ssize_t encode_extended(fr_dbuff_t *dbuff, fr_da_stack_t *da_stack, NDEBUG_UNUSED unsigned int depth, fr_dcursor_t *cursor, void *encode_ctx)
Encode an "extended" attribute.
Definition encode.c:724
static ssize_t encode_extended_nested(fr_dbuff_t *dbuff, fr_da_stack_t *da_stack, unsigned int depth, fr_dcursor_t *cursor, void *encode_ctx)
Definition encode.c:844
ssize_t fr_radius_encode_pair(fr_dbuff_t *dbuff, fr_dcursor_t *cursor, void *encode_ctx)
Encode a data structure into a RADIUS attribute.
Definition encode.c:1515
fr_test_point_pair_encode_t radius_tp_encode_pair
Definition encode.c:1783
fr_test_point_proto_encode_t radius_tp_encode_proto
Definition encode.c:1791
ssize_t fr_radius_encode_foreign(fr_dbuff_t *dbuff, fr_pair_list_t const *list)
Definition encode.c:1680
static ssize_t encode_password(fr_dbuff_t *dbuff, fr_dbuff_marker_t *input, size_t inlen, fr_radius_encode_ctx_t *packet_ctx)
"encrypt" a password RADIUS style
Definition encode.c:49
static ssize_t attr_fragment(fr_dbuff_t *data, size_t data_len, fr_dbuff_marker_t *hdr, size_t hdr_len, int flag_offset, int vsa_offset)
Breaks down large data into pieces, each with a header.
Definition encode.c:627
static ssize_t encode_nas_filter_rule(fr_dbuff_t *dbuff, fr_da_stack_t *da_stack, NDEBUG_UNUSED unsigned int depth, fr_dcursor_t *cursor, UNUSED void *encode_ctx)
Encode NAS-Filter-Rule.
Definition encode.c:1305
static ssize_t encode_vendor(fr_dbuff_t *dbuff, fr_da_stack_t *da_stack, unsigned int depth, fr_dcursor_t *cursor, void *encode_ctx)
Definition encode.c:1177
static ssize_t encode_vendor_attr(fr_dbuff_t *dbuff, fr_da_stack_t *da_stack, unsigned int depth, fr_dcursor_t *cursor, void *encode_ctx)
Encode one full Vendor-Specific + Vendor-ID + Vendor-Attr + Vendor-Length + ...
Definition encode.c:971
VQP attributes.
#define fr_assert(_expr)
Definition rad_assert.h:38
static fr_dict_t const * dict_radius
bool secure_transport
for TLS
Definition radius.h:98
#define fr_radius_flag_concat(_da)
Definition radius.h:192
fr_fast_rand_t rand_ctx
for tunnel passwords
Definition radius.h:108
fr_radius_ctx_t const * common
Definition radius.h:104
#define fr_radius_flag_has_tag(_da)
Definition radius.h:191
#define AUTH_PASS_LEN
Definition radius.h:54
bool disallow_tunnel_passwords
not all packets can have tunnel passwords
Definition radius.h:120
char const * secret
Definition radius.h:95
#define RADIUS_MAX_STRING_LENGTH
Definition radius.h:35
#define fr_radius_flag_encrypted(_da)
Definition radius.h:194
uint8_t const * request_authenticator
Definition radius.h:106
static bool fr_radius_flag_extended(fr_dict_attr_t const *da)
Definition radius.h:196
uint8_t tag
current tag for encoding
Definition radius.h:112
#define RADIUS_MESSAGE_AUTHENTICATOR_LENGTH
Definition radius.h:38
size_t secret_length
Definition radius.h:96
#define RADIUS_MAX_PASS_LENGTH
Definition radius.h:39
#define fr_radius_flag_long_extended(_da)
Definition radius.h:203
@ RADIUS_FLAG_ENCRYPT_INVALID
Invalid encryption flag.
Definition radius.h:145
@ RADIUS_FLAG_ENCRYPT_NONE
No encryption.
Definition radius.h:146
@ RADIUS_FLAG_ENCRYPT_USER_PASSWORD
Encrypt attribute RFC 2865 style.
Definition radius.h:147
@ RADIUS_FLAG_ENCRYPT_ASCEND_SECRET
Encrypt attribute ascend style.
Definition radius.h:149
@ RADIUS_FLAG_ENCRYPT_TUNNEL_PASSWORD
Encrypt attribute RFC 2868 style.
Definition radius.h:148
int salt_offset
for tunnel passwords
Definition radius.h:109
#define fr_radius_flag_abinary(_da)
Definition radius.h:193
bool seen_message_authenticator
Definition radius.h:121
static fr_dict_attr_t const * attr_message_authenticator
Definition radsnmp.c:112
uint32_t fr_fast_rand(fr_fast_rand_t *ctx)
Definition rand.c:279
uint32_t fr_rand(void)
Return a 32-bit random number.
Definition rand.c:105
uint32_t b
Definition rand.h:55
uint32_t a
Definition rand.h:55
fr_pair_t * vp
ssize_t fr_struct_to_network(fr_dbuff_t *dbuff, fr_da_stack_t *da_stack, unsigned int depth, fr_dcursor_t *parent_cursor, void *encode_ctx, fr_encode_dbuff_t encode_value, fr_encode_dbuff_t encode_pair)
Definition struct.c:470
Stores an attribute, a value and various bits of other data.
Definition pair.h:68
fr_dict_attr_t const *_CONST da
Dictionary attribute defines the attribute number, vendor and type of the pair.
Definition pair.h:69
fr_test_point_ctx_alloc_t test_ctx
Allocate a test ctx for the encoder.
Definition test_point.h:93
fr_test_point_ctx_alloc_t test_ctx
Allocate a test ctx for the encoder.
Definition test_point.h:75
Entry point for pair encoders.
Definition test_point.h:92
Entry point for protocol encoders.
Definition test_point.h:74
#define fr_pair_dcursor_iter_init(_cursor, _list, _iter, _uctx)
Initialises a special dcursor with callbacks that will maintain the attr sublists correctly.
Definition pair.h:569
static fr_pair_t * fr_pair_dcursor_child_iter_init(fr_dcursor_t *cursor, fr_pair_list_t const *list, fr_dcursor_t const *parent)
Initializes a child dcursor from a parent cursor, with an iteration function.
Definition pair.h:611
#define PAIR_VERIFY(_x)
Definition pair.h:191
#define fr_pair_list_append_by_da_len(_ctx, _vp, _list, _attr, _val, _len, _tainted)
Append a pair to a list, assigning its value.
Definition pair.h:309
static fr_slen_t parent
Definition pair.h:851
#define FR_PROTO_HEX_DUMP(_data, _data_len, _fmt,...)
Definition proto.h:41
#define FR_PROTO_STACK_PRINT(_stack, _depth)
Definition proto.h:43
uint8_t depth
Deepest attribute in the stack.
Definition proto.h:55
fr_dict_attr_t const * da[FR_DICT_MAX_TLV_STACK+1]
The stack.
Definition proto.h:56
Structure for holding the stack of dictionary attributes being encoded.
Definition proto.h:54
#define fr_strerror_printf(_fmt,...)
Log to thread local error buffer.
Definition strerror.h:64
#define fr_strerror_const(_msg)
Definition strerror.h:223
#define fr_type_is_structural(_x)
Definition types.h:371
static char const * fr_type_to_str(fr_type_t type)
Return a static string containing the type name.
Definition types.h:433
#define FR_TYPE_LEAF
Definition types.h:297
ssize_t fr_value_box_to_network(fr_dbuff_t *dbuff, fr_value_box_t const *value)
Encode a single value box, serializing its contents in generic network format.
Definition value.c:1404
static fr_slen_t data
Definition value.h:1265
static size_t char fr_sbuff_t size_t inlen
Definition value.h:997
static size_t char ** out
Definition value.h:997