The FreeRADIUS server $Id: 15bac2a4c627c01d1aa2047687b3418955ac7f00 $
Loading...
Searching...
No Matches
dict_tokenize.c
Go to the documentation of this file.
1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2 of the License, or
5 * (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
15 */
16
17/** Parse dictionary files
18 *
19 * @file src/lib/util/dict_tokenize.c
20 *
21 * @copyright 2019 The FreeRADIUS server project
22 * @copyright 2024 Arran Cudbard-Bell (a.cudbardb@freeradius.org)
23 */
24RCSID("$Id: 068d1dcc0801bda1a76da2302f1541135824f0ec $")
25
26#include <freeradius-devel/radius/defs.h>
27#include <freeradius-devel/util/conf.h>
28#include <freeradius-devel/util/dict_fixup_priv.h>
29#include <freeradius-devel/util/file.h>
30#include <freeradius-devel/util/rand.h>
31#include <freeradius-devel/util/syserror.h>
32
33#include <sys/stat.h>
34
35/** Maximum number of arguments
36 *
37 * For any one keyword, this is the maxiumum number of arguments that can be passed.
38 */
39#define DICT_MAX_ARGV (8)
40
41/** Maximum stack size
42 *
43 * This is the maximum number of nested BEGIN and $INCLUDE statements.
44 */
45#define DICT_MAX_STACK (32)
46
47/** This represents explicit BEGIN/END frames pushed onto the stack
48 *
49 * These are flags to allow multiple nesting types to be passed to the search function.
50 */
51DIAG_OFF(attributes)
52typedef enum CC_HINT(flag_enum) {
53 NEST_NONE = 0x00,
54 NEST_TOP = 0x01, //!< top of the stack
55 NEST_PROTOCOL = 0x02, //!< BEGIN-PROTOCOL
56 NEST_VENDOR = 0x04, //!< BEGIN-VENDOR
57 NEST_ATTRIBUTE = 0x08 //!< BEGIN foo
59DIAG_ON(attributes)
60
61#define NEST_ANY (NEST_TOP | NEST_PROTOCOL | NEST_VENDOR | NEST_ATTRIBUTE)
62
64 { L("ATTRIBUTE"), NEST_ATTRIBUTE },
65 { L("NONE"), NEST_NONE },
66 { L("PROTOCOL"), NEST_PROTOCOL },
67 { L("TOP"), NEST_TOP },
68 { L("VENDOR"), NEST_VENDOR }
69};
71
73
74/** Parser context for dict_from_file
75 *
76 * Allows vendor and TLV context to persist across $INCLUDEs
77 */
78typedef struct {
79 char *filename; //!< name of the file where we read this entry
80 int line; //!< line number where we read this entry
81 fr_dict_attr_t const *da; //!< the da we care about
82 dict_nest_t nest; //!< for manual vs automatic begin / end things
83
84 fr_dict_keyword_finalise_t finalise; //!< function to call when popping
85 int member_num; //!< structure member numbers
86 fr_dict_attr_t const *struct_is_closed; //!< no more members are allowed
87 ssize_t struct_size; //!< size of the struct.
89
91 fr_dict_t *dict; //!< Protocol dictionary we're inserting attributes into.
92
93 dict_tokenize_frame_t stack[DICT_MAX_STACK]; //!< stack of attributes to track
94 int stack_depth; //!< points to the last used stack frame
95
96 fr_dict_attr_t *value_attr; //!< Cache of last attribute to speed up value processing.
97 fr_dict_attr_t const *relative_attr; //!< for ".82" instead of "1.2.3.82". only for parents of type "tlv"
99
100 char *filename; //!< current filename
101 int line; //!< current line
102};
103
105 char const *dir_name, char const *filename,
106 char const *src_file, int src_line);
107
108#define CURRENT_FRAME(_dctx) (&(_dctx)->stack[(_dctx)->stack_depth])
109#define CURRENT_DA(_dctx) (CURRENT_FRAME(_dctx)->da)
110#define CURRENT_FILENAME(_dctx) (CURRENT_FRAME(_dctx)->filename)
111#define CURRENT_LINE(_dctx) (CURRENT_FRAME(_dctx)->line)
112
113#define ASSERT_CURRENT_NEST(_dctx, _nest) fr_assert_msg(CURRENT_FRAME(_dctx)->nest == (_nest), "Expected frame type %s, got %s", \
114 fr_table_str_by_value(dict_nest_table, (_nest), "<INVALID>"), fr_table_str_by_value(dict_nest_table, CURRENT_FRAME(_dctx)->nest, "<INVALID>"))
115
117{
118 int i;
119
120 for (i = 0; i <= dctx->stack_depth; i++) {
121 dict_tokenize_frame_t const *frame = &dctx->stack[i];
122
123 FR_FAULT_LOG("[%d]: %s %s (%s): %s[%d]",
124 i,
125 fr_table_str_by_value(dict_nest_table, frame->nest, "<INVALID>"),
126 frame->da->name,
127 fr_type_to_str(frame->da->type),
128 frame->filename, frame->line);
129 }
130}
131
133{
134 int i;
135
136 for (i = dctx->stack_depth; i >= 0; i--) {
137 if (dctx->stack[i].nest & nest) return &dctx->stack[i];
138 }
139
140 return NULL;
141}
142
143static int CC_HINT(nonnull) dict_dctx_push(dict_tokenize_ctx_t *dctx, fr_dict_attr_t const *da, dict_nest_t nest)
144{
145 if ((dctx->stack_depth + 1) >= DICT_MAX_STACK) {
146 fr_strerror_const("Attribute definitions are nested too deep.");
147 return -1;
148 }
149
150 dctx->stack[++dctx->stack_depth] = (dict_tokenize_frame_t) {
151 .da = da,
152 .filename = dctx->filename,
153 .line = dctx->line,
154 .nest = nest,
155 };
156
157 return 0;
158}
159
160
161/** Pop the current stack frame
162 *
163 * @param[in] dctx Stack to pop from.
164 * @return
165 * - Pointer to the current stack frame.
166 * - NULL, if we're already at the root.
167 */
169{
170 if (dctx->stack_depth == 0) return NULL;
171
172 fr_assert(!dctx->stack[dctx->stack_depth].finalise);
173
174 return &dctx->stack[dctx->stack_depth--];
175}
176
177/** Unwind the stack until it points to a particular type of stack frame
178 *
179 * @param[in] dctx Stack to unwind.
180 * @param[in] nest Frame type to unwind to.
181 * @return
182 * - Pointer to the frame matching nest
183 * - NULL, if we unwound the complete stack and didn't find the frame.
184 */
186{
187 int i;
188
189 for (i = dctx->stack_depth; i >= 0; i--) {
191
192 /*
193 * We mash the stack depth here, because the finalisation function needs it. Plus, if
194 * there's any error, we don't care about the dctx stack, we just return up the C stack.
195 */
196 dctx->stack_depth = i;
197 frame = CURRENT_FRAME(dctx);
198
199 if (frame->finalise) {
200 if (frame->finalise(dctx) < 0) return NULL;
201 frame->finalise = NULL;
202 }
203
204 /*
205 * END-foo cannot be used without BEGIN-foo.
206 */
207 if (frame->filename && (frame->filename != dctx->filename) &&
208 (nest != NEST_ANY)) {
209 char const *name;
210
211 name = fr_table_str_by_value(dict_nest_table, nest, "<INVALID>");
212 fr_strerror_printf("END-%s in file %s[%d] without matching BEGIN-%s",
213 name, dctx->filename, dctx->line, name);
214 return NULL;
215 }
216
217 if ((frame->nest & nest) != 0) {
218 return frame;
219 }
220 }
221
222 return NULL;
223}
224
226{
227 return dict_dctx_unwind_until(dctx, NEST_ANY);
228}
229
230/*
231 * String split routine. Splits an input string IN PLACE
232 * into pieces, based on spaces.
233 */
234int fr_dict_str_to_argv(char *str, char **argv, int max_argc)
235{
236 int argc = 0;
237
238 while (*str) {
239 if (argc >= max_argc) break;
240
241 /*
242 * Chop out comments early.
243 */
244 if (*str == '#') {
245 *str = '\0';
246 break;
247 }
248
249 while ((*str == ' ') ||
250 (*str == '\t') ||
251 (*str == '\r') ||
252 (*str == '\n'))
253 *(str++) = '\0';
254
255 if (!*str) break;
256
257 argv[argc] = str;
258 argc++;
259
260 while (*str &&
261 (*str != ' ') &&
262 (*str != '\t') &&
263 (*str != '\r') &&
264 (*str != '\n'))
265 str++;
266 }
267
268 return argc;
269}
270
271static int dict_read_sscanf_i(unsigned int *pvalue, char const *str)
272{
273 int unsigned ret = 0;
274 int base = 10;
275 static char const *tab = "0123456789";
276
277 if ((str[0] == '0') &&
278 ((str[1] == 'x') || (str[1] == 'X'))) {
279 tab = "0123456789abcdef";
280 base = 16;
281
282 str += 2;
283 }
284
285 while (*str) {
286 char const *c;
287
288 if (*str == '.') break;
289
290 c = memchr(tab, tolower((uint8_t)*str), base);
291 if (!c) return 0;
292
293 ret *= base;
294 ret += (c - tab);
295 str++;
296 }
297
298 *pvalue = ret;
299 return 1;
300}
301
302/** Set a new root dictionary attribute
303 *
304 * @note Must only be called once per dictionary.
305 *
306 * @param[in] dict to modify.
307 * @param[in] name of dictionary root.
308 * @param[in] proto_number The artificial (or IANA allocated) number for the protocol.
309 * This is only used for
310 * @return
311 * - 0 on success.
312 * - -1 on failure.
313 */
314static int dict_root_set(fr_dict_t *dict, char const *name, unsigned int proto_number)
315{
316 fr_dict_attr_t *da;
317
318 fr_dict_attr_flags_t flags = {
319 .is_root = 1,
320 .type_size = 1,
321 .length = 1
322 };
323
324 if (!fr_cond_assert(!dict->root)) {
325 fr_strerror_const("Dictionary root already set");
326 return -1;
327 }
328
329 da = dict_attr_alloc_root(dict->pool, dict, name, proto_number, &(dict_attr_args_t){ .flags = &flags });
330 if (unlikely(!da)) return -1;
331
332 dict->root = da;
333 dict->root->dict = dict;
334 DA_VERIFY(dict->root);
335
336 return 0;
337}
338
340{
341 char *p;
343
344 /*
345 * Some types can have fixed length
346 */
347 p = strchr(name, '[');
348 if (p) {
349 char *q;
350 unsigned int length;
351
352 *p = '\0';
353 q = strchr(p + 1, ']');
354 if (!q) {
355 fr_strerror_printf("Invalid format for '%s[...]'", name);
356 return -1;
357 }
358
359 *q = '\0';
360 if (q[1]) {
361 fr_strerror_const("length, if present, must end type field");
362 return -1;
363 }
364
365 if (!dict_read_sscanf_i(&length, p + 1)) {
366 fr_strerror_printf("Invalid length for '%s[...]'", name);
367 return -1;
368 }
369
370 /*
371 * "length" has to fit into the flags.length field.
372 */
373 if ((length == 0) || (length > UINT16_MAX)) {
374 fr_strerror_printf("Invalid length for '%s[...]'", name);
375 return -1;
376 }
377
378 /*
379 * Now that we have a length, check the data type.
380 */
381 if (strcmp(name, "octets") == 0) {
383
384 } else if (strcmp(name, "string") == 0) {
386
387 } else if (strcmp(name, "struct") == 0) {
389
390 } else if (strcmp(name, "union") == 0) {
392
393 } else if (strcmp(name, "bit") == 0) {
394 if (CURRENT_FRAME(dctx)->da->type != FR_TYPE_STRUCT) {
395 fr_strerror_const("Bit fields can only be defined as a MEMBER of data type 'struct'");
396 return -1;
397 }
398
399 (*da_p)->flags.extra = 1;
400 (*da_p)->flags.subtype = FLAG_BIT_FIELD;
401
402 if (length == 1) {
404 } else if (length <= 8) {
406 } else if (length <= 16) {
408 } else if (length <= 32) {
410 } else if (length <= 56) { /* for laziness in encode / decode */
412 } else {
413 fr_strerror_const("Invalid length for bit field");
414 return -1;
415 }
416
417 /*
418 * Cache where on a byte boundary this
419 * bit field ends. We could have the
420 * validation function loop through all
421 * previous siblings, but that's
422 * annoying.
423 */
424 (*da_p)->flags.flag_byte_offset = length;
425
426 } else {
427 fr_strerror_printf("Attributes of type '%s' cannot use the %s[...] syntax",
428 name, name);
429 return -1;
430 }
431
432 (*da_p)->flags.is_known_width = true;
433 (*da_p)->flags.length = length;
434 return dict_attr_type_init(da_p, type);
435 }
436
437 /*
438 * We default to using the standard FreeRADIUS types.
439 *
440 * However, if there is a protocol-specific type parsing
441 * function, we call that, too. That ordering allows the
442 * protocol-specific names to over-ride the default ones.
443 */
445
446 if (dctx->dict->proto->attr.type_parse &&
447 !dctx->dict->proto->attr.type_parse(&type, da_p, name)) {
448 return -1;
449 }
450
451 switch (type) {
452 /*
453 * Still not known, or is still a NULL type, that's an error.
454 *
455 * The protocol-specific function can return an error if
456 * it has an error in its parsing. Or, it can return
457 * "true"
458 */
459 case FR_TYPE_NULL:
460 fr_strerror_printf("Unknown data type '%s'", name);
461 return -1;
462
463 case FR_TYPE_LEAF:
465 break;
466
468 case FR_TYPE_VOID:
471 case FR_TYPE_MAX:
472 fr_strerror_printf("Invalid data type '%s'", name);
473 return -1;
474 }
475
476 return dict_attr_type_init(da_p, type);
477}
478
479/** Define a flag setting function, which sets one bit in a fr_dict_attr_flags_t
480 *
481 * This is here, because AFAIK there's no completely portable way to get the bit
482 * offset of a bit field in a structure.
483 */
484#define FLAG_FUNC(_name) \
485static int dict_flag_##_name(fr_dict_attr_t **da_p, UNUSED char const *value, UNUSED fr_dict_flag_parser_rule_t const *rules)\
486{ \
487 (*da_p)->flags._name = 1; \
488 return 0; \
489}
490
491FLAG_FUNC(array)
492
493static int dict_flag_clone(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rules)
494{
495 if (((*da_p)->type != FR_TYPE_TLV) && ((*da_p)->type != FR_TYPE_STRUCT)) {
496 fr_strerror_const("'clone=...' references can only be used for 'tlv' and 'struct' types");
497 return -1;
498 }
499
500 /*
501 * Allow cloning of any types, so long as
502 * the types are the same. We do the checks later.
503 */
505
506 /*
507 * We don't know how big the cloned reference is, so it isn't known width.
508 */
509 (*da_p)->flags.is_known_width = 0;
510
511 return 0;
512}
513
514FLAG_FUNC(counter)
515
516static int dict_flag_enum(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
517{
518 /*
519 * Allow enum=... as a synonym for
520 * "clone". We check the sources and not
521 * the targets, because that's easier.
522 *
523 * Plus, ENUMs are really just normal attributes
524 * in disguise.
525 */
526 if (!fr_type_is_leaf((*da_p)->type)) {
527 fr_strerror_const("'enum=...' references cannot be used for structural types");
528 return -1;
529 }
530
532
533 return 0;
534}
535
536FLAG_FUNC(internal)
537
538static int dict_flag_key(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
539{
540 fr_dict_attr_t *da = *da_p;
541 fr_dict_attr_t const *key;
543
544 if (fr_type_is_leaf(da->type)) {
545 if (value) {
546 fr_strerror_const("Attributes defining a 'key' field cannot specify a key reference");
547 return -1;
548 }
549
550 if ((da->type != FR_TYPE_UINT8) && (da->type != FR_TYPE_UINT16) && (da->type != FR_TYPE_UINT32)) {
551 fr_strerror_const("The 'key' flag can only be used for attributes of type 'uint8', 'uint16', or 'uint32'");
552 return -1;
553 }
554
555 if (da->flags.extra) {
556 fr_strerror_const("Bit fields cannot be key fields");
557 return -1;
558 }
559
560 da->flags.extra = 1;
561 da->flags.subtype = FLAG_KEY_FIELD;
562 return 0;
563 }
564
565 if (da->type != FR_TYPE_UNION) {
566 fr_strerror_printf("Attributes of type '%s' cannot define a 'key' reference", fr_type_to_str(da->type));
567 return -1;
568 }
569
570 if (!value) {
571 fr_strerror_const("Missing reference for 'key=...'");
572 return -1;
573 }
574
575 /*
576 * The reference must be to a sibling, which is marked "is key".
577 */
578 key = fr_dict_attr_by_name(NULL, da->parent, value);
579 if (!key) {
580 fr_strerror_printf("Invalid reference for 'key=...'. Parent %s does not have a child attribute named %s",
581 da->parent->name, value);
582 return -1;
583 }
584
585 if (da->parent != key->parent) {
586 fr_strerror_printf("Invalid reference for 'key=...'. Reference %s does not share a common parent",
587 value);
588 return -1;
589 }
590
591 if (!fr_dict_attr_is_key_field(key)) {
592 fr_strerror_printf("Invalid reference for 'key=...'. Reference %s is not a 'key' field",
593 value);
594 return -1;
595 }
596
597 /*
598 * Allocate the ref and save the value.
599 */
601 if (ext) {
602 fr_strerror_printf("Attribute already has a 'key=...' defined");
603 return -1;
604 }
605
606 ext = dict_attr_ext_alloc(da_p, FR_DICT_ATTR_EXT_KEY); /* can change da_p */
607 if (unlikely(!ext)) return -1;
608
610 ext->ref = key;
611
612 return 0;
613}
614
615static int dict_flag_length(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
616{
617 fr_dict_attr_t *da = *da_p;
618
619 if (strcmp(value, "uint8") == 0) {
620 da->flags.is_known_width = true;
621 da->flags.extra = 1;
622 da->flags.subtype = FLAG_LENGTH_UINT8;
623
624 } else if (strcmp(value, "uint16") == 0) {
625 da->flags.is_known_width = true;
626 da->flags.extra = 1;
627 da->flags.subtype = FLAG_LENGTH_UINT16;
628
629 } else {
630 fr_strerror_const("Invalid value given for the 'length' flag");
631 return -1;
632 }
633 da->flags.type_size = 0;
634
635 return 0;
636}
637
638static int dict_flag_offset(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
639{
640 fr_dict_attr_t *da = *da_p;
641 int offset;
642
643 if (da->type != FR_TYPE_STRUCT) {
644 fr_strerror_const("The 'offset' flag can only be used with data type 'struct'");
645 return -1;
646 }
647
648 if (!da_is_length_field(da)) {
649 fr_strerror_const("The 'offset' flag can only be used in combination with 'length=uint8' or 'length=uint16'");
650 return -1;
651 }
652
653 offset = atoi(value);
654 if ((offset <= 0) || (offset > 255)) {
655 fr_strerror_const("The 'offset' value must be between 1..255");
656 return -1;
657 }
658 da->flags.type_size = offset;
659
660 return 0;
661}
662
664{
665 fr_dict_attr_t *da = *da_p;
666 int precision;
667
668 switch (da->type) {
669 case FR_TYPE_DATE:
671 break;
672
673 default:
674 fr_strerror_const("The 'precision' flag can only be used with data types 'date' or 'time'");
675 return -1;
676 }
677
679 if (precision < 0) {
680 fr_strerror_printf("Unknown %s precision '%s'", fr_type_to_str(da->type), value);
681 return -1;
682 }
683 da->flags.flag_time_res = precision;
684
685 return 0;
686}
687
688static int dict_flag_ref(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
689{
690 fr_dict_attr_t *da = *da_p;
691
692 if (da->flags.extra) {
693 fr_strerror_const("Cannot use 'ref' with other flags");
694 return -1;
695 }
696
697 if (da->type != FR_TYPE_GROUP) {
698 fr_strerror_printf("The 'ref' flag cannot be used for type '%s'",
699 fr_type_to_str(da->type));
700 return -1;
701 }
702
704
705 return 0;
706}
707
709{
710 fr_dict_attr_t *da = *da_p;
711
712 da->flags.secret = 1;
713
714 if ((da->type != FR_TYPE_STRING) && (da->type != FR_TYPE_OCTETS)) {
715 fr_strerror_const("The 'secret' flag can only be used with data types 'string' or 'octets'");
716 return -1;
717 }
718
719 return 0;
720}
721
722static int dict_flag_subtype(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
723{
724 fr_dict_attr_t *da = *da_p;
725 fr_type_t subtype;
726
727 switch (da->type) {
728 case FR_TYPE_DATE:
730 break;
731
732 default:
733 fr_strerror_const("The 'subtype' flag can only be used with data types 'date' or 'time'");
734 return -1;
735 }
736
737 subtype = fr_type_from_str(value);
738 if (fr_type_is_null(subtype)) {
739 unknown_type:
740 fr_strerror_printf("Unknown or unsupported %s type '%s'",
741 fr_type_to_str(subtype),
742 value);
743 return -1;
744 }
745
746 switch (subtype) {
747 default:
748 goto unknown_type;
749
750 case FR_TYPE_INT16:
751 if (da->type == FR_TYPE_DATE) goto unknown_type;
752 da->flags.length = 2;
753 break;
754
755 case FR_TYPE_UINT16:
756 da->flags.is_unsigned = true;
757 da->flags.length = 2;
758 break;
759
760 case FR_TYPE_INT32:
761 if (da->type == FR_TYPE_DATE) goto unknown_type;
762 da->flags.length = 4;
763 break;
764
765 case FR_TYPE_UINT32:
766 da->flags.is_unsigned = true;
767 da->flags.length = 4;
768 break;
769
770 case FR_TYPE_INT64:
771 if (da->type == FR_TYPE_DATE) goto unknown_type;
772 da->flags.length = 8;
773 break;
774
775 case FR_TYPE_UINT64:
776 da->flags.is_unsigned = true;
777 da->flags.length = 8;
778 break;
779 }
780
781 return 0;
782}
783
784FLAG_FUNC(unsafe)
785
786/** A lookup function for dictionary attribute flags
787 *
788 */
790 fr_dict_attr_flag_to_parser, fr_dict_flag_parser_rule_t const *, fr_dict_flag_parser_rule_t const *)
791
792static int CC_HINT(nonnull) dict_process_flag_field(dict_tokenize_ctx_t *dctx, char *name, fr_dict_attr_t **da_p)
793{
794 static fr_dict_flag_parser_t dict_common_flags[] = {
795 { L("array"), { .func = dict_flag_array } },
796 { L("clone"), { .func = dict_flag_clone, .needs_value = true } },
797 { L("counter"), { .func = dict_flag_counter } },
798 { L("enum"), { .func = dict_flag_enum, .needs_value = true } },
799 { L("internal"), { .func = dict_flag_internal } },
800 { L("key"), { .func = dict_flag_key } },
801 { L("length"), { .func = dict_flag_length, .needs_value = true } },
802 { L("offset"), { .func = dict_flag_offset, .needs_value = true } },
803 { L("precision"), { .func = dict_flag_precision, .needs_value = true } },
804 { L("ref"), { .func = dict_flag_ref, .needs_value = true } },
805 { L("secret"), { .func = dict_flag_secret } },
806 { L("subtype"), { .func = dict_flag_subtype, .needs_value = true } },
807 { L("unsafe"), { .func = dict_flag_unsafe } },
808 };
809 static size_t dict_common_flags_len = NUM_ELEMENTS(dict_common_flags);
810
811 char *p, *next = NULL;
812
813 if ((*da_p)->type == FR_TYPE_NULL) {
814 fr_strerror_const("Type must be specified before parsing flags");
815 return -1;
816 }
817
818 for (p = name; p && *p != '\0' ; p = next) {
819 char *key, *value;
820 fr_dict_flag_parser_rule_t const *parser;
821
822 key = p;
823
824 /*
825 * Search for the first '=' or ','
826 */
827 for (next = p + 1; *next && (*next != '=') && (*next != ','); next++) {
828 /* do nothing */
829 }
830
831 /*
832 * We have a value, zero out the '=' and point to the value.
833 */
834 if (*next == '=') {
835 *(next++) = '\0';
836 value = next;
837
838 if (!*value || (*value == ',')) {
839 fr_strerror_printf("Missing value after '%s='", key);
840 return -1;
841 }
842 } else {
843 value = NULL;
844 }
845
846 /*
847 * Skip any trailing text in the value.
848 */
849 for (/* nothing */; *next; next++) {
850 if (*next == ',') {
851 *(next++) = '\0';
852 break;
853 }
854 }
855
856 /*
857 * Search the protocol table, then the main table.
858 * This allows protocols to overload common flags.
859 */
860 if (!((dctx->dict->proto->attr.flags.table &&
861 fr_dict_attr_flag_to_parser(&parser, dctx->dict->proto->attr.flags.table,
862 dctx->dict->proto->attr.flags.table_len, key, NULL)) ||
863 fr_dict_attr_flag_to_parser(&parser, dict_common_flags, dict_common_flags_len, key, NULL))) {
864 fr_strerror_printf("Unknown flag '%s'", key);
865 return -1;
866 }
867
868 if (parser->needs_value && !value) {
869 fr_strerror_printf("Flag '%s' requires a value", key);
870 return -1;
871 }
872
873 if (unlikely(parser->func(da_p, value, parser) < 0)) return -1;
874 }
875
876 /*
877 * Don't check the flags field for validity via
878 * dict_attr_flags_valid(). It may be updated by various
879 * protocol-specific callback functions. And,
880 * fr_dict_attr_add() calls dict_attr_flags_valid() anyways.
881 */
882
883 return 0;
884}
885
887{
888 if (dict_fixup_apply(&dctx->fixup) < 0) return -1;
889
890 dctx->value_attr = NULL;
891 dctx->relative_attr = NULL;
892
893 return 0;
894}
895
896static inline CC_HINT(always_inline)
898{
899 da->filename = CURRENT_FILENAME(dctx);
900 da->line = CURRENT_LINE(dctx);
901}
902
903/** Add an attribute to the dictionary, or add it to a list of attributes to clone later
904 *
905 * @param[in] fixup context to add an entry to (if needed).
906 * @param[in] da_p to either add, or create a fixup for.
907 * @return
908 * - 0 on success, and an attribute was added.
909 * - 1 on success, and a deferred entry was added.
910 * - -1 on failure.
911 */
913{
915 fr_dict_attr_t *da = *da_p;
916 int ret = 0;
917
918 /*
919 * Check for any references associated with the attribute,
920 * if they're unresolved, then add fixups.
921 *
922 * We do this now, as we know the attribute memory chunk
923 * is stable, and we can safely add the fixups.
924 */
926 if (ref && fr_dict_attr_ref_is_unresolved(ref->type)) {
927 /*
928 * See if we can immediately apply the ref.
929 */
930 fr_dict_attr_t const *src;
931
932 switch (fr_dict_attr_ref_type(ref->type)) {
934 /*
935 * IF the ref exists, we can always add it. The ref won't be changed later.
936 */
937 if (fr_dict_protocol_reference(&src, da->parent, &FR_SBUFF_IN_STR(ref->unresolved)) < 0) return -1;
938
939 if (src && (dict_attr_ref_set(*da_p, src, FR_DICT_ATTR_REF_ALIAS) < 0)) return -1;
940
941 if (fr_dict_attr_add_initialised(da) < 0) {
942 error:
943 talloc_free(da);
944 *da_p = NULL;
945 return -1;
946 }
947
948 if (!src && (dict_fixup_group_enqueue(fixup, da, ref->unresolved) < 0)) return -1;
949 ret = 1;
950 break;
951
953 /*
954 * Do NOT copy the enums now. Later dictionaries may add more values, and we
955 * want to be able to copy all values.
956 */
957 if (fr_dict_attr_add_initialised(da) < 0) goto error;
958
959 if (dict_fixup_clone_enum_enqueue(fixup, da, ref->unresolved) < 0) return -1;
960 break;
961
963 /*
964 * @todo - if we defer this clone, we get errors loading dictionary.wimax. That
965 * likely means there are issues with the dict_fixup_clone_apply() function.
966 */
967 if (fr_dict_protocol_reference(&src, da->parent, &FR_SBUFF_IN_STR(ref->unresolved)) < 0) return -1;
968 if (src) {
969 if (dict_fixup_clone(da_p, src) < 0) return -1;
970 break;
971 }
972
973 if (dict_fixup_clone_enqueue(fixup, da, ref->unresolved) < 0) return -1;
974 ret = 1;
975 break;
976
977 default:
978 fr_strerror_const("Unknown reference type");
979 return -1;
980 }
981 } else {
982 if (fr_dict_attr_add_initialised(da) < 0) goto error;
983 }
984
985 return ret;
986}
987
988/** Check if this definition is a duplicate, and if it is, whether we should skip it error out
989 *
990 * @return
991 * - 1 if this is not a duplicate.
992 * - 0 if this is a duplicate, and we should ignore the definition.
993 * - -1 if this is a duplicate, and we should error out.
994 */
996{
997 fr_dict_attr_t const *dup_name = NULL;
998 fr_dict_attr_t const *dup_num = NULL;
999 fr_dict_attr_t const *found;
1000
1001 /*
1002 * Search in the parent for a duplicate by name and then by num
1003 */
1004 if (!da->parent) return 1; /* no parent no conflicts possible */
1005
1006 dup_name = fr_dict_attr_by_name(NULL, da->parent, da->name);
1007 if (da->flags.name_only) dup_num = fr_dict_attr_child_by_num(da->parent, da->attr);
1008
1009 /*
1010 * Not a duplicate...
1011 */
1012 if (!dup_name && !dup_num) return 1;
1013
1014 found = dup_name ? dup_name : dup_num;
1015
1016 switch (da->type) {
1017 /*
1018 * For certain STRUCTURAL types, we allow strict duplicates
1019 * as if the user wants to add extra children in the custom
1020 * dictionary, or wants to avoid ordering issues between
1021 * multiple dictionaries, we need to support this.
1022 */
1023 case FR_TYPE_VSA:
1024 case FR_TYPE_VENDOR:
1025 case FR_TYPE_TLV:
1026 if (fr_dict_attr_cmp_fields(da, found) == 0) return -1;
1027 break;
1028
1029 default:
1030 break;
1031 }
1032
1033 if (dup_name) {
1034 fr_strerror_printf("Duplicate attribute name '%s' in namespace '%s'. Originally defined %s[%d]",
1035 da->name, da->parent->name, dup_name->filename, dup_name->line);
1036 return 0;
1037 }
1038
1039 fr_strerror_printf("Duplicate attribute number %u in parent '%s'. Originally defined %s[%d]",
1040 da->attr, da->parent->name, dup_num->filename, dup_num->line);
1041 return 0;
1042}
1043
1045{
1046 fr_dict_attr_t const *da;
1047 dict_tokenize_frame_t const *frame = CURRENT_FRAME(dctx);
1048
1049 da = frame->da;
1050 fr_assert(da->type == FR_TYPE_STRUCT);
1051
1052 /*
1053 * The structure was fixed-size, but the fields don't fill it. That's an error.
1054 *
1055 * Since process_member() checks for overflow, the check here is really only for
1056 * underflow.
1057 */
1058 if (da->flags.is_known_width) {
1059 if (CURRENT_FRAME(dctx)->struct_size != da->flags.length) {
1060 fr_strerror_printf("MEMBERs of %s struct[%u] do not exactly fill the fixed-size structure",
1061 da->name, da->flags.length);
1062 return -1;
1063 }
1064
1065 return 0;
1066 }
1067
1068 /*
1069 * If we have discovered that the structure has a fixed size, then update the da with that
1070 * information.
1071 */
1072 if (frame->struct_size < UINT16_MAX) {
1073 UNCONST(fr_dict_attr_t *, da)->flags.length = frame->struct_size;
1074 } /* else length 0 means "unknown / variable size / too large */
1075
1076 return 0;
1077}
1078
1080{
1081 /*
1082 * Adding an attribute of type 'struct' is an implicit
1083 * BEGIN-STRUCT.
1084 */
1085 if (da->type == FR_TYPE_STRUCT) {
1086 if (dict_dctx_push(dctx, da, NEST_NONE) < 0) return -1;
1087
1088 CURRENT_FRAME(dctx)->finalise = dict_struct_finalise;
1089 dctx->value_attr = NULL;
1090
1091 } else if (fr_type_is_leaf(da->type)) {
1092 dctx->value_attr = da;
1093
1094 } else {
1095 dctx->value_attr = NULL;
1096 }
1097
1098 return 0;
1099}
1100
1102 fr_dict_attr_t const *parent, char const *name,
1103 char const *type_name, char *flag_name,
1104 fr_dict_attr_flags_t const *base_flags)
1105{
1106 fr_dict_attr_t *da, *to_free = NULL;
1107
1108 /*
1109 * Dictionaries need to have real names, not shitty ones.
1110 */
1111 if (strncmp(name, "Attr-", 5) == 0) {
1112 fr_strerror_const("Invalid name");
1113 return -1;
1114 }
1115
1116 /*
1117 * Allocate the attribute here, and then fill in the fields
1118 * as we start parsing the various elements of the definition.
1119 */
1120 if (!*da_p) {
1121 da = dict_attr_alloc_null(dctx->dict->pool, dctx->dict->proto);
1122 if (unlikely(!da)) return -1;
1123 to_free = da;
1124
1125 } else {
1126 da = *da_p;
1127 }
1128 dict_attr_location_set(dctx, da);
1129 da->dict = dctx->dict;
1130
1131 /*
1132 * Set some fields to be friendlier to the type / flag
1133 * parsing and validation routines.
1134 */
1135 da->parent = parent;
1136 da->name = name;
1137
1138 /*
1139 * Set the attribute flags from the base flags.
1140 */
1141 memcpy(&da->flags, base_flags, sizeof(da->flags));
1142
1143 /*
1144 * Set the base type of the attribute.
1145 */
1146 if (dict_process_type_field(dctx, type_name, &da) < 0) {
1147 error:
1148 if (da == to_free) talloc_free(to_free);
1149 return -1;
1150 }
1151
1152 /*
1153 * Clear the temporary parent pointer.
1154 */
1155 da->parent = NULL;
1156 if (unlikely(dict_attr_parent_init(&da, parent) < 0)) goto error;
1157
1158 /*
1159 * Parse optional flags. We pass in the partially allocated
1160 * attribute so that flags can be set directly.
1161 *
1162 * Where flags contain variable length fields, this is
1163 * significantly easier than populating a temporary struct.
1164 */
1165 if (flag_name) if (dict_process_flag_field(dctx, flag_name, &da) < 0) goto error;
1166
1167 da->name = NULL; /* the real name will be a talloc'd chunk */
1168
1169 *da_p = da;
1170 return 0;
1171}
1172
1173/*
1174 * Process the $INCLUDE command
1175 */
1176static int dict_read_process_include(dict_tokenize_ctx_t *dctx, char **argv, int argc, char const *dir)
1177{
1178 int rcode;
1179 bool required = true;
1180 int stack_depth = dctx->stack_depth;
1181 char *src_file = dctx->filename;
1182 int src_line = dctx->line;
1183 char *pattern;
1184 char const *filename;
1185 fr_globdir_iter_t iter;
1186
1187 /*
1188 * Allow "$INCLUDE" or "$INCLUDE-", but
1189 * not anything else.
1190 */
1191 if ((argv[0][8] != '\0') && ((argv[0][8] != '-') || (argv[0][9] != '\0'))) {
1192 fr_strerror_printf("Invalid keyword '%s'", argv[0]);
1193 return -1;
1194 }
1195
1196 if (argc != 2) {
1197 fr_strerror_printf("Unexpected text after $INCLUDE at %s[%d]", fr_cwd_strip(src_file), src_line);
1198 return -1;
1199 }
1200
1201 pattern = argv[1];
1202 required = (argv[0][8] != '-');
1203
1204 /*
1205 * Allow limited macro capability, so people don't have
1206 * to remember where the root dictionaries are located.
1207 */
1208 if (strncmp(pattern, "${dictdir}/", 11) == 0) {
1209 dir = fr_dict_global_ctx_dir();
1210 pattern += 11;
1211 }
1212
1213 /*
1214 * Figure out what we need to open, and put the result into "filename".
1215 */
1216 rcode = fr_globdir_iter_init(&filename, dir, pattern, &iter);
1217 if (rcode < 0) {
1218 failed:
1219 fr_strerror_printf("Failed opening $INCLUDE of %s/%s at %s[%d] - %s",
1220 dir, pattern, fr_cwd_strip(src_file), src_line, fr_syserror(errno));
1221 return -1;
1222 }
1223
1224 /*
1225 * No files may or may not be an error, depending on if the $INCLUDE was required.
1226 */
1227 if (rcode == 0) {
1228 if (required) {
1229 errno = ENOENT;
1230 goto failed;
1231 }
1232
1233 fr_strerror_clear(); /* delete all errors */
1234 return 0;
1235 }
1236
1237 /*
1238 * "filename" is already the file, so we use do{}while() instead of while{}
1239 */
1240 do {
1241 rcode = _dict_from_file(dctx, dir, filename, src_file, src_line);
1242 if (rcode < 0) {
1243 fr_strerror_printf_push("from $INCLUDE at %s[%d]", fr_cwd_strip(src_file), src_line);
1244 break;
1245 }
1246
1247 if (dctx->stack_depth < stack_depth) {
1248 fr_strerror_printf("unexpected END-??? in $INCLUDE at %s[%d]",
1249 fr_cwd_strip(src_file), src_line);
1250 rcode = -1;
1251 break;
1252 }
1253
1254 } while ((rcode = fr_globdir_iter_next(&filename, &iter)) == 1);
1255 (void) fr_globdir_iter_free(&iter);
1256
1257 /*
1258 * Reset the filename and line number.
1259 */
1260 dctx->filename = src_file;
1261 dctx->line = src_line;
1262 return rcode; /* could be an error! */
1263}
1264
1265static int dict_read_parse_format(char const *format, int *ptype, int *plength, bool *pcontinuation)
1266{
1267 char const *p;
1268 int type, length;
1269 bool continuation = false;
1270
1271 if (strncasecmp(format, "format=", 7) != 0) {
1272 fr_strerror_printf("Invalid format for VENDOR. Expected 'format=', got '%s'",
1273 format);
1274 return -1;
1275 }
1276
1277 p = format + 7;
1278 if ((strlen(p) < 3) ||
1279 !isdigit((uint8_t)p[0]) ||
1280 (p[1] != ',') ||
1281 !isdigit((uint8_t)p[2]) ||
1282 (p[3] && (p[3] != ','))) {
1283 fr_strerror_printf("Invalid format for VENDOR. Expected text like '1,1', got '%s'",
1284 p);
1285 return -1;
1286 }
1287
1288 type = (int)(p[0] - '0');
1289 length = (int)(p[2] - '0');
1290
1291 if ((type != 1) && (type != 2) && (type != 4)) {
1292 fr_strerror_printf("Invalid type value %d for VENDOR", type);
1293 return -1;
1294 }
1295
1296 if ((length != 0) && (length != 1) && (length != 2)) {
1297 fr_strerror_printf("Invalid length value %d for VENDOR", length);
1298 return -1;
1299 }
1300
1301 if (p[3] == ',') {
1302 if (!p[4]) {
1303 fr_strerror_printf("Invalid format for VENDOR. Expected text like '1,1', got '%s'",
1304 p);
1305 return -1;
1306 }
1307
1308 if ((p[4] != 'c') ||
1309 (p[5] != '\0')) {
1310 fr_strerror_printf("Invalid format for VENDOR. Expected text like '1,1', got '%s'",
1311 p);
1312 return -1;
1313 }
1314 continuation = true;
1315
1316 if ((type != 1) || (length != 1)) {
1317 fr_strerror_const("Only VSAs with 'format=1,1' can have continuations");
1318 return -1;
1319 }
1320 }
1321
1322 *ptype = type;
1323 *plength = length;
1324 *pcontinuation = continuation;
1325 return 0;
1326}
1327
1328/*
1329 * Process the ALIAS command
1330 *
1331 * ALIAS name ref
1332 *
1333 * Creates an attribute "name" in the root namespace of the current
1334 * dictionary, which is a pointer to "ref".
1335 */
1336static int dict_read_process_alias(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
1337{
1338 fr_dict_attr_t const *da;
1339 fr_dict_attr_t const *parent = CURRENT_FRAME(dctx)->da;
1340 fr_dict_attr_t const *ref_namespace;
1341
1342 if (argc != 2) {
1343 fr_strerror_const("Invalid ALIAS syntax");
1344 return -1;
1345 }
1346
1347 /*
1348 * Dictionaries need to have real names, not shitty ones.
1349 */
1350 if (strncmp(argv[0], "Attr-", 5) == 0) {
1351 fr_strerror_const("Invalid ALIAS name");
1352 return -1;
1353 }
1354
1355 /*
1356 * Relative refs get resolved from the current namespace.
1357 */
1358 if (argv[1][0] == '.') {
1359 ref_namespace = parent;
1360 /*
1361 * No dot, so we're looking in the root namespace.
1362 */
1363 } else {
1364 ref_namespace = dctx->dict->root;
1365 }
1366
1367 /*
1368 * The <ref> can be a name.
1369 */
1370 da = fr_dict_attr_by_oid(NULL, ref_namespace, argv[1]);
1371 if (!da) {
1372 /*
1373 * If we can't find it now, the file
1374 * containing the ALIASes may have
1375 * been allowed before the ALIASed
1376 * attributes.
1377 */
1378 return dict_fixup_alias_enqueue(&dctx->fixup, CURRENT_FILENAME(dctx), CURRENT_LINE(dctx),
1379 fr_dict_attr_unconst(parent), argv[0],
1380 fr_dict_attr_unconst(ref_namespace), argv[1]);
1381 }
1382
1383 return dict_attr_alias_add(fr_dict_attr_unconst(parent), argv[0], da);
1384}
1385
1386/*
1387 * Process the ATTRIBUTE command
1388 */
1389static int dict_read_process_attribute(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
1390{
1391 bool set_relative_attr;
1392
1393 ssize_t slen;
1394 unsigned int attr;
1395
1396 fr_dict_attr_t const *parent, *key = NULL;
1397 fr_dict_attr_t *da;
1398 fr_value_box_t box;
1399
1400 if ((argc < 3) || (argc > 4)) {
1401 fr_strerror_const("Invalid ATTRIBUTE syntax");
1402 return -1;
1403 }
1404
1405#ifdef STATIC_ANALYZER
1406 if (!dctx->dict) return -1;
1407#endif
1408
1409 /*
1410 * A non-relative ATTRIBUTE definition means that it is
1411 * in the context of the previous BEGIN-FOO. So we
1412 * unwind the stack to match.
1413 */
1414 if (argv[1][0] != '.') {
1415 dict_tokenize_frame_t const *frame;
1416
1417 frame = dict_dctx_unwind(dctx);
1418 if (!frame) return -1;
1419
1420 parent = frame->da;
1421
1422 /*
1423 * Allow '0xff00' as attribute numbers, but only
1424 * if there is no OID component.
1425 */
1426 if (strchr(argv[1], '.') == 0) {
1427 if (!dict_read_sscanf_i(&attr, argv[1])) {
1428 fr_strerror_const("Invalid ATTRIBUTE number");
1429 return -1;
1430 }
1431
1432 } else {
1433 slen = fr_dict_attr_by_oid_legacy(dctx->dict, &parent, &attr, argv[1]);
1434 if (slen <= 0) return -1;
1435 }
1436
1437 /*
1438 * We allow relative attributes only for TLVs.
1439 *
1440 * We haven't parsed the type field yet, so we
1441 * just check it here manually.
1442 */
1443 set_relative_attr = (strcasecmp(argv[2], "tlv") == 0);
1444
1445 } else {
1446 if (!dctx->relative_attr) {
1447 fr_strerror_printf("No parent attribute reference was set for partial OID %s", argv[1]);
1448 return -1;
1449 }
1450
1451 parent = dctx->relative_attr;
1452
1453 slen = fr_dict_attr_by_oid_legacy(dctx->dict, &parent, &attr, argv[1]);
1454 if (slen <= 0) return -1;
1455
1456 set_relative_attr = false;
1457 }
1458
1459 if (!fr_cond_assert(parent)) return -1; /* Should have provided us with a parent */
1460
1461 /*
1462 * Members of a 'struct' MUST use MEMBER, not ATTRIBUTE.
1463 */
1464 if (parent->type == FR_TYPE_STRUCT) {
1465 fr_strerror_printf("Member %s of ATTRIBUTE %s type 'struct' MUST use the \"MEMBER\" keyword",
1466 argv[0], parent->name);
1467 return -1;
1468 }
1469
1470 /*
1471 * A UNION can have child ATTRIBUTEs
1472 */
1473 if (parent->type == FR_TYPE_UNION) {
1475
1476 /*
1477 * The parent is a union. Get and verify the key ref.
1478 */
1480 fr_assert(ext != NULL);
1481
1482 /*
1483 * Double-check names against the reference.
1484 */
1485 key = ext->ref;
1486 fr_assert(key);
1488 da = UNCONST(fr_dict_attr_t *, key);
1489 da->flags.migration_union_key = true;
1490 }
1491
1492 da = dict_attr_alloc_null(dctx->dict->pool, dctx->dict->proto);
1493 if (unlikely(!da)) return -1;
1494
1495 /*
1496 * Record the attribute number BEFORE we parse the type and flags.
1497 *
1498 * This is needed for the DER dictionaries, and 'option'.
1499 *
1500 * It can also be useful for other protocols, which may
1501 * have restrictions on the various fields. It is
1502 * therefore useful to have all fields initialized before
1503 * the type/flag validation routines are called.
1504 */
1505 if (unlikely(dict_attr_num_init(da, attr) < 0)) {
1506 error:
1507 talloc_free(da);
1508 return -1;
1509 }
1510
1511 /*
1512 * Check the attribute number against the allowed values.
1513 */
1514 if (key) {
1515 fr_value_box_init(&box, FR_TYPE_UINT32, NULL, false);
1516 box.vb_uint32 = attr;
1517
1518 if (fr_value_box_cast_in_place(da, &box, key->type, NULL) < 0) {
1519 fr_strerror_printf_push("Invalid attribute number as key field %s has data type %s",
1520 key->name, fr_type_to_str(key->type));
1521 goto error;
1522 }
1523 }
1524
1525 if (dict_read_process_common(dctx, &da, parent, argv[0], argv[2],
1526 (argc > 3) ? argv[3] : NULL, base_flags) < 0) {
1527 goto error;
1528 }
1529
1530 if (da_is_bit_field(da)) {
1531 fr_strerror_const("Bit fields can only be defined as a MEMBER of data type 'struct'");
1532 goto error;
1533 }
1534
1535 /*
1536 * Unions need a key field. And key fields can only appear inside of a struct.
1537 */
1538 if (da->type == FR_TYPE_UNION) {
1539 fr_strerror_const("ATTRIBUTEs of type 'union' can only be defined as a MEMBER of data type 'struct'");
1540 return -1;
1541 }
1542
1543 /*
1544 * Cross-check fixed lengths.
1545 */
1546 if (key && (parent->flags.is_known_width)) {
1547 if (!da->flags.is_known_width) {
1548 da->flags.is_known_width = 1;
1549 da->flags.length = parent->flags.length;
1550
1551 } else if (da->flags.length != parent->flags.length) {
1552 fr_strerror_printf("Invalid length %u for struct, the parent union %s has a different length %u",
1553 da->flags.length, parent->name, parent->flags.length);
1554 return -1;
1555 }
1556 }
1557
1558#ifdef WITH_DICTIONARY_WARNINGS
1559 /*
1560 * Hack to help us discover which vendors have illegal
1561 * attributes.
1562 */
1563 if (!vendor && (attr < 256) &&
1564 !strstr(fn, "rfc") && !strstr(fn, "illegal")) {
1565 fprintf(stderr, "WARNING: Illegal attribute %s in %s\n",
1566 argv[0], fn);
1567 }
1568#endif
1569
1570 /*
1571 * Set the attribute name
1572 */
1573 if (unlikely(dict_attr_finalise(&da, argv[0]) < 0)) {
1574 goto error;
1575 }
1576
1577 /*
1578 * Check to see if this is a duplicate attribute
1579 * and whether we should ignore it or error out...
1580 */
1581 switch (dict_attr_allow_dup(da)) {
1582 case 1:
1583 break;
1584
1585 case 0:
1586 talloc_free(da);
1587 return 0;
1588
1589 default:
1590 goto error;
1591 }
1592
1593 /*
1594 * Add the attribute we allocated earlier
1595 */
1596 switch (dict_attr_add_or_fixup(&dctx->fixup, &da)) {
1597 default:
1598 goto error;
1599
1600 /* New attribute, fixup stack */
1601 case 0:
1602 /*
1603 * Dynamically define where VSAs go. Note that we CANNOT
1604 * define VSAs until we define an attribute of type VSA!
1605 */
1606 if (da->type == FR_TYPE_VSA) {
1607 if (parent->flags.is_root) dctx->dict->vsa_parent = attr;
1608
1609 if (dict_fixup_vsa_enqueue(&dctx->fixup, da) < 0) {
1610 return -1; /* Leaves attr added */
1611 }
1612 }
1613
1614 /*
1615 * Add the VALUE to the key attribute, and ensure that
1616 * the VALUE also contains a pointer to the child struct.
1617 */
1618 if (key && (dict_attr_enum_add_name(fr_dict_attr_unconst(key), da->name, &box, false, true, da) < 0)) {
1619 goto error;
1620 }
1621
1622 /*
1623 * Adding an attribute of type 'struct' is an implicit
1624 * BEGIN-STRUCT.
1625 */
1626 if (da->type == FR_TYPE_STRUCT) {
1627 if (dict_dctx_push(dctx, da, NEST_NONE) < 0) return -1;
1628
1629 CURRENT_FRAME(dctx)->finalise = dict_struct_finalise;
1630 dctx->value_attr = NULL;
1631 } else {
1632 dctx->value_attr = da;
1633 }
1634
1635 if (set_relative_attr) dctx->relative_attr = da;
1636 break;
1637
1638 /* Deferred attribute, don't begin the TLV section automatically */
1639 case 1:
1640 break;
1641 }
1642
1643 /*
1644 * While UNIONs are named, it's nicer to hide them.
1645 * Therefore we automatically add an ALIAS in the unions
1646 * parent, for the child in the union.
1647 */
1648 if (parent->type == FR_TYPE_UNION) {
1649 fr_assert(parent->parent);
1650
1651 if (dict_attr_alias_add(parent->parent, da->name, da) < 0) {
1652 goto error;
1653 }
1654 }
1655
1656 return 0;
1657}
1658
1659static int dict_read_process_begin(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
1660{
1661 dict_tokenize_frame_t const *frame;
1662 fr_dict_attr_t const *da;
1663 fr_dict_attr_t const *common;
1664
1665 dctx->value_attr = NULL;
1666 dctx->relative_attr = NULL;
1667
1668 if (argc != 1) {
1669 fr_strerror_const("Invalid BEGIN keyword. Expected BEGIN <name>");
1670 return -1;
1671 }
1672
1674 if (!fr_cond_assert_msg(frame, "Context stack doesn't have an attribute or dictionary "
1675 "root to begin searching from %s[%d]", CURRENT_FILENAME(dctx), CURRENT_LINE(dctx)) ||
1676 !fr_cond_assert_msg(fr_type_is_structural(frame->da->type), "Context attribute is not structural %s[%d]",
1677 CURRENT_FILENAME(dctx), CURRENT_LINE(dctx))) {
1678 return -1;
1679 }
1680
1681 /*
1682 * Not really a reference as we don't support any of the
1683 * fancy syntaxes like refs do. A straight OID string
1684 * resolved from the current level of nesting is all we support.
1685 */
1686 da = fr_dict_attr_by_oid(NULL, frame->da, argv[0]);
1687 if (!da) {
1688 fr_strerror_printf("BEGIN %s is not resolvable in current context '%s'", argv[0], frame->da->name);
1689 return -1;
1690 }
1691
1692 if (!fr_type_is_tlv(da->type) && !fr_type_is_struct(da->type) && (da->type != FR_TYPE_UNION)) {
1693 fr_strerror_printf("BEGIN %s cannot be used with data type '%s'",
1694 argv[0],
1695 fr_type_to_str(da->type));
1696 return -1;
1697 }
1698
1699 common = fr_dict_attr_common_parent(frame->da, da, true);
1700 if (!common) {
1701 fr_strerror_printf("BEGIN %s should be a child of '%s'",
1702 argv[0], CURRENT_FRAME(dctx)->da->name);
1703 return -1;
1704 }
1705
1706 return dict_dctx_push(dctx, da, NEST_ATTRIBUTE);
1707}
1708
1709static int dict_read_process_begin_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc,
1710 UNUSED fr_dict_attr_flags_t *base_flags)
1711{
1712 fr_dict_t *found;
1713 dict_tokenize_frame_t const *frame;
1714
1715 dctx->value_attr = NULL;
1716 dctx->relative_attr = NULL;
1717
1718 if (argc != 1) {
1719 fr_strerror_const("Invalid BEGIN-PROTOCOL entry");
1720 return -1;
1721 }
1722
1723 /*
1724 * If we're not parsing in the context of the internal
1725 * dictionary, then we don't allow BEGIN-PROTOCOL
1726 * statements.
1727 */
1728 if (dctx->dict != dict_gctx->internal) {
1729 fr_strerror_const("Nested BEGIN-PROTOCOL statements are not allowed");
1730 return -1;
1731 }
1732
1733 found = dict_by_protocol_name(argv[0]);
1734 if (!found) {
1735 fr_strerror_printf("Unknown protocol '%s'", argv[0]);
1736 return -1;
1737 }
1738
1740 if (frame) {
1741 fr_strerror_printf("BEGIN-PROTOCOL cannot be used inside of any other BEGIN/END block. Previous definition is at %s[%d]",
1742 frame->filename, frame->line);
1743 return -1;
1744 }
1745
1746 /*
1747 * Add a temporary fixup pool
1748 *
1749 * @todo - make a nested ctx?
1750 */
1751 dict_fixup_init(NULL, &dctx->fixup);
1752
1753 /*
1754 * We're in the middle of loading this dictionary. Tell
1755 * fr_dict_protocol_afrom_file() to suppress recursive references.
1756 */
1757 found->loading = true;
1758
1759 dctx->dict = found;
1760
1761 return dict_dctx_push(dctx, dctx->dict->root, NEST_PROTOCOL);
1762}
1763
1764static int dict_read_process_begin_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc,
1765 UNUSED fr_dict_attr_flags_t *base_flags)
1766{
1767 fr_dict_vendor_t const *vendor;
1769
1770 fr_dict_attr_t const *vsa_da;
1771 fr_dict_attr_t const *vendor_da;
1772 fr_dict_attr_t *new;
1773 dict_tokenize_frame_t const *frame;
1774 char *p;
1775
1776 dctx->value_attr = NULL;
1777 dctx->relative_attr = NULL;
1778
1779 if (argc < 1) {
1780 fr_strerror_const("Invalid BEGIN-VENDOR entry");
1781 return -1;
1782 }
1783
1784 vendor = fr_dict_vendor_by_name(dctx->dict, argv[0]);
1785 if (!vendor) {
1786 fr_strerror_printf("Unknown vendor '%s'", argv[0]);
1787 return -1;
1788 }
1789
1790 /*
1791 * Check for extended attr VSAs
1792 *
1793 * BEGIN-VENDOR foo parent=Foo-Encapsulation-Attr
1794 */
1795 if (argc > 1) {
1796 fr_dict_attr_t const *da;
1797
1798 if (strncmp(argv[1], "parent=", 7) != 0) {
1799 fr_strerror_printf("BEGIN-VENDOR invalid argument (%s)", argv[1]);
1800 return -1;
1801 }
1802
1803 p = argv[1] + 7;
1804 da = fr_dict_attr_by_oid(NULL, CURRENT_FRAME(dctx)->da, p);
1805 if (!da) {
1806 fr_strerror_printf("BEGIN-VENDOR invalid argument (%s)", argv[1]);
1807 return -1;
1808 }
1809
1810 if (da->type != FR_TYPE_VSA) {
1811 fr_strerror_printf("Invalid parent for BEGIN-VENDOR. "
1812 "Attribute '%s' should be 'vsa' but is '%s'", p,
1813 fr_type_to_str(da->type));
1814 return -1;
1815 }
1816
1817 vsa_da = da;
1818
1819 } else if (dctx->dict->vsa_parent) {
1820 /*
1821 * Check that the protocol-specific VSA parent exists.
1822 */
1823 vsa_da = dict_attr_child_by_num(CURRENT_FRAME(dctx)->da, dctx->dict->vsa_parent);
1824 if (!vsa_da) {
1825 fr_strerror_printf("Failed finding VSA parent for Vendor %s",
1826 vendor->name);
1827 return -1;
1828 }
1829
1830 } else if (dctx->dict->string_based) {
1831 vsa_da = dctx->dict->root;
1832
1833 } else {
1834 fr_strerror_printf("BEGIN-VENDOR is forbidden for protocol %s - it has no ATTRIBUTE of type 'vsa'",
1835 dctx->dict->root->name);
1836 return -1;
1837 }
1838
1839 frame = dict_dctx_find_frame(dctx, NEST_VENDOR);
1840 if (frame) {
1841 fr_strerror_printf("Nested BEGIN-VENDOR is forbidden. Previous definition is at %s[%d]",
1842 frame->filename, frame->line);
1843 return -1;
1844 }
1845
1846 /*
1847 * Create a VENDOR attribute on the fly, either in the context
1848 * of the VSA (26) attribute.
1849 */
1850 vendor_da = dict_attr_child_by_num(vsa_da, vendor->pen);
1851 if (!vendor_da) {
1852 memset(&flags, 0, sizeof(flags));
1853
1854 flags.type_size = dctx->dict->proto->default_type_size;
1855 flags.length = dctx->dict->proto->default_type_length;
1856
1857 /*
1858 * See if this vendor has
1859 * specific sizes for type /
1860 * length.
1861 *
1862 * @todo - Make this more protocol agnostic!
1863 */
1864 if ((vsa_da->type == FR_TYPE_VSA) &&
1865 (vsa_da->parent->flags.is_root)) {
1866 fr_dict_vendor_t const *dv;
1867
1868 dv = fr_dict_vendor_by_num(dctx->dict, vendor->pen);
1869 if (dv) {
1870 flags.type_size = dv->type;
1871 flags.length = dv->length;
1872 }
1873 }
1874
1875 new = dict_attr_alloc(dctx->dict->pool,
1876 vsa_da, argv[0], vendor->pen, FR_TYPE_VENDOR,
1877 &(dict_attr_args_t){ .flags = &flags });
1878 if (unlikely(!new)) return -1;
1879
1880 if (dict_attr_child_add(UNCONST(fr_dict_attr_t *, vsa_da), new) < 0) {
1881 talloc_free(new);
1882 return -1;
1883 }
1884
1885 if (dict_attr_add_to_namespace(UNCONST(fr_dict_attr_t *, vsa_da), new) < 0) {
1886 talloc_free(new);
1887 return -1;
1888 }
1889
1890 vendor_da = new;
1891 } else {
1892 fr_assert(vendor_da->type == FR_TYPE_VENDOR);
1893 }
1894
1895 return dict_dctx_push(dctx, vendor_da, NEST_VENDOR);
1896}
1897
1898/*
1899 * Process the DEFINE command
1900 *
1901 * Which is mostly like ATTRIBUTE, but does not have a number.
1902 */
1903static int dict_read_process_define(dict_tokenize_ctx_t *dctx, char **argv, int argc,
1904 fr_dict_attr_flags_t *base_flags)
1905{
1906 fr_dict_attr_t const *parent;
1907 fr_dict_attr_t *da = NULL;
1908 dict_tokenize_frame_t const *frame;
1909
1910 if ((argc < 2) || (argc > 3)) {
1911 fr_strerror_const("Invalid DEFINE syntax");
1912 return -1;
1913 }
1914
1915 frame = dict_dctx_unwind(dctx);
1916 if (!fr_cond_assert(frame && frame->da)) return -1; /* Should have provided us with a parent */
1917
1918 parent = frame->da;
1919
1920 /*
1921 * Members of a 'struct' MUST use MEMBER, not ATTRIBUTE.
1922 */
1923 if (parent->type == FR_TYPE_STRUCT) {
1924 fr_strerror_printf("Member %s of parent %s type 'struct' MUST use the \"MEMBER\" keyword",
1925 argv[0], parent->name);
1926 return -1;
1927 }
1928
1929 if (parent->type == FR_TYPE_UNION) {
1930 fr_strerror_printf("Parent attribute %s is of type 'union', and cannot use DEFINE for children",
1931 parent->name);
1932 return -1;
1933 }
1934
1935 /*
1936 * We don't set the attribute number before parsing the
1937 * type and flags. The number is chosen internally, and
1938 * no one should depend on it.
1939 */
1940 if (dict_read_process_common(dctx, &da, parent, argv[0], argv[1],
1941 (argc > 2) ? argv[2] : NULL, base_flags) < 0) {
1942 return -1;
1943 }
1944
1945 /*
1946 * Certain structural types MUST have numbers.
1947 */
1948 switch (da->type) {
1949 case FR_TYPE_VSA:
1950 case FR_TYPE_VENDOR:
1951 fr_strerror_printf("DEFINE cannot be used for type '%s'", argv[1]);
1952 error:
1953 talloc_free(da);
1954 return -1;
1955
1956 default:
1957 break;
1958 }
1959
1960 if (da_is_bit_field(da)) {
1961 fr_strerror_const("Bit fields can only be defined as a MEMBER of data type 'struct'");
1962 goto error;
1963 }
1964
1965#ifdef STATIC_ANALYZER
1966 if (!dctx->dict) goto error;
1967#endif
1968
1969 /*
1970 * Since there is no number, the attribute cannot be
1971 * encoded as a number.
1972 */
1973 da->flags.name_only = true;
1974
1975 /*
1976 * Add an attribute number now so the allocations occur in order
1977 */
1978 if (unlikely(dict_attr_num_init_name_only(da) < 0)) goto error;
1979
1980 /*
1981 * Set the attribute name
1982 */
1983 if (unlikely(dict_attr_finalise(&da, argv[0]) < 0)) goto error;
1984
1985 /*
1986 * Check to see if this is a duplicate attribute
1987 * and whether we should ignore it or error out...
1988 */
1989 switch (dict_attr_allow_dup(da)) {
1990 case 1:
1991 break;
1992
1993 case 0:
1994 talloc_free(da);
1995 return 0;
1996
1997 default:
1998 goto error;
1999 }
2000
2001 /*
2002 * Add the attribute we allocated earlier
2003 */
2004 switch (dict_attr_add_or_fixup(&dctx->fixup, &da)) {
2005 default:
2006 goto error;
2007
2008 /* New attribute, fixup stack */
2009 case 0:
2010 if (dict_set_value_attr(dctx, da) < 0) return -1;
2011
2012 if (da->type == FR_TYPE_TLV) {
2013 dctx->relative_attr = da;
2014 } else {
2015 dctx->relative_attr = NULL;
2016 }
2017 break;
2018
2019 /* Deferred attribute, don't begin the TLV section automatically */
2020 case 1:
2021 break;
2022 }
2023
2024 return 0;
2025}
2026
2027static int dict_read_process_end(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2028 UNUSED fr_dict_attr_flags_t *base_flags)
2029{
2030 fr_dict_attr_t const *current;
2031 fr_dict_attr_t const *da;
2032 dict_tokenize_frame_t const *frame;
2033
2034 dctx->value_attr = NULL;
2035 dctx->relative_attr = NULL;
2036
2037 if (argc > 2) {
2038 fr_strerror_const("Invalid END syntax, expected END <ref>");
2039 return -1;
2040 }
2041
2042 /*
2043 * Unwind until we hit an attribute nesting section
2044 */
2046 return -1;
2047 }
2048
2049 /*
2050 * Pop the stack to get the attribute we're ending.
2051 */
2052 current = dict_dctx_pop(dctx)->da;
2053
2054 /*
2055 * No checks on the attribute, we're just popping _A_ frame,
2056 * we don't care what attribute it represents.
2057 */
2058 if (argc == 1) return 0;
2059
2060 /*
2061 * This is where we'll have begun the previous search to
2062 * evaluate the BEGIN keyword.
2063 */
2065 if (!fr_cond_assert(frame)) return -1;
2066
2067 da = fr_dict_attr_by_oid(NULL, frame->da, argv[0]);
2068 if (!da) {
2069 fr_strerror_const_push("Failed resolving attribute in BEGIN entry");
2070 return -1;
2071 }
2072
2073 if (da != current) {
2074 fr_strerror_printf("END %s does not match previous BEGIN %s", argv[0], current->name);
2075 return -1;
2076 }
2077
2078 return 0;
2079}
2080
2081static int dict_read_process_end_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2082 UNUSED fr_dict_attr_flags_t *base_flags)
2083{
2084 fr_dict_t const *found;
2085
2086 dctx->value_attr = NULL;
2087 dctx->relative_attr = NULL;
2088
2089 if (argc != 1) {
2090 fr_strerror_const("Invalid END-PROTOCOL entry");
2091 return -1;
2092 }
2093
2094 found = dict_by_protocol_name(argv[0]);
2095 if (!found) {
2096 fr_strerror_printf("END-PROTOCOL %s does not refer to a valid protocol", argv[0]);
2097 return -1;
2098 }
2099
2100 if (found != dctx->dict) {
2101 fr_strerror_printf("END-PROTOCOL %s does not match previous BEGIN-PROTOCOL %s",
2102 argv[0], dctx->dict->root->name);
2103 return -1;
2104 }
2105
2106 /*
2107 * Unwind until we get to a BEGIN-PROTOCOL nesting.
2108 */
2110 return -1;
2111 }
2112
2113 if (found->root != CURRENT_FRAME(dctx)->da) {
2114 fr_strerror_printf("END-PROTOCOL %s does not match previous BEGIN-PROTOCOL %s", argv[0],
2115 CURRENT_FRAME(dctx)->da->name);
2116 return -1;
2117 }
2118
2119 /*
2120 * Applies fixups to any attributes added to the protocol
2121 * dictionary. Note that the finalise function prints
2122 * out the original filename / line of the error. So we
2123 * don't need to do that here.
2124 */
2125 if (dict_finalise(dctx) < 0) return -1;
2126
2128
2129 fr_assert(!dctx->stack[dctx->stack_depth].finalise);
2130 dctx->stack_depth--; /* nuke the BEGIN-PROTOCOL */
2131
2133 dctx->dict = dict_gctx->internal;
2134
2135 return 0;
2136}
2137
2138static int dict_read_process_end_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2139 UNUSED fr_dict_attr_flags_t *base_flags)
2140{
2141 fr_dict_vendor_t const *vendor;
2142
2143 dctx->value_attr = NULL;
2144 dctx->relative_attr = NULL;
2145
2146 if (argc != 1) {
2147 fr_strerror_const("END-VENDOR is missing vendor name");
2148 return -1;
2149 }
2150
2151 vendor = fr_dict_vendor_by_name(dctx->dict, argv[0]);
2152 if (!vendor) {
2153 fr_strerror_printf("Unknown vendor '%s'", argv[0]);
2154 return -1;
2155 }
2156
2157 /*
2158 * Unwind until we get to a BEGIN-VENDOR nesting.
2159 */
2160 if (!dict_dctx_unwind_until(dctx, NEST_VENDOR)) {
2161 return -1;
2162 }
2163
2164 if (vendor->pen != CURRENT_FRAME(dctx)->da->attr) {
2165 fr_strerror_printf("END-VENDOR %s does not match previous BEGIN-VENDOR %s", argv[0],
2166 CURRENT_FRAME(dctx)->da->name);
2167 return -1;
2168 }
2169
2170 fr_assert(!dctx->stack[dctx->stack_depth].finalise);
2171 dctx->stack_depth--; /* nuke the BEGIN-VENDOR */
2172
2173 return 0;
2174}
2175
2176/*
2177 * Process the ENUM command
2178 */
2179static int dict_read_process_enum(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2180 fr_dict_attr_flags_t *base_flags)
2181{
2182 fr_dict_attr_t const *parent;
2183 fr_dict_attr_t *da = NULL;
2184
2185 if (argc != 2) {
2186 fr_strerror_const("Invalid ENUM syntax");
2187 return -1;
2188 }
2189
2190 /*
2191 * Dictionaries need to have real names, not shitty ones.
2192 */
2193 if (strncmp(argv[0], "Attr-", 5) == 0) {
2194 fr_strerror_const("Invalid ENUM name");
2195 return -1;
2196 }
2197
2198#ifdef STATIC_ANALYZER
2199 if (!dctx->dict) goto error;
2200#endif
2201
2202 /*
2203 * Allocate the attribute here, and then fill in the fields
2204 * as we start parsing the various elements of the definition.
2205 */
2206 da = dict_attr_alloc_null(dctx->dict->pool, dctx->dict->proto);
2207 if (unlikely(da == NULL)) return -1;
2208 dict_attr_location_set(dctx, da);
2209 da->dict = dctx->dict;
2210
2211 /*
2212 * Set the attribute flags from the base flags.
2213 */
2214 memcpy(&da->flags, base_flags, sizeof(da->flags));
2215
2216 da->flags.name_only = true; /* values for ENUM are irrelevant */
2217 da->flags.internal = true; /* ENUMs will never get encoded into a protocol */
2218#if 0
2219 flags.is_enum = true; /* it's an enum, and can't be assigned to a #fr_pair_t */
2220#endif
2221
2222 /*
2223 * Set the base type of the attribute.
2224 */
2225 if (dict_process_type_field(dctx, argv[1], &da) < 0) {
2226 error:
2227 talloc_free(da);
2228 return -1;
2229 }
2230
2231 if (da_is_bit_field(da)) {
2232 fr_strerror_const("Bit fields can only be defined as a MEMBER of a data type 'struct'");
2233 goto error;
2234 }
2235
2236 switch (da->type) {
2237 case FR_TYPE_LEAF:
2238 break;
2239
2240 default:
2241 fr_strerror_printf("ENUMs can only be a leaf type, not %s",
2242 fr_type_to_str(da->type));
2243 break;
2244 }
2245
2246 parent = CURRENT_FRAME(dctx)->da;
2247 if (!parent) {
2248 fr_strerror_const("Invalid location for ENUM");
2249 goto error;
2250 }
2251
2252 /*
2253 * ENUMs cannot have a flag field, so we don't parse that.
2254 *
2255 * Maybe we do want a flag field for named time deltas?
2256 */
2257
2258 if (unlikely(dict_attr_parent_init(&da, parent) < 0)) goto error;
2259 if (unlikely(dict_attr_finalise(&da, argv[0]) < 0)) goto error;
2260
2261 /*
2262 * Add the attribute we allocated earlier
2263 */
2264 switch (dict_attr_add_or_fixup(&dctx->fixup, &da)) {
2265 default:
2266 goto error;
2267
2268 case 0:
2269 memcpy(&dctx->value_attr, &da, sizeof(da));
2270 break;
2271
2272 case 1:
2273 break;
2274 }
2275
2276 return 0;
2277}
2278
2279/*
2280 * Process the FLAGS command
2281 */
2282static int dict_read_process_flags(UNUSED dict_tokenize_ctx_t *dctx, char **argv, int argc,
2283 fr_dict_attr_flags_t *base_flags)
2284{
2285 bool sense = true;
2286
2287 if (argc == 1) {
2288 char *p;
2289
2290 p = argv[0];
2291 if (*p == '!') {
2292 sense = false;
2293 p++;
2294 }
2295
2296 if (strcmp(p, "internal") == 0) {
2297 base_flags->internal = sense;
2298 return 0;
2299 }
2300 }
2301
2302 fr_strerror_const("Invalid FLAGS syntax");
2303 return -1;
2304}
2305
2306/*
2307 * Process the MEMBER command
2308 */
2309static int dict_read_process_member(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2310 fr_dict_attr_flags_t *base_flags)
2311{
2312 fr_dict_attr_t *da = NULL;
2313
2314 if ((argc < 2) || (argc > 3)) {
2315 fr_strerror_const("Invalid MEMBER syntax");
2316 return -1;
2317 }
2318
2319 if (CURRENT_FRAME(dctx)->da->type != FR_TYPE_STRUCT) {
2320 fr_strerror_printf("MEMBER can only be used for ATTRIBUTEs of type 'struct', not for data type %s",
2321 fr_type_to_str(CURRENT_FRAME(dctx)->da->type));
2322 return -1;
2323 }
2324
2325 /*
2326 * Check if the parent 'struct' is fixed size. And if
2327 * so, complain if we're adding a variable sized member.
2328 */
2329 if (CURRENT_FRAME(dctx)->struct_is_closed) {
2330 fr_strerror_printf("Cannot add MEMBER to 'struct' %s after a variable sized member %s",
2331 CURRENT_FRAME(dctx)->da->name,
2332 CURRENT_FRAME(dctx)->struct_is_closed->name);
2333 return -1;
2334 }
2335
2336 /*
2337 * We don't set the attribute number before parsing the
2338 * type and flags. The number is chosen internally, and
2339 * no one should depend on it.
2340 *
2341 * Although _arguably_, it may be useful to know which
2342 * field this is, 0..N?
2343 */
2344 if (dict_read_process_common(dctx, &da, CURRENT_FRAME(dctx)->da, argv[0], argv[1],
2345 (argc > 2) ? argv[2] : NULL, base_flags) < 0) {
2346 return -1;
2347 }
2348
2349#ifdef STATIC_ANALYZER
2350 if (!dctx->dict) goto error;
2351#endif
2352
2353 /*
2354 * If our parent is a known width struct, then we're
2355 * allowed to be variable width. The parent might just
2356 * have a "length=16" prefix, which lets its children be
2357 * variable sized.
2358 */
2359
2360 /*
2361 * Double check any bit field magic
2362 */
2363 if (CURRENT_FRAME(dctx)->member_num > 0) {
2364 fr_dict_attr_t const *previous;
2365
2366 previous = dict_attr_child_by_num(CURRENT_FRAME(dctx)->da,
2367 CURRENT_FRAME(dctx)->member_num);
2368 /*
2369 * Check that the previous bit field ended on a
2370 * byte boundary.
2371 *
2372 * Note that the previous attribute might be a deferred TLV, in which case it doesn't
2373 * exist. That's fine.
2374 */
2375 if (previous && da_is_bit_field(previous)) {
2376 /*
2377 * This attribute is a bit field. Keep
2378 * track of where in the byte we are
2379 * located.
2380 */
2381 if (da_is_bit_field(da)) {
2382 da->flags.flag_byte_offset = (da->flags.length + previous->flags.flag_byte_offset) & 0x07;
2383
2384 } else {
2385 if (previous->flags.flag_byte_offset != 0) {
2386 fr_strerror_printf("Previous bitfield %s did not end on a byte boundary",
2387 previous->name);
2388 error:
2389 talloc_free(da);
2390 return -1;
2391 }
2392 }
2393 }
2394 }
2395
2396 /*
2397 * Ensure that no previous child has "key" or "length" set.
2398 */
2399 if (da->type == FR_TYPE_TLV) {
2400 fr_dict_attr_t const *key;
2401 int i;
2402
2403 /*
2404 * @todo - cache the key field in the stack frame, so we don't have to loop over the children.
2405 */
2406 for (i = 1; i <= CURRENT_FRAME(dctx)->member_num; i++) {
2407 key = dict_attr_child_by_num(CURRENT_FRAME(dctx)->da, i);
2408 if (!key) continue; /* really should be WTF? */
2409
2410 /*
2411 * @todo - we can allow this if the _rest_ of the struct is fixed size, i.e. if
2412 * there is a key field, and then the union is fixed size.
2413 */
2414 if (fr_dict_attr_is_key_field(key)) {
2415 fr_strerror_printf("'struct' %s has a 'key' field %s, and cannot end with a TLV %s",
2416 CURRENT_FRAME(dctx)->da->name, key->name, argv[0]);
2417 goto error;
2418 }
2419
2420 if (da_is_length_field(key)) {
2421 fr_strerror_printf("'struct' %s has a 'length' field %s, and cannot end with a TLV %s",
2422 CURRENT_FRAME(dctx)->da->name, key->name, argv[0]);
2423 goto error;
2424 }
2425 }
2426
2427 /*
2428 * TLVs are variable sized, and close the parent struct.
2429 */
2430 CURRENT_FRAME(dctx)->struct_is_closed = da;
2431 }
2432
2433 /*
2434 * Unions close the parent struct, even if they're fixed size. For now, the struct to/from
2435 * network code assumes that a union is the last member of a structure.
2436 */
2437 if (da->type == FR_TYPE_UNION) {
2438 CURRENT_FRAME(dctx)->struct_is_closed = da;
2439 }
2440
2441 if (unlikely(dict_attr_num_init(da, ++CURRENT_FRAME(dctx)->member_num) < 0)) goto error;
2442 if (unlikely(dict_attr_finalise(&da, argv[0]) < 0)) goto error;
2443
2444 /*
2445 * Check to see if this is a duplicate attribute
2446 * and whether we should ignore it or error out...
2447 */
2448 switch (dict_attr_allow_dup(da)) {
2449 case 1:
2450 break;
2451
2452 case 0:
2453 talloc_free(da);
2454 return 0;
2455
2456 default:
2457 goto error;
2458 }
2459
2460 switch (dict_attr_add_or_fixup(&dctx->fixup, &da)) {
2461 default:
2462 goto error;
2463
2464 case 1:
2465 /*
2466 * @todo - a MEMBER can theoretically have a "ref=..", though non currently do.
2467 *
2468 * If the ref is deferred, then we cannot finalise the parent struct until we have
2469 * resolved the reference. But the "finalise struct on fixup" code isn't written. So
2470 * instead of silently doing the wrong thing, we just return an error.
2471 */
2472 fr_strerror_printf("Cannot have MEMBER with deferred ref=...");
2473 return -1;
2474
2475 case 0:
2476 /*
2477 * New attribute - avoid lots of indentation.
2478 */
2479 break;
2480 }
2481
2482 /*
2483 * Check if this MEMBER closes the structure.
2484 *
2485 * Close this struct if the child struct is variable sized. For now, it we only support
2486 * child structs at the end of the parent.
2487 *
2488 * The solution is to update the unwind() function to check if the da we've
2489 * unwound to is a struct, and then if so... get the last child, and mark it
2490 * closed.
2491 *
2492 * @todo - a MEMBER which is of type 'struct' and has 'clone=foo', we delay the clone
2493 * until after all of the dictionaries have been loaded. As such, this attribute
2494 * is unknown width, and MUST be at the end of the parent structure.
2495 *
2496 * If the cloned MEMBER is in the middle of a structure, then the user will get an opaque
2497 * error. But that case should be rare.
2498 */
2499 if (!da->flags.is_known_width) {
2500 /*
2501 * The child is unknown width, but we were told that the parent has known width.
2502 * That's an error.
2503 */
2504 if (CURRENT_FRAME(dctx)->da->flags.length) {
2505 fr_strerror_printf("'struct' %s has fixed size %u, but member %s is of unknown size",
2506 CURRENT_FRAME(dctx)->da->name, CURRENT_FRAME(dctx)->da->flags.length,
2507 argv[0]);
2508 return -1;
2509 }
2510
2511 /*
2512 * Mark the structure as closed by this attribute. And then set the size to
2513 * zero, for "unknown size".
2514 */
2515 CURRENT_FRAME(dctx)->struct_is_closed = da;
2516 CURRENT_FRAME(dctx)->struct_size = 0;
2517
2518 /*
2519 * A 'struct' can have a MEMBER of type 'tlv', but ONLY
2520 * as the last entry in the 'struct'. If we see that,
2521 * set the previous attribute to the TLV we just added.
2522 * This allows the children of the TLV to be parsed as
2523 * partial OIDs, so we don't need to know the full path
2524 * to them.
2525 */
2526 if (da->type == FR_TYPE_TLV) {
2527 dctx->relative_attr = da;
2528 if (dict_dctx_push(dctx, dctx->relative_attr, NEST_NONE) < 0) return -1;
2529 }
2530
2531 } else if (CURRENT_FRAME(dctx)->da->flags.length) {
2532 /*
2533 * The parent is fixed size, so we track the length of the children.
2534 */
2535 CURRENT_FRAME(dctx)->struct_size += da->flags.length;
2536
2537 /*
2538 * Adding this child may result in an overflow, so we check that.
2539 */
2540 if (CURRENT_FRAME(dctx)->struct_size > CURRENT_FRAME(dctx)->da->flags.length) {
2541 fr_strerror_printf("'struct' %s has fixed size %u, but member %s overflows that length",
2542 CURRENT_FRAME(dctx)->da->name, CURRENT_FRAME(dctx)->da->flags.length,
2543 argv[0]);
2544 return -1;
2545 }
2546 }
2547
2548 /*
2549 * Set or clear the attribute for VALUE statements.
2550 */
2551 return dict_set_value_attr(dctx, da);
2552}
2553
2554/** Process a STRUCT name attr value
2555 *
2556 * Define struct 'name' when key 'attr' has 'value'.
2557 *
2558 * Which MUST be a sub-structure of another struct
2559 */
2560static int dict_read_process_struct(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2561 UNUSED fr_dict_attr_flags_t *base_flags)
2562{
2564 int i;
2565 fr_dict_attr_t const *parent = NULL;
2566 fr_dict_attr_t const *key = NULL;
2567 unsigned int attr;
2568 char const *name = argv[0];
2569 char const *value;
2570 char *flags = NULL;
2571 fr_dict_attr_t *da;
2572
2573 fr_assert(dctx->stack_depth > 0);
2574
2575 /*
2576 * Old-stle: unwind the stack until we find a parent which has a child named for key_attr.
2577 */
2578 parent = CURRENT_FRAME(dctx)->da;
2579 if (parent->type != FR_TYPE_UNION) {
2580 char const *key_attr;
2581
2582 if ((argc < 3) || (argc > 4)) {
2583 fr_strerror_const("Invalid STRUCT syntax");
2584 return -1;
2585 }
2586
2587 key_attr = argv[1];
2588 value = argv[2];
2589 if (argc == 4) flags = argv[3];
2590
2591 parent = NULL;
2592 for (i = dctx->stack_depth; i > 0; i--) {
2593 key = dict_attr_by_name(NULL, dctx->stack[i].da, key_attr);
2594 if (key) {
2595 parent = key;
2596 dctx->stack_depth = i;
2597 break;
2598 }
2599 }
2600
2601 /*
2602 * No parent was found, maybe the reference is a fully qualified name from the root.
2603 */
2604 if (!parent) {
2605 parent = fr_dict_attr_by_oid(NULL, CURRENT_FRAME(dctx)->da->dict->root, key_attr);
2606
2607 if (!parent) {
2608 fr_strerror_printf("Invalid STRUCT definition, unknown key attribute %s",
2609 key_attr);
2610 return -1;
2611 }
2612
2613 /*
2614 * @todo - remove after migration_union_key is deleted
2615 */
2617 fr_strerror_printf("Attribute '%s' is not a 'key' attribute", key_attr);
2618 return -1;
2619 }
2620
2621 key = parent;
2622 }
2623
2624 } else {
2626
2627 /*
2628 * STRUCT inside of a UNION doesn't need to specify the name of the key.
2629 *
2630 * STRUCT name value [flags]
2631 */
2632 if ((argc < 2) || (argc > 3)) {
2633 fr_strerror_const("Invalid STRUCT syntax");
2634 return -1;
2635 }
2636
2637 value = argv[1];
2638 if (argc == 3) flags = argv[2];
2639
2640 /*
2641 * The parent is a union. Get and verify the key ref.
2642 */
2644 fr_assert(ext != NULL);
2645
2646 /*
2647 * Double-check names against the reference.
2648 */
2649 key = ext->ref;
2650 fr_assert(key);
2652 }
2653
2654 /*
2655 * Rely on dict_attr_flags_valid() to ensure that
2656 * da->type is an unsigned integer, AND that da->parent->type == struct
2657 */
2658 if (!fr_cond_assert(parent->parent->type == FR_TYPE_STRUCT)) return -1;
2659
2660 /*
2661 * Parse the value, which should be a small integer.
2662 */
2663 if (fr_value_box_from_str(NULL, &box, key->type, NULL, value, strlen(value), NULL) < 0) {
2664 fr_strerror_printf_push("Invalid value for STRUCT \"%s\"", value);
2665 return -1;
2666 }
2667
2668 /*
2669 * Allocate the attribute here, and then fill in the fields
2670 * as we start parsing the various elements of the definition.
2671 */
2672 da = dict_attr_alloc_null(dctx->dict->pool, dctx->dict->proto);
2673 if (unlikely(da == NULL)) return -1;
2674 dict_attr_location_set(dctx, da);
2675 da->dict = dctx->dict;
2676
2678 error:
2679 talloc_free(da);
2680 return -1;
2681 }
2682
2683 /*
2684 * Structs can be prefixed with 16-bit lengths, but not
2685 * with any other type of length.
2686 */
2687 if (flags) {
2688 if (dict_process_flag_field(dctx, flags, &da) < 0) goto error;
2689 }
2690
2691 /*
2692 * Create a unique number for the child attribute, based on the value of the key.
2693 */
2694 switch (key->type) {
2695 case FR_TYPE_UINT8:
2696 attr = box.vb_uint8;
2697 break;
2698
2699 case FR_TYPE_UINT16:
2700 attr = box.vb_uint16;
2701 break;
2702
2703 case FR_TYPE_UINT32:
2704 attr = box.vb_uint32;
2705 break;
2706
2707 default:
2708 fr_assert(0); /* should have been checked earlier when the key attribute was defined */
2709 return -1;
2710 }
2711
2712 if (unlikely(dict_attr_num_init(da, attr) < 0)) goto error;
2713 if (unlikely(dict_attr_parent_init(&da, parent) < 0)) goto error;
2714 if (unlikely(dict_attr_finalise(&da, name) < 0)) goto error;
2715
2716 /*
2717 * Check to see if this is a duplicate attribute
2718 * and whether we should ignore it or error out...
2719 */
2720 switch (dict_attr_allow_dup(da)) {
2721 case 1:
2722 break;
2723
2724 case 0:
2725 talloc_free(da);
2726 return 0;
2727
2728 default:
2729 goto error;
2730 }
2731
2732 /*
2733 * Add the STRUCT to the global namespace, and as a child of "parent".
2734 */
2735 switch (dict_attr_add_or_fixup(&dctx->fixup, &da)) {
2736 default:
2737 goto error;
2738
2739 /* FIXME: Should dict_attr_enum_add_name also be called in the fixup code? */
2740 case 0:
2741 da = dict_attr_by_name(NULL, parent, name);
2742 if (!da) return -1;
2743
2744 /*
2745 * A STRUCT definition is an implicit BEGIN-STRUCT.
2746 */
2747 dctx->relative_attr = NULL;
2748 if (dict_dctx_push(dctx, da, NEST_NONE) < 0) return -1;
2749
2750 /*
2751 * Add the VALUE to the key attribute, and ensure that
2752 * the VALUE also contains a pointer to the child struct.
2753 */
2754 if (dict_attr_enum_add_name(fr_dict_attr_unconst(key), name, &box, false, true, da) < 0) {
2755 fr_value_box_clear(&box);
2756 return -1;
2757 }
2758 fr_value_box_clear(&box);
2759 break;
2760
2761 case 1:
2762 break;
2763 }
2764
2765 return 0;
2766}
2767
2768/** Process a value alias
2769 *
2770 */
2771static int dict_read_process_value(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2772 UNUSED fr_dict_attr_flags_t *base_flags)
2773{
2774 fr_dict_attr_t *da;
2776 size_t enum_len;
2777 fr_dict_attr_t const *parent = CURRENT_FRAME(dctx)->da;
2778 fr_dict_attr_t const *enumv = NULL;
2779
2780 if (argc != 3) {
2781 fr_strerror_const("Invalid VALUE syntax");
2782 return -1;
2783 }
2784
2785 /*
2786 * Most VALUEs are bunched together by ATTRIBUTE. We can
2787 * save a lot of lookups on dictionary initialization by
2788 * caching the last attribute for a VALUE.
2789 *
2790 * If it's not the same, we look up the attribute in the
2791 * current context, which is generally:
2792 *
2793 * * the current attribute of type `struct`
2794 * * if no `struct`, then the VENDOR for VSAs
2795 * * if no VENDOR, then the dictionary root
2796 */
2797 if (!dctx->value_attr || (strcasecmp(argv[0], dctx->value_attr->name) != 0)) {
2798 fr_dict_attr_t const *tmp;
2799
2800 if (!(tmp = fr_dict_attr_by_oid(NULL, parent, argv[0]))) goto fixup;
2801 dctx->value_attr = fr_dict_attr_unconst(tmp);
2802 }
2803 da = dctx->value_attr;
2804
2805 /*
2806 * Verify the enum name matches the expected from.
2807 */
2808 enum_len = strlen(argv[1]);
2809 if (fr_dict_enum_name_from_substr(NULL, NULL, &FR_SBUFF_IN(argv[1], enum_len), NULL) != (fr_slen_t) enum_len) {
2810 fr_strerror_printf_push("Invalid VALUE name '%s' for attribute '%s'", argv[1], da->name);
2811 return -1;
2812 }
2813
2814 /*
2815 * enum names cannot be integers. People should just use the integer instead.
2816 *
2817 * But what about IPv6 addresses, which also use a "::" prefix?
2818 *
2819 * The ::FOO addresses were historically part of the "ipv4 compatible ipv6 address" range
2820 * "::0.0.0.0/96". That range has since been deprecated, and the "::FOO" range is tracked in the
2821 * IANA Special-Purpose Address Registry. That lists three things beginning with ::
2822 *
2823 * * ::/128 - unspecified address (i.e. ::0/128).
2824 * * ::1/128 - Loopback address
2825 * * ::ffff:0:0/96 - IPv4-mapped address.
2826 *
2827 * Since IPv6 addresses are 128 bits, the first two are just ::0 and ::1. No other possibilities
2828 * exist.
2829 *
2830 * For the range "::ffff:0:0/96", a value such as "::ffff:192.168.1.2 is not a valid enum name.
2831 * It contains an extra ':' (and MUST contain the extra ':'), and the ':' is not allowed in an
2832 * enum name.
2833 *
2834 * IANA could assign other values in the :: range, but this seems unlikely.
2835 *
2836 * As a result, the only overlap between enum ::FOO and IPv6 addresses is the single case of ::1.
2837 * This check disallows that.
2838 */
2839 if (fr_sbuff_adv_past_allowed( &FR_SBUFF_IN(argv[1], enum_len), SIZE_MAX, sbuff_char_class_int, NULL) == enum_len) {
2840 fr_strerror_printf("Invalid VALUE name '%s' for attribute '%s' - the name cannot be an integer", argv[1], da->name);
2841 return -1;
2842 }
2843
2844 /*
2845 * Remember which attribute is associated with this
2846 * value. This allows us to define enum
2847 * values before the attribute exists, and fix them
2848 * up later.
2849 */
2850 if (!da) {
2851 fixup:
2852 if (!fr_cond_assert_msg(dctx->fixup.pool, "fixup pool context invalid")) return -1;
2853
2855 CURRENT_FILENAME(dctx), CURRENT_LINE(dctx),
2856 argv[0], strlen(argv[0]),
2857 argv[1], strlen(argv[1]),
2858 argv[2], strlen(argv[2]), parent) < 0) {
2859 fr_strerror_const("Out of memory");
2860 return -1;
2861 }
2862 return 0;
2863 }
2864
2865 /*
2866 * Only a leaf types can have values defined.
2867 */
2868 if (!fr_type_is_leaf(da->type)) {
2869 fr_strerror_printf("Cannot define VALUE for attribute '%s' of data type '%s'", da->name,
2870 fr_type_to_str(da->type));
2871 return -1;
2872 }
2873
2874 /*
2875 * Pass in the root for type attr, so that we can find the reference.
2876 */
2877 if (da->type == FR_TYPE_ATTR) enumv = fr_dict_root(da->dict);
2878
2879 if (fr_value_box_from_str(NULL, &value, da->type, enumv,
2880 argv[2], strlen(argv[2]),
2881 NULL) < 0) {
2882 fr_strerror_printf_push("Invalid VALUE '%s' for attribute '%s' of data type '%s'",
2883 argv[2],
2884 da->name,
2885 fr_type_to_str(da->type));
2886 return -1;
2887 }
2888
2889 if (fr_dict_enum_add_name(da, argv[1], &value, false, true) < 0) {
2891 return -1;
2892 }
2894
2895 return 0;
2896}
2897
2898/*
2899 * Process the VENDOR command
2900 */
2901static int dict_read_process_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
2902{
2903 unsigned int value;
2904 int type, length;
2905 bool continuation = false;
2906 fr_dict_vendor_t const *dv;
2907 fr_dict_vendor_t *mutable;
2908 fr_dict_t *dict = dctx->dict;
2909
2910 dctx->value_attr = NULL;
2911 dctx->relative_attr = NULL;
2912
2913 if ((argc < 2) || (argc > 3)) {
2914 fr_strerror_const("Invalid VENDOR syntax");
2915 return -1;
2916 }
2917
2918 /*
2919 * Validate all entries
2920 */
2921 if (!dict_read_sscanf_i(&value, argv[1])) {
2922 fr_strerror_const("Invalid number in VENDOR");
2923 return -1;
2924 }
2925
2926 /*
2927 * Look for a format statement. Allow it to over-ride the hard-coded formats below.
2928 */
2929 if (argc == 3) {
2930 if (dict_read_parse_format(argv[2], &type, &length, &continuation) < 0) return -1;
2931
2932 } else {
2933 type = length = 1;
2934 }
2935
2936 /* Create a new VENDOR entry for the list */
2937 if (dict_vendor_add(dict, argv[0], value) < 0) return -1;
2938
2939 dv = fr_dict_vendor_by_num(dict, value);
2940 if (!dv) {
2941 fr_strerror_const("Failed adding format for VENDOR");
2942 return -1;
2943 }
2944
2945 mutable = UNCONST(fr_dict_vendor_t *, dv);
2946 mutable->type = type;
2947 mutable->length = length;
2948 mutable->continuation = continuation;
2949
2950 return 0;
2951}
2952
2953/** Register the specified dictionary as a protocol dictionary
2954 *
2955 * Allows vendor and TLV context to persist across $INCLUDEs
2956 */
2957static int dict_read_process_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flag)
2958{
2959 unsigned int value;
2960 unsigned int type_size = 0;
2961 fr_dict_t *dict;
2962 fr_dict_attr_t *mutable;
2963 bool require_dl = false;
2964 bool string_based = false;
2965
2966 /*
2967 * We cannot define a PROTOCOL inside of another protocol.
2968 */
2969 if (CURRENT_FRAME(dctx)->nest != NEST_TOP) {
2970 fr_strerror_const("PROTOCOL definitions cannot occur inside of any other BEGIN/END block");
2971 return -1;
2972 }
2973
2974 dctx->value_attr = NULL;
2975 dctx->relative_attr = NULL;
2976
2977 if ((argc < 2) || (argc > 3)) {
2978 fr_strerror_const("Missing arguments after PROTOCOL. Expected PROTOCOL <num> <name>");
2979 return -1;
2980 }
2981
2982 /*
2983 * Validate all entries
2984 */
2985 if (!dict_read_sscanf_i(&value, argv[1])) {
2986 fr_strerror_printf("Invalid number '%s' following PROTOCOL", argv[1]);
2987 return -1;
2988 }
2989
2990 /*
2991 * 255 protocols FR_TYPE_GROUP type_size hack
2992 */
2993 if (!value) {
2994 fr_strerror_printf("Invalid value '%u' following PROTOCOL", value);
2995 return -1;
2996 }
2997
2998 /*
2999 * Look for a format statement. This may specify the
3000 * type length of the protocol's types.
3001 */
3002 if (argc == 3) {
3003 char const *p;
3004 char *q;
3005
3006 /*
3007 * For now, we don't allow multiple options here.
3008 *
3009 * @todo - allow multiple options.
3010 */
3011 if (strcmp(argv[2], "verify=lib") == 0) {
3012 require_dl = true;
3013 goto post_option;
3014 }
3015
3016 if (strcmp(argv[2], "format=string") == 0) {
3017 type_size = 4;
3018 string_based = true;
3019 goto post_option;
3020 }
3021
3022 if (strncasecmp(argv[2], "format=", 7) != 0) {
3023 fr_strerror_printf("Invalid format for PROTOCOL. Expected 'format=', got '%s'", argv[2]);
3024 return -1;
3025 }
3026 p = argv[2] + 7;
3027
3028 type_size = strtoul(p, &q, 10);
3029 if (q != (p + strlen(p))) {
3030 fr_strerror_printf("Found trailing garbage '%s' after format specifier", p);
3031 return -1;
3032 }
3033 }
3034post_option:
3035
3036 /*
3037 * Cross check name / number.
3038 */
3039 dict = dict_by_protocol_name(argv[0]);
3040 if (dict) {
3041#ifdef STATIC_ANALYZER
3042 if (!dict->root) return -1;
3043#endif
3044
3045 if (dict->root->attr != value) {
3046 fr_strerror_printf("Conflicting numbers %u vs %u for PROTOCOL \"%s\"",
3047 dict->root->attr, value, dict->root->name);
3048 return -1;
3049 }
3050
3051 } else if ((dict = dict_by_protocol_num(value)) != NULL) {
3052#ifdef STATIC_ANALYZER
3053 if (!dict->root || !dict->root->name || !argv[0]) return -1;
3054#endif
3055
3056 if (strcasecmp(dict->root->name, argv[0]) != 0) {
3057 fr_strerror_printf("Conflicting names current \"%s\" vs new \"%s\" for PROTOCOL %u",
3058 dict->root->name, argv[0], dict->root->attr);
3059 return -1;
3060 }
3061 }
3062
3063 /*
3064 * And check types no matter what.
3065 */
3066 if (dict) {
3067 if (type_size && (dict->root->flags.type_size != type_size)) {
3068 fr_strerror_printf("Conflicting flags for PROTOCOL \"%s\" (current %d versus new %u)",
3069 dict->root->name, dict->root->flags.type_size, type_size);
3070 return -1;
3071 }
3072
3073 /*
3074 * Do NOT talloc_free() dict on error.
3075 */
3076 return dict_dctx_push(dctx, dict->root, NEST_NONE);
3077 }
3078
3079 dict = dict_alloc(dict_gctx);
3080
3081 /*
3082 * Try to load protocol-specific validation routines.
3083 * Some protocols don't need them, so it's OK if the
3084 * validation routines don't exist.
3085 */
3086 if ((dict_dlopen(dict, argv[0]) < 0) && require_dl) {
3087 error:
3088 talloc_free(dict);
3089 return -1;
3090 }
3091
3092 /*
3093 * Set the root attribute with the protocol name
3094 */
3095 if (dict_root_set(dict, argv[0], value) < 0) goto error;
3096
3097 if (dict_protocol_add(dict) < 0) goto error;
3098
3099 mutable = UNCONST(fr_dict_attr_t *, dict->root);
3100 dict->string_based = string_based;
3101 if (!type_size) {
3102 mutable->flags.type_size = dict->proto->default_type_size;
3103 mutable->flags.length = dict->proto->default_type_length;
3104 } else {
3105 mutable->flags.type_size = type_size;
3106 mutable->flags.length = 1; /* who knows... */
3107 }
3108
3109 /*
3110 * Make the root available on the stack, in case
3111 * something wants to begin it. Note that we mark it as
3112 * NONE, so that it can be cleaned up by anything.
3113 *
3114 * This stack entry is just a place-holder so that the
3115 * BEGIN statement can find the dictionary.
3116 */
3117 if (unlikely(dict_dctx_push(dctx, dict->root, NEST_NONE) < 0)) goto error;
3118
3119 return 0;
3120}
3121
3122/** Maintain a linked list of filenames which we've seen loading this dictionary
3123 *
3124 * This is used for debug messages, so we have a copy of the original file path
3125 * that we can reference from fr_dict_attr_t without having the memory bloat of
3126 * assigning a buffer to every attribute.
3127 */
3128static inline int dict_filename_add(char **filename_out, fr_dict_t *dict, char const *filename,
3129 char const *src_file, int src_line)
3130{
3132
3133 file = talloc_zero(dict, fr_dict_filename_t);
3134 if (unlikely(!file)) {
3135 oom:
3136 fr_strerror_const("Out of memory");
3137 return -1;
3138 }
3139 *filename_out = file->filename = talloc_typed_strdup(file, filename);
3140 if (unlikely(!*filename_out)) goto oom;
3141
3142 if (src_file) {
3143 file->src_line = src_line;
3144 file->src_file = talloc_typed_strdup(file, src_file);
3145 if (!file->src_file) goto oom;
3146 }
3147
3148 fr_dlist_insert_tail(&dict->filenames, file);
3149
3150 return 0;
3151}
3152
3153#ifndef NDEBUG
3154/** See if we have already loaded the file,
3155 *
3156 */
3157static inline bool dict_filename_loaded(fr_dict_t *dict, char const *filename,
3158 char const *src_file, int src_line)
3159{
3161
3162 for (file = (fr_dict_filename_t *) fr_dlist_head(&dict->filenames);
3163 file != NULL;
3164 file = (fr_dict_filename_t *) fr_dlist_next(&dict->filenames, &file->entry)) {
3165 if (file->src_file && src_file) {
3166 if (file->src_line != src_line) continue;
3167 if (strcmp(file->src_file, src_file) != 0) continue;
3168 }
3169
3170 if (strcmp(file->filename, filename) == 0) return true; /* this should always be true */
3171 }
3172
3173 return false;
3174}
3175#endif
3176
3177/** Process an inline BEGIN PROTOCOL block
3178 *
3179 * This function is called *after* the PROTOCOL handler.
3180 */
3182{
3184 fr_assert(CURRENT_DA(dctx)->flags.is_root);
3185
3186 /*
3187 * Rewrite it in place.
3188 */
3189 CURRENT_FRAME(dctx)->nest = NEST_PROTOCOL;
3190 dctx->dict = CURRENT_DA(dctx)->dict;
3191
3192 return 0;
3193}
3194
3195/** Keyword parser
3196 *
3197 * @param[in] dctx containing the dictionary we're currently parsing.
3198 * @param[in] argv arguments to the keyword.
3199 * @param[in] argc number of arguments.
3200 * @param[in] base_flags set in the context of the current file.
3201 * @return
3202 * - 0 on success.
3203 * - -1 on failure.
3204 */
3205typedef int (*fr_dict_keyword_parse_t)(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags);
3206
3207/** Pushes a new frame onto the top of the stack based on the current frame
3208 *
3209 * Whenever a protocol, vendor, or attribute is defined in the dictionary it either mutates or
3210 * pushes a new NONE frame onto the stack. This holds the last defined object at a given level
3211 * of nesting.
3212 *
3213 * This function is used to push an additional frame onto the stack, effectively entering the
3214 * context of the last defined object at a given level of nesting
3215 *
3216 * @param[in] dctx Contains the current state of the dictionary parser.
3217 * Used to track what PROTOCOL, VENDOR or TLV block
3218 * we're in.
3219 * @return
3220 * - 0 on success.
3221 * - -1 on failure.
3222 */
3224
3225typedef struct {
3226 fr_dict_keyword_parse_t parse; //!< Function to parse the keyword with.
3227 fr_dict_section_begin_t begin; //!< Can have a BEGIN prefix
3229
3230typedef struct {
3231 fr_table_elem_name_t name; //!< Name of the keyword, e.g. "ATTRIBUTE"
3232 fr_dict_keyword_parser_t value; //!< Value to return from lookup.
3234
3236 fr_dict_keyword, fr_dict_keyword_parser_t const *, fr_dict_keyword_parser_t const *)
3237
3238/** Parse a dictionary file
3239 *
3240 * @param[in] dctx Contains the current state of the dictionary parser.
3241 * Used to track what PROTOCOL, VENDOR or TLV block
3242 * we're in. Block context changes in $INCLUDEs should
3243 * not affect the context of the including file.
3244 * @param[in] dir Directory containing the dictionary we're loading.
3245 * @param[in] filename we're parsing.
3246 * @param[in] src_file The including file.
3247 * @param[in] src_line Line on which the $INCLUDE or $NCLUDE- statement was found.
3248 * @return
3249 * - 0 on success.
3250 * - -1 on failure.
3251 */
3252static int _dict_from_file(dict_tokenize_ctx_t *dctx,
3253 char const *dir, char const *filename,
3254 char const *src_file, int src_line)
3255{
3256 static fr_dict_keyword_t const keywords[] = {
3257 { L("ALIAS"), { .parse = dict_read_process_alias } },
3258 { L("ATTRIBUTE"), { .parse = dict_read_process_attribute } },
3259 { L("BEGIN-PROTOCOL"), { .parse = dict_read_process_begin_protocol } },
3260 { L("BEGIN-VENDOR"), { .parse = dict_read_process_begin_vendor } },
3261 { L("DEFINE"), { .parse = dict_read_process_define } },
3262 { L("END"), { .parse = dict_read_process_end } },
3263 { L("END-PROTOCOL"), { .parse = dict_read_process_end_protocol } },
3264 { L("END-VENDOR"), { .parse = dict_read_process_end_vendor } },
3265 { L("ENUM"), { .parse = dict_read_process_enum } },
3266 { L("FLAGS"), { .parse = dict_read_process_flags } },
3267 { L("MEMBER"), { .parse = dict_read_process_member } },
3268 { L("PROTOCOL"), { .parse = dict_read_process_protocol, .begin = dict_begin_protocol }},
3269 { L("STRUCT"), { .parse = dict_read_process_struct } },
3270 { L("VALUE"), { .parse = dict_read_process_value } },
3271 { L("VENDOR"), { .parse = dict_read_process_vendor } },
3272 };
3273
3274 FILE *fp;
3275 char filename_buf[256];
3276 char buf[256];
3277 char *p;
3278 int line = 0;
3279
3280 struct stat statbuf;
3281 char *argv[DICT_MAX_ARGV];
3282 int argc;
3283
3284 int stack_depth = dctx->stack_depth;
3285
3286 /*
3287 * Base flags are only set for the current file
3288 */
3289 fr_dict_attr_flags_t base_flags = {};
3290
3291 if (!fr_cond_assert(!dctx->dict->root || CURRENT_FRAME(dctx)->da)) return -1;
3292
3293 if ((strlen(dir) + 2 + strlen(filename)) > sizeof(filename_buf)) {
3294 fr_strerror_printf("%s: Filename name too long", "Error reading dictionary");
3295 return -1;
3296 }
3297
3298 /*
3299 * The filename is relative to the current directory.
3300 *
3301 * Ensure that the directory name doesn't end with 2 '/',
3302 * and then create the full path from dir + filename.
3303 */
3304 if (FR_DIR_IS_RELATIVE(filename)) {
3305 /*
3306 * The filename is relative to the input
3307 * directory.
3308 */
3309 strlcpy(filename_buf, dir, sizeof(filename_buf));
3310 p = strrchr(filename_buf, FR_DIR_SEP);
3311 if (p && !p[1]) *p = '\0';
3312
3313 snprintf(filename_buf, sizeof(filename_buf), "%s/%s", dir, filename);
3314 filename = filename_buf;
3315 }
3316 /*
3317 * Else we ignore the input directory. We also assume
3318 * that the filename is normalized, and therefore don't
3319 * change it.
3320 */
3321
3322 /*
3323 * See if we have already loaded this filename. If so, suppress it.
3324 */
3325#ifndef NDEBUG
3326 if (unlikely(dict_filename_loaded(dctx->dict, filename, src_file, src_line))) {
3327 fr_strerror_printf("ERROR - we have a recursive $INCLUDE or load of dictionary %s", filename);
3328 return -1;
3329 }
3330#endif
3331
3332 if ((fp = fopen(filename, "r")) == NULL) {
3333 if (!src_file) {
3334 fr_strerror_printf("Couldn't open dictionary %s: %s", fr_syserror(errno), filename);
3335 } else {
3336 fr_strerror_printf("Error reading dictionary: %s[%d]: Couldn't open dictionary '%s': %s",
3337 fr_cwd_strip(src_file), src_line, filename,
3338 fr_syserror(errno));
3339 }
3340 return -2;
3341 }
3342
3343 /*
3344 * If fopen works, this works.
3345 */
3346 if (fstat(fileno(fp), &statbuf) < 0) {
3347 fr_strerror_printf("Failed stating dictionary \"%s\" - %s", filename, fr_syserror(errno));
3348
3349 perm_error:
3350 fclose(fp);
3351 return -1;
3352 }
3353
3354 if (!S_ISREG(statbuf.st_mode)) {
3355 fr_strerror_printf("Dictionary is not a regular file: %s", filename);
3356 goto perm_error;
3357 }
3358
3359 /*
3360 * Globally writable dictionaries means that users can control
3361 * the server configuration with little difficulty.
3362 */
3363#ifdef S_IWOTH
3364 if (dict_gctx->perm_check && ((statbuf.st_mode & S_IWOTH) != 0)) {
3365 fr_strerror_printf("Dictionary is globally writable: %s. "
3366 "Refusing to start due to insecure configuration", filename);
3367 goto perm_error;
3368 }
3369#endif
3370
3371 /*
3372 * Now that we've opened the file, copy the filename into the dictionary and add it to the ctx
3373 * This string is safe to assign to the filename pointer in any attributes added beneath the
3374 * dictionary.
3375 */
3376 if (unlikely(dict_filename_add(&dctx->filename, dctx->dict, filename, src_file, src_line) < 0)) {
3377 goto perm_error;
3378 }
3379
3380 while (fgets(buf, sizeof(buf), fp) != NULL) {
3381 bool do_begin = false;
3382 fr_dict_keyword_parser_t const *parser;
3383 char **argv_p = argv;
3384
3385 dctx->line = ++line;
3386
3387 switch (buf[0]) {
3388 case '#':
3389 case '\0':
3390 case '\n':
3391 case '\r':
3392 continue;
3393 }
3394
3395 /*
3396 * Comment characters should NOT be appearing anywhere but
3397 * as start of a comment;
3398 */
3399 p = strchr(buf, '#');
3400 if (p) *p = '\0';
3401
3402 argc = fr_dict_str_to_argv(buf, argv, DICT_MAX_ARGV);
3403 if (argc == 0) continue;
3404
3405 if (argc == 1) {
3406 /*
3407 * Be nice.
3408 */
3409 if ((strcmp(argv[0], "BEGIN") == 0) ||
3410 (fr_dict_keyword(&parser, keywords, NUM_ELEMENTS(keywords), argv_p[0], NULL))) {
3411 fr_strerror_printf("Keyword %s is missing all of its arguments", argv[0]);
3412 } else {
3413 fr_strerror_printf("Invalid syntax - unknown keyword %s", argv[0]);
3414 }
3415
3416 error:
3417 fr_strerror_printf_push("Failed parsing dictionary at %s[%d]", fr_cwd_strip(filename), line);
3418 fclose(fp);
3419 return -1;
3420 }
3421
3422 /*
3423 * Special prefix for "beginnable" keywords.
3424 * These are keywords that can automatically change
3425 * the context of subsequent definitions if they're
3426 * prefixed with a BEGIN keyword.
3427 */
3428 if (strcasecmp(argv_p[0], "BEGIN") == 0) {
3429 do_begin = true;
3430 argv_p++;
3431 argc--;
3432 }
3433
3434 if (fr_dict_keyword(&parser, keywords, NUM_ELEMENTS(keywords), argv_p[0], NULL)) {
3435 /*
3436 * We are allowed to have attributes
3437 * named for keywords. Most notably
3438 * "value". If there's no such attribute
3439 * 'value', then the user will get a
3440 * descriptive error.
3441 */
3442 if (do_begin && !parser->begin) {
3443 goto process_begin;
3444 }
3445
3446 if (unlikely(parser->parse(dctx, argv_p + 1 , argc - 1, &base_flags) < 0)) goto error;
3447
3448 /*
3449 * We've processed the definition, now enter the section
3450 */
3451 if (do_begin && unlikely(parser->begin(dctx) < 0)) goto error;
3452 continue;
3453 }
3454
3455 /*
3456 * It's a naked BEGIN keyword
3457 */
3458 if (do_begin) {
3459 process_begin:
3460 if (unlikely(dict_read_process_begin(dctx, argv_p, argc, &base_flags) < 0)) goto error;
3461 continue;
3462 }
3463
3464 /*
3465 * See if we need to import another dictionary.
3466 */
3467 if (strncasecmp(argv_p[0], "$INCLUDE", 8) == 0) {
3468 /*
3469 * Included files operate on a copy of the context.
3470 *
3471 * This copy means that they inherit the
3472 * current context, including parents,
3473 * TLVs, etc. But if the included file
3474 * leaves a "dangling" TLV or "last
3475 * attribute", then it won't affect the
3476 * parent.
3477 */
3478 if (dict_read_process_include(dctx, argv_p, argc, dir) < 0) goto error;
3479 continue;
3480 } /* $INCLUDE */
3481
3482 /*
3483 * Any other string: We don't recognize it.
3484 */
3485 fr_strerror_printf("Invalid keyword '%s'", argv_p[0]);
3486 goto error;
3487 }
3488
3489 /*
3490 * Unwind until the stack depth matches what we had on input.
3491 */
3492 while (dctx->stack_depth > stack_depth) {
3493 dict_tokenize_frame_t *frame = CURRENT_FRAME(dctx);
3494
3495 if (frame->nest == NEST_PROTOCOL) {
3496 fr_strerror_printf("BEGIN-PROTOCOL at %s[%d] is missing END-PROTOCOL",
3497 fr_cwd_strip(frame->filename), line);
3498 goto error;
3499 }
3500
3501 if (frame->nest == NEST_ATTRIBUTE) {
3502 fr_strerror_printf("BEGIN %s at %s[%d] is missing END %s",
3503 frame->da->name, fr_cwd_strip(frame->filename), line,
3504 frame->da->name);
3505 goto error;
3506 }
3507
3508 if (frame->nest == NEST_VENDOR) {
3509 fr_strerror_printf("BEGIN-VENDOR at %s[%d] is missing END-VENDOR",
3510 fr_cwd_strip(frame->filename), line);
3511 goto error;
3512 }
3513
3514 /*
3515 * Run any necessary finalise callback, and then pop the frame.
3516 */
3517 if (frame->finalise) {
3518 if (frame->finalise(dctx) < 0) goto error;
3519 frame->finalise = NULL;
3520 }
3521
3522 fr_assert(!dctx->stack[dctx->stack_depth].finalise);
3523 dctx->stack_depth--;
3524 }
3525
3526 fclose(fp);
3527
3528 return 0;
3529}
3530
3531static int dict_from_file(fr_dict_t *dict,
3532 char const *dir_name, char const *filename,
3533 char const *src_file, int src_line)
3534{
3535 int ret;
3537
3538 memset(&dctx, 0, sizeof(dctx));
3539 dctx.dict = dict;
3540 dict_fixup_init(NULL, &dctx.fixup);
3541 dctx.stack[0].da = dict->root;
3542 dctx.stack[0].nest = NEST_TOP;
3543
3544 ret = _dict_from_file(&dctx, dir_name, filename, src_file, src_line);
3545 if (ret < 0) {
3546 talloc_free(dctx.fixup.pool);
3547 return ret;
3548 }
3549
3550 /*
3551 * Applies to any attributes added to the *internal*
3552 * dictionary.
3553 *
3554 * Fixups should have been applied already to any protocol
3555 * dictionaries.
3556 */
3557 return dict_finalise(&dctx);
3558}
3559
3560/** (Re-)Initialize the special internal dictionary
3561 *
3562 * This dictionary has additional programmatically generated attributes added to it,
3563 * and is checked in addition to the protocol specific dictionaries.
3564 *
3565 * @note The dictionary pointer returned in out must have its reference counter
3566 * decremented with #fr_dict_free when no longer used.
3567 *
3568 * @param[out] out Where to write pointer to the internal dictionary.
3569 * @param[in] dict_subdir name of the internal dictionary dir (may be NULL).
3570 * @param[in] dependent Either C src file, or another dictionary.
3571 * @return
3572 * - 0 on success.
3573 * - -1 on failure.
3574 */
3575int fr_dict_internal_afrom_file(fr_dict_t **out, char const *dict_subdir, char const *dependent)
3576{
3577 fr_dict_t *dict;
3578 char *dict_path = NULL;
3579 size_t i;
3580 fr_dict_attr_flags_t flags = { .internal = true };
3581 char *type_name;
3582 fr_dict_attr_t *cast_base;
3584
3585 if (unlikely(!dict_gctx)) {
3586 fr_strerror_const("fr_dict_global_ctx_init() must be called before loading dictionary files");
3587 return -1;
3588 }
3589
3590 /*
3591 * Increase the reference count of the internal dictionary.
3592 */
3593 if (dict_gctx->internal) {
3596 return 0;
3597 }
3598
3599 dict_path = dict_subdir ?
3600 talloc_asprintf(NULL, "%s%c%s", fr_dict_global_ctx_dir(), FR_DIR_SEP, dict_subdir) :
3601 talloc_strdup(NULL, fr_dict_global_ctx_dir());
3602
3603 fr_strerror_clear(); /* Ensure we don't report spurious errors */
3604
3605 dict = dict_alloc(dict_gctx);
3606 if (!dict) {
3607 error:
3608 if (!dict_gctx->internal) talloc_free(dict);
3609 talloc_free(dict_path);
3610 return -1;
3611 }
3612
3613 /*
3614 * Set the root name of the dictionary
3615 */
3616 if (dict_root_set(dict, "internal", 0) < 0) goto error;
3617
3618 if (dict_path && dict_from_file(dict, dict_path, FR_DICTIONARY_FILE, NULL, 0) < 0) goto error;
3619
3620 TALLOC_FREE(dict_path);
3621
3622 dict_dependent_add(dict, dependent);
3623
3624 if (!dict_gctx->internal) {
3625 dict_gctx->internal = dict;
3626 dict_dependent_add(dict, "global");
3627 }
3628
3629 /*
3630 * Try to load libfreeradius-internal, too. If that
3631 * fails (i.e. fuzzers???), ignore it.
3632 */
3633 (void) dict_dlopen(dict, "internal");
3634
3635 cast_base = dict_attr_child_by_num(dict->root, FR_CAST_BASE);
3636 if (!cast_base) {
3637 fr_strerror_printf("Failed to find 'Cast-Base' in internal dictionary");
3638 goto error;
3639 }
3640
3641 fr_assert(cast_base->type == FR_TYPE_UINT8);
3642 fr_value_box_init(&box, FR_TYPE_UINT8, NULL, false);
3643
3644 /*
3645 * Add cast attributes. We do it this way,
3646 * so cast attributes get added automatically for new types.
3647 *
3648 * We manually add the attributes to the dictionary, and bypass
3649 * fr_dict_attr_add(), because we know what we're doing, and
3650 * that function does too many checks.
3651 */
3652 for (i = 0; i < fr_type_table_len; i++) {
3655
3656 switch (p->value) {
3657 case FR_TYPE_NULL: /* Can't cast to NULL */
3658 case FR_TYPE_VENDOR: /* Vendors can't exist in dictionaries as attributes */
3659 continue;
3660 }
3661
3662 type_name = talloc_typed_asprintf(NULL, "Tmp-Cast-%s", p->name.str);
3663
3664 n = dict_attr_alloc(dict->pool, dict->root, type_name,
3665 FR_CAST_BASE + p->value, p->value, &(dict_attr_args_t){ .flags = &flags});
3666 if (!n) {
3667 talloc_free(type_name);
3668 goto error;
3669 }
3670
3671 if (dict_attr_add_to_namespace(dict->root, n) < 0) {
3672 fr_strerror_printf_push("Failed inserting '%s' into internal dictionary", type_name);
3673 talloc_free(type_name);
3674 goto error;
3675 }
3676
3677 talloc_free(type_name);
3678
3679 /*
3680 * Set up parenting for the attribute.
3681 */
3682 if (dict_attr_child_add(dict->root, n) < 0) goto error;
3683
3684 /*
3685 * Add the enum, too.
3686 */
3687 box.vb_uint8 = p->value;
3688 if (dict_attr_enum_add_name(cast_base, p->name.str, &box, false, false, NULL) < 0) {
3689 fr_strerror_printf_push("Failed adding '%s' as a VALUE into internal dictionary", p->name.str);
3690 goto error;
3691 }
3692 }
3693
3694 *out = dict;
3695
3696 return 0;
3697}
3698
3699/** (Re)-initialize a protocol dictionary
3700 *
3701 * Initialize the directory, then fix the attr number of all attributes.
3702 *
3703 * @param[out] out Where to write a pointer to the new dictionary. Will free existing
3704 * dictionary if files have changed and *out is not NULL.
3705 * @param[in] proto_name that we're loading the dictionary for.
3706 * @param[in] proto_dir Explicitly set where to hunt for the dictionary files. May be NULL.
3707 * @param[in] dependent Either C src file, or another dictionary.
3708 * @return
3709 * - 0 on success.
3710 * - -1 on failure.
3711 */
3712int fr_dict_protocol_afrom_file(fr_dict_t **out, char const *proto_name, char const *proto_dir, char const *dependent)
3713{
3714 char *dict_dir = NULL;
3715 fr_dict_t *dict;
3716 bool added = false;
3717
3718 *out = NULL;
3719
3720 if (unlikely(!dict_gctx)) {
3721 fr_strerror_const("fr_dict_global_ctx_init() must be called before loading dictionary files");
3722 return -1;
3723 }
3724
3725 if (unlikely(!dict_gctx->internal)) {
3726 fr_strerror_const("Internal dictionary must be initialised before loading protocol dictionaries");
3727 return -1;
3728 }
3729
3730 /*
3731 * Increment the reference count if the dictionary
3732 * has already been loaded and return that.
3733 */
3734 dict = dict_by_protocol_name(proto_name);
3735 if (dict) {
3736 /*
3737 * If we're in the middle of loading this dictionary, then the only way we get back here
3738 * is via a circular reference. So we catch that, and drop the circular dependency.
3739 *
3740 * When we have A->B->A, it means that we don't need to track B->A, because we track
3741 * A->B. And if A is freed, then B is freed.
3742 */
3743 added = true;
3744 dict_dependent_add(dict, dependent);
3745
3746 /*
3747 * But we only return a pre-existing dict if _this function_ has loaded it.
3748 */
3749 if (dict->loaded) {
3750 *out = dict;
3751 return 0;
3752 }
3753
3754 /*
3755 * Set the flag to true _before_ loading the file. That prevents recursion.
3756 */
3757 dict->loaded = true;
3758 }
3759
3760 if (!proto_dir) {
3761 dict_dir = talloc_asprintf(NULL, "%s%c%s", fr_dict_global_ctx_dir(), FR_DIR_SEP, proto_name);
3762 } else {
3763 dict_dir = talloc_asprintf(NULL, "%s%c%s", fr_dict_global_ctx_dir(), FR_DIR_SEP, proto_dir);
3764 }
3765
3766 fr_strerror_clear(); /* Ensure we don't report spurious errors */
3767
3768 /*
3769 * Start in the context of the internal dictionary,
3770 * and switch to the context of a protocol dictionary
3771 * when we hit a BEGIN-PROTOCOL line.
3772 *
3773 * This allows a single file to provide definitions
3774 * for multiple protocols, which'll probably be useful
3775 * at some point.
3776 */
3777 if (dict_from_file(dict_gctx->internal, dict_dir, FR_DICTIONARY_FILE, NULL, 0) < 0) {
3778 error:
3779 if (dict) dict->loading = false;
3780 talloc_free(dict_dir);
3781 return -1;
3782 }
3783
3784 /*
3785 * Check the dictionary actually defined the protocol
3786 */
3787 dict = dict_by_protocol_name(proto_name);
3788 if (!dict) {
3789 fr_strerror_printf("Dictionary \"%s\" missing \"BEGIN-PROTOCOL %s\" declaration", dict_dir, proto_name);
3790 goto error;
3791 }
3792
3793 /*
3794 * Initialize the library.
3795 */
3796 dict->loaded = true;
3797 if (dict->proto && dict->proto->init) {
3798 if (dict->proto->init() < 0) goto error;
3799 }
3800 dict->loading = false;
3801
3802 dict->dir = talloc_steal(dict, dict_dir);
3803
3804 if (!added) dict_dependent_add(dict, dependent);
3805
3806 *out = dict;
3807
3808 return 0;
3809}
3810
3811/* Alloc a new root dictionary attribute
3812 *
3813 * @note Must only be called once per dictionary.
3814 *
3815 * @param[in] proto_name that we're loading the dictionary for.
3816 * @param[in] proto_number The artificial (or IANA allocated) number for the protocol.
3817 * @return
3818 * - A pointer to the new dict context on success.
3819 * - NULL on failure.
3820 */
3821fr_dict_t *fr_dict_alloc(char const *proto_name, unsigned int proto_number)
3822{
3823 fr_dict_t *dict;
3824
3825 if (unlikely(!dict_gctx)) {
3826 fr_strerror_printf("fr_dict_global_ctx_init() must be called before loading dictionary files");
3827 return NULL;
3828 }
3829
3830 /*
3831 * Alloc dict instance.
3832 */
3833 dict = dict_alloc(dict_gctx);
3834 if (!dict) return NULL;
3835
3836 /*
3837 * Set the root name of the dictionary
3838 */
3839 if (dict_root_set(dict, proto_name, proto_number) < 0) {
3840 talloc_free(dict);
3841 return NULL;
3842 }
3843
3844 return dict;
3845}
3846
3847/** Read supplementary attribute definitions into an existing dictionary
3848 *
3849 * @param[in] dict Existing dictionary.
3850 * @param[in] dir dictionary is located in.
3851 * @param[in] filename of the dictionary.
3852 * @return
3853 * - 0 on success.
3854 * - -1 on failure.
3855 */
3856int fr_dict_read(fr_dict_t *dict, char const *dir, char const *filename)
3857{
3858 INTERNAL_IF_NULL(dict, -1);
3859
3860 if (!dir) dir = dict->dir;
3861
3862 if (unlikely(dict->read_only)) {
3863 fr_strerror_printf("%s dictionary has been marked as read only", fr_dict_root(dict)->name);
3864 return -1;
3865 }
3866
3867 if (!dict->vendors_by_name) {
3868 fr_strerror_printf("%s: Must initialise dictionary before calling fr_dict_read()", __FUNCTION__);
3869 return -1;
3870 }
3871
3872 return dict_from_file(dict, dir, filename, NULL, 0);
3873}
3874
3875/*
3876 * External API for testing
3877 */
3879{
3880 int argc;
3881 char *argv[DICT_MAX_ARGV];
3882 int ret;
3883 fr_dict_attr_flags_t base_flags;
3885
3886 INTERNAL_IF_NULL(dict, -1);
3887
3888 argc = fr_dict_str_to_argv(buf, argv, DICT_MAX_ARGV);
3889 if (argc == 0) return 0;
3890
3891
3892 memset(&dctx, 0, sizeof(dctx));
3893 dctx.dict = dict;
3894 dctx.stack[0].nest = NEST_TOP;
3895
3896 if (dict_fixup_init(NULL, &dctx.fixup) < 0) return -1;
3897
3898 if (strcasecmp(argv[0], "VALUE") == 0) {
3899 if (argc < 4) {
3900 fr_strerror_printf("VALUE needs at least 4 arguments, got %i", argc);
3901 error:
3902 TALLOC_FREE(dctx.fixup.pool);
3903 return -1;
3904 }
3905
3906 if (!fr_dict_attr_by_oid(NULL, fr_dict_root(dict), argv[1])) {
3907 fr_strerror_printf("Attribute '%s' does not exist in dictionary \"%s\"",
3908 argv[1], dict->root->name);
3909 goto error;
3910 }
3911 ret = dict_read_process_value(&dctx, argv + 1, argc - 1, &base_flags);
3912 if (ret < 0) goto error;
3913
3914 } else if (strcasecmp(argv[0], "ATTRIBUTE") == 0) {
3915 if (parent && (parent != dict->root)) {
3916 (void) dict_dctx_push(&dctx, parent, NEST_NONE);
3917 }
3918
3919 memset(&base_flags, 0, sizeof(base_flags));
3920
3921 ret = dict_read_process_attribute(&dctx,
3922 argv + 1, argc - 1, &base_flags);
3923 if (ret < 0) goto error;
3924 } else if (strcasecmp(argv[0], "VENDOR") == 0) {
3925 ret = dict_read_process_vendor(&dctx, argv + 1, argc - 1, &base_flags);
3926 if (ret < 0) goto error;
3927 } else {
3928 fr_strerror_printf("Invalid input '%s'", argv[0]);
3929 goto error;
3930 }
3931
3932 return dict_finalise(&dctx);
3933}
int const char * file
Definition acutest.h:704
int n
Definition acutest.h:579
int const char int line
Definition acutest.h:704
#define UNCONST(_type, _ptr)
Remove const qualification from a pointer.
Definition build.h:167
#define RCSID(id)
Definition build.h:485
#define L(_str)
Helper for initialising arrays of string literals.
Definition build.h:209
#define NDEBUG_UNUSED
Definition build.h:328
#define DIAG_ON(_x)
Definition build.h:460
#define unlikely(_x)
Definition build.h:383
#define UNUSED
Definition build.h:317
#define NUM_ELEMENTS(_t)
Definition build.h:339
#define DIAG_OFF(_x)
Definition build.h:459
#define fr_cond_assert(_x)
Calls panic_action ifndef NDEBUG, else logs error and evaluates to value of _x.
Definition debug.h:131
#define FR_FAULT_LOG(_fmt,...)
Definition debug.h:50
#define fr_cond_assert_msg(_x, _fmt,...)
Calls panic_action ifndef NDEBUG, else logs error and evaluates to value of _x.
Definition debug.h:148
size_t type
Length of type data.
Definition dict.h:267
int fr_dict_attr_add_initialised(fr_dict_attr_t *da)
A variant of fr_dict_attr_t that allows a pre-allocated, populated fr_dict_attr_t to be added.
Definition dict_util.c:1668
fr_slen_t fr_dict_enum_name_from_substr(fr_sbuff_t *out, fr_sbuff_parse_error_t *err, fr_sbuff_t *in, fr_sbuff_term_t const *tt)
Extract an enumeration name from a string.
Definition dict_util.c:3652
int fr_dict_enum_add_name(fr_dict_attr_t *da, char const *name, fr_value_box_t const *value, bool coerce, bool replace)
Add a value name.
Definition dict_util.c:2037
char const * name
Vendor name.
Definition dict.h:269
unsigned int is_root
Is root of a dictionary.
Definition dict.h:77
fr_dict_attr_t const * fr_dict_attr_common_parent(fr_dict_attr_t const *a, fr_dict_attr_t const *b, bool is_ancestor)
Find a common ancestor that two TLV type attributes share.
Definition dict_util.c:2133
int fr_dict_protocol_reference(fr_dict_attr_t const **da_p, fr_dict_attr_t const *root, fr_sbuff_t *in)
Resolve a reference string to a dictionary attribute.
Definition dict_fixup.c:135
fr_dict_attr_t const * fr_dict_attr_by_name(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *attr))
Locate a fr_dict_attr_t by its name.
Definition dict_util.c:3359
fr_dict_attr_t * fr_dict_attr_unconst(fr_dict_attr_t const *da)
Coerce to non-const.
Definition dict_util.c:4736
fr_dict_attr_t const * fr_dict_root(fr_dict_t const *dict)
Return the root attribute of a dictionary.
Definition dict_util.c:2496
fr_dict_flag_parse_func_t func
Custom parsing function to convert a flag value string to a C type value.
Definition dict.h:390
unsigned int internal
Internal attribute, should not be received in protocol packets, should not be encoded.
Definition dict.h:89
#define DA_VERIFY(_x)
Definition dict.h:68
fr_slen_t fr_dict_attr_by_oid_legacy(fr_dict_t const *dict, fr_dict_attr_t const **parent, unsigned int *attr, char const *oid)
Get the leaf attribute of an OID string.
Definition dict_util.c:2221
#define da_is_bit_field(_da)
Definition dict.h:170
@ FLAG_LENGTH_UINT8
string / octets type is prefixed by uint8 of length
Definition dict.h:165
@ FLAG_LENGTH_UINT16
string / octets type is prefixed by uint16 of length
Definition dict.h:166
@ FLAG_KEY_FIELD
this is a key field for a subsequent struct
Definition dict.h:163
@ FLAG_BIT_FIELD
bit field inside of a struct
Definition dict.h:164
uint32_t pen
Private enterprise number.
Definition dict.h:265
#define da_is_length_field(_da)
Definition dict.h:171
uint8_t type_size
Type size for TLVs.
Definition dict.h:143
size_t length
Length of length data.
Definition dict.h:268
uint16_t length
length of the attribute
Definition dict.h:152
char const * fr_dict_global_ctx_dir(void)
Definition dict_util.c:4631
@ FR_DICT_ATTR_EXT_REF
Attribute references another attribute and/or dictionary.
Definition dict.h:183
@ FR_DICT_ATTR_EXT_KEY
UNION attribute references a key.
Definition dict.h:185
fr_dict_vendor_t const * fr_dict_vendor_by_name(fr_dict_t const *dict, char const *name)
Look up a vendor by its name.
Definition dict_util.c:2753
bool needs_value
This parsing flag must have a value. Else we error.
Definition dict.h:392
fr_dict_attr_t const * fr_dict_attr_by_oid(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *oid))
Resolve an attribute using an OID string.
Definition dict_util.c:2469
fr_dict_vendor_t const * fr_dict_vendor_by_num(fr_dict_t const *dict, uint32_t vendor_pen)
Look up a vendor by its PEN.
Definition dict_util.c:2776
fr_dict_attr_t const * fr_dict_attr_child_by_num(fr_dict_attr_t const *parent, unsigned int attr)
Check if a child attribute exists in a parent using an attribute number.
Definition dict_util.c:3424
#define fr_dict_attr_is_key_field(_da)
Definition dict.h:169
static int8_t fr_dict_attr_cmp_fields(const fr_dict_attr_t *a, const fr_dict_attr_t *b)
Compare two dictionary attributes by their contents.
Definition dict.h:673
Values of the encryption flags.
Protocol specific custom flag definitnion.
Definition dict.h:420
Private enterprise.
Definition dict.h:264
#define fr_dict_attr_ref_type(_type)
Definition dict_ext.h:72
fr_dict_attr_ref_type_t type
The state of the reference.
Definition dict_ext.h:78
static void * fr_dict_attr_ext(fr_dict_attr_t const *da, fr_dict_attr_ext_t ext)
Definition dict_ext.h:141
#define fr_dict_attr_ref_is_unresolved(_type)
Definition dict_ext.h:71
@ FR_DICT_ATTR_REF_ENUM
The attribute is an enumeration value.
Definition dict_ext.h:64
@ FR_DICT_ATTR_REF_KEY
it is a UNION which has a ref to a key, and children.
Definition dict_ext.h:65
@ FR_DICT_ATTR_REF_ALIAS
The attribute is an alias for another attribute.
Definition dict_ext.h:60
@ FR_DICT_ATTR_REF_CLONE
The attribute is a "copy" of another attribute.
Definition dict_ext.h:63
Attribute extension - Holds a reference to an attribute in another dictionary.
Definition dict_ext.h:77
static int dict_attr_ref_set(fr_dict_attr_t const *da, fr_dict_attr_t const *ref, fr_dict_attr_ref_type_t type)
static int dict_attr_ref_aunresolved(fr_dict_attr_t **da_p, char const *ref, fr_dict_attr_ref_type_t type)
static void * dict_attr_ext_alloc(fr_dict_attr_t **da_p, fr_dict_attr_ext_t ext)
Allocate an attribute extension.
int dict_fixup_apply(dict_fixup_ctx_t *fctx)
Apply all outstanding fixes to a set of dictionaries.
Definition dict_fixup.c:872
int dict_fixup_enumv_enqueue(dict_fixup_ctx_t *fctx, char const *filename, int line, char const *attr, size_t attr_len, char const *name, size_t name_len, char const *value, size_t value_len, fr_dict_attr_t const *parent)
Add an enumeration value to an attribute which has not yet been defined.
Definition dict_fixup.c:275
int dict_fixup_alias_enqueue(dict_fixup_ctx_t *fctx, char const *filename, int line, fr_dict_attr_t *alias_parent, char const *alias, fr_dict_attr_t *ref_parent, char const *ref)
Resolve a group reference.
Definition dict_fixup.c:801
int dict_fixup_clone_enqueue(dict_fixup_ctx_t *fctx, fr_dict_attr_t *da, char const *ref)
Clone one area of a tree into another.
Definition dict_fixup.c:425
int dict_fixup_init(TALLOC_CTX *ctx, dict_fixup_ctx_t *fctx)
Initialise a fixup ctx.
Definition dict_fixup.c:853
int dict_fixup_clone_enum_enqueue(dict_fixup_ctx_t *fctx, fr_dict_attr_t *da, char const *ref)
Clone enumeration values from one attribute to another.
Definition dict_fixup.c:637
int dict_fixup_vsa_enqueue(dict_fixup_ctx_t *fctx, fr_dict_attr_t *da)
Push a fixup for a VSA.
Definition dict_fixup.c:740
int dict_fixup_clone(fr_dict_attr_t **dst_p, fr_dict_attr_t const *src)
Clone a dictionary attribute from a ref.
Definition dict_fixup.c:458
int dict_fixup_group_enqueue(dict_fixup_ctx_t *fctx, fr_dict_attr_t *da, char const *ref)
Resolve a group reference.
Definition dict_fixup.c:358
TALLOC_CTX * pool
Temporary pool for fixups, reduces holes.
int dict_attr_enum_add_name(fr_dict_attr_t *da, char const *name, fr_value_box_t const *value, bool coerce, bool replace, fr_dict_attr_t const *child_struct)
Definition dict_util.c:1830
int dict_attr_type_init(fr_dict_attr_t **da_p, fr_type_t type)
Initialise type specific fields within the dictionary attribute.
Definition dict_util.c:588
int dict_attr_parent_init(fr_dict_attr_t **da_p, fr_dict_attr_t const *parent)
Initialise fields which depend on a parent attribute.
Definition dict_util.c:682
#define dict_attr_alloc(_ctx, _parent, _name, _attr, _type, _args)
Definition dict_priv.h:239
fr_dict_t * dict_alloc(TALLOC_CTX *ctx)
Allocate a new dictionary.
Definition dict_util.c:4009
#define INTERNAL_IF_NULL(_dict, _ret)
Set the internal dictionary if none was provided.
Definition dict_priv.h:45
int dict_attr_add_to_namespace(fr_dict_attr_t const *parent, fr_dict_attr_t *da)
Add an attribute to the name table for an attribute.
Definition dict_util.c:1602
fr_dict_attr_t * dict_attr_child_by_num(fr_dict_attr_t const *parent, unsigned int attr)
Internal version of fr_dict_attr_child_by_num.
Definition dict_util.c:3377
fr_dict_attr_t * dict_attr_by_name(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *name)
Definition dict_util.c:3313
fr_dict_t * dict_by_protocol_num(unsigned int num)
Internal version of fr_dict_by_protocol_num.
Definition dict_util.c:2618
int dict_attr_child_add(fr_dict_attr_t *parent, fr_dict_attr_t *child)
Add a child to a parent.
Definition dict_util.c:1503
int dict_vendor_add(fr_dict_t *dict, char const *name, unsigned int num)
Add a vendor to the dictionary.
Definition dict_util.c:1384
int dict_attr_alias_add(fr_dict_attr_t const *parent, char const *alias, fr_dict_attr_t const *ref)
Add an alias to an existing attribute.
Definition dict_util.c:1249
int dict_attr_finalise(fr_dict_attr_t **da_p, char const *name)
Set remaining fields in a dictionary attribute before insertion.
Definition dict_util.c:777
int dict_attr_num_init(fr_dict_attr_t *da, unsigned int num)
Set the attribute number (if any)
Definition dict_util.c:733
int dict_attr_num_init_name_only(fr_dict_attr_t *da)
Set the attribute number (if any)
Definition dict_util.c:751
int dict_dlopen(fr_dict_t *dict, char const *name)
Definition dict_util.c:3692
fr_dict_t * dict_by_protocol_name(char const *name)
Internal version of fr_dict_by_protocol_name.
Definition dict_util.c:2604
fr_dict_t * internal
Magic internal dictionary.
Definition dict_priv.h:155
fr_dict_attr_t * dict_attr_alloc_null(TALLOC_CTX *ctx, fr_dict_protocol_t const *dict)
Partial initialisation functions.
Definition dict_util.c:985
int dict_dependent_add(fr_dict_t *dict, char const *dependent)
Record a new dependency on a dictionary.
Definition dict_util.c:3784
#define dict_attr_alloc_root(_ctx, _dict, _name, _attr, _args)
Definition dict_priv.h:231
int dict_protocol_add(fr_dict_t *dict)
Add a protocol to the global protocol table.
Definition dict_util.c:1311
fr_dict_gctx_t * dict_gctx
Top level structure containing global dictionary state.
Definition dict_util.c:42
bool perm_check
Whether we should check dictionary file permissions as they're loaded.
Definition dict_priv.h:132
Optional arguments for initialising/allocating attributes.
Definition dict_priv.h:175
Entry in the filename list of files associated with this dictionary.
Definition dict_priv.h:69
Test enumeration values.
Definition dict_test.h:92
fr_dict_keyword_finalise_t finalise
function to call when popping
static fr_table_num_sorted_t const dict_nest_table[]
static int dict_read_process_include(dict_tokenize_ctx_t *dctx, char **argv, int argc, char const *dir)
dict_nest_t nest
for manual vs automatic begin / end things
dict_fixup_ctx_t fixup
static int dict_read_process_common(dict_tokenize_ctx_t *dctx, fr_dict_attr_t **da_p, fr_dict_attr_t const *parent, char const *name, char const *type_name, char *flag_name, fr_dict_attr_flags_t const *base_flags)
#define NEST_ANY
static int dict_read_process_attribute(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
int member_num
structure member numbers
static int dict_filename_add(char **filename_out, fr_dict_t *dict, char const *filename, char const *src_file, int src_line)
Maintain a linked list of filenames which we've seen loading this dictionary.
static int dict_process_type_field(dict_tokenize_ctx_t *dctx, char const *name, fr_dict_attr_t **da_p)
static int dict_read_process_alias(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
static int _dict_from_file(dict_tokenize_ctx_t *dctx, char const *dir_name, char const *filename, char const *src_file, int src_line)
fr_dict_section_begin_t begin
Can have a BEGIN prefix.
static int dict_attr_allow_dup(fr_dict_attr_t const *da)
Check if this definition is a duplicate, and if it is, whether we should skip it error out.
static int dict_finalise(dict_tokenize_ctx_t *dctx)
static int dict_read_process_member(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
fr_dict_t * fr_dict_alloc(char const *proto_name, unsigned int proto_number)
static int dict_flag_ref(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static int dict_flag_precision(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static int dict_read_process_end(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
int stack_depth
points to the last used stack frame
ssize_t struct_size
size of the struct.
static int dict_read_process_struct(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
Process a STRUCT name attr value.
fr_dict_attr_t const * struct_is_closed
no more members are allowed
char * filename
current filename
int(* fr_dict_keyword_parse_t)(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
Keyword parser.
static int dict_read_process_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
int fr_dict_protocol_afrom_file(fr_dict_t **out, char const *proto_name, char const *proto_dir, char const *dependent)
(Re)-initialize a protocol dictionary
int(* fr_dict_section_begin_t)(dict_tokenize_ctx_t *dctx)
Pushes a new frame onto the top of the stack based on the current frame.
int fr_dict_str_to_argv(char *str, char **argv, int max_argc)
static int dict_read_sscanf_i(unsigned int *pvalue, char const *str)
static int dict_read_process_define(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
static size_t const dict_nest_table_len
static int dict_read_parse_format(char const *format, int *ptype, int *plength, bool *pcontinuation)
static int dict_read_process_begin_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
#define ASSERT_CURRENT_NEST(_dctx, _nest)
static dict_tokenize_frame_t const * dict_dctx_unwind_until(dict_tokenize_ctx_t *dctx, dict_nest_t nest)
Unwind the stack until it points to a particular type of stack frame.
static int dict_from_file(fr_dict_t *dict, char const *dir_name, char const *filename, char const *src_file, int src_line)
fr_dict_attr_t const * da
the da we care about
fr_dict_attr_t * value_attr
Cache of last attribute to speed up value processing.
static int dict_read_process_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flag)
Register the specified dictionary as a protocol dictionary.
#define FLAG_FUNC(_name)
Define a flag setting function, which sets one bit in a fr_dict_attr_flags_t.
#define CURRENT_LINE(_dctx)
static dict_tokenize_frame_t const * dict_dctx_pop(dict_tokenize_ctx_t *dctx)
Pop the current stack frame.
char * filename
name of the file where we read this entry
static int dict_set_value_attr(dict_tokenize_ctx_t *dctx, fr_dict_attr_t *da)
static int dict_read_process_enum(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
int line
current line
#define CURRENT_FILENAME(_dctx)
static int dict_struct_finalise(dict_tokenize_ctx_t *dctx)
static int dict_flag_offset(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static int dict_read_process_begin_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
static int dict_flag_key(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
fr_dict_t * dict
Protocol dictionary we're inserting attributes into.
static int dict_begin_protocol(NDEBUG_UNUSED dict_tokenize_ctx_t *dctx)
Process an inline BEGIN PROTOCOL block.
static int dict_flag_clone(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rules)
dict_tokenize_frame_t stack[DICT_MAX_STACK]
stack of attributes to track
int line
line number where we read this entry
static bool dict_filename_loaded(fr_dict_t *dict, char const *filename, char const *src_file, int src_line)
See if we have already loaded the file,.
static int dict_flag_enum(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static dict_tokenize_frame_t const * dict_dctx_unwind(dict_tokenize_ctx_t *dctx)
#define CURRENT_DA(_dctx)
#define DICT_MAX_ARGV
Maximum number of arguments.
static int dict_read_process_value(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
Process a value alias.
static dict_tokenize_frame_t const * dict_dctx_find_frame(dict_tokenize_ctx_t *dctx, dict_nest_t nest)
fr_dict_keyword_parser_t value
Value to return from lookup.
static int dict_flag_length(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static int dict_read_process_end_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
int fr_dict_read(fr_dict_t *dict, char const *dir, char const *filename)
Read supplementary attribute definitions into an existing dictionary.
#define DICT_MAX_STACK
Maximum stack size.
int fr_dict_parse_str(fr_dict_t *dict, char *buf, fr_dict_attr_t const *parent)
static int dict_flag_subtype(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static int dict_read_process_begin(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
int fr_dict_internal_afrom_file(fr_dict_t **out, char const *dict_subdir, char const *dependent)
(Re-)Initialize the special internal dictionary
static int dict_dctx_push(dict_tokenize_ctx_t *dctx, fr_dict_attr_t const *da, dict_nest_t nest)
static int dict_read_process_flags(UNUSED dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
static int dict_attr_add_or_fixup(dict_fixup_ctx_t *fixup, fr_dict_attr_t **da_p)
Add an attribute to the dictionary, or add it to a list of attributes to clone later.
int(* fr_dict_keyword_finalise_t)(dict_tokenize_ctx_t *dctx)
#define CURRENT_FRAME(_dctx)
static void dict_attr_location_set(dict_tokenize_ctx_t *dctx, fr_dict_attr_t *da)
fr_dict_attr_t const * relative_attr
for ".82" instead of "1.2.3.82". only for parents of type "tlv"
static int dict_flag_secret(fr_dict_attr_t **da_p, UNUSED char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
fr_table_elem_name_t name
Name of the keyword, e.g. "ATTRIBUTE".
static int dict_read_process_end_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
fr_dict_keyword_parse_t parse
Function to parse the keyword with.
void dict_dctx_debug(dict_tokenize_ctx_t *dctx)
dict_nest_t
This represents explicit BEGIN/END frames pushed onto the stack.
@ NEST_TOP
top of the stack
@ NEST_VENDOR
BEGIN-VENDOR.
@ NEST_PROTOCOL
BEGIN-PROTOCOL.
@ NEST_ATTRIBUTE
BEGIN foo.
@ NEST_NONE
static int dict_root_set(fr_dict_t *dict, char const *name, unsigned int proto_number)
Set a new root dictionary attribute.
Parser context for dict_from_file.
static void * fr_dlist_head(fr_dlist_head_t const *list_head)
Return the HEAD item of a list or NULL if the list is empty.
Definition dlist.h:486
static int fr_dlist_insert_tail(fr_dlist_head_t *list_head, void *ptr)
Insert an item into the tail of a list.
Definition dlist.h:378
static void * fr_dlist_next(fr_dlist_head_t const *list_head, void const *ptr)
Get the next item in a list.
Definition dlist.h:555
int fr_globdir_iter_init(char const **filename, char const *dir, char const *pattern, fr_globdir_iter_t *iter)
Initialize an iterator over filenames.
Definition file.c:694
int fr_globdir_iter_next(char const **filename, fr_globdir_iter_t *iter)
Get the next filename.
Definition file.c:852
char const * fr_cwd_strip(char const *filename)
Intended to be used in logging functions to make output more readable.
Definition file.c:384
int fr_globdir_iter_free(fr_globdir_iter_t *iter)
Definition file.c:886
talloc_free(reap)
static int stack_depth
Definition radmin.c:157
fr_type_t
@ FR_TYPE_TIME_DELTA
A period of time measured in nanoseconds.
@ FR_TYPE_TLV
Contains nested attributes.
@ FR_TYPE_STRING
String of printable characters.
@ FR_TYPE_MAX
Number of defined data types.
@ FR_TYPE_NULL
Invalid (uninitialised) attribute type.
@ FR_TYPE_UINT16
16 Bit unsigned integer.
@ FR_TYPE_INT64
64 Bit signed integer.
@ FR_TYPE_INT16
16 Bit signed integer.
@ FR_TYPE_DATE
Unix time stamp, always has value >2^31.
@ FR_TYPE_VALUE_BOX
A boxed value.
@ FR_TYPE_UINT8
8 Bit unsigned integer.
@ FR_TYPE_UINT32
32 Bit unsigned integer.
@ FR_TYPE_STRUCT
like TLV, but without T or L, and fixed-width children
@ FR_TYPE_INT32
32 Bit signed integer.
@ FR_TYPE_VENDOR
Attribute that represents a vendor in the attribute tree.
@ FR_TYPE_UINT64
64 Bit unsigned integer.
@ FR_TYPE_VOID
User data.
@ FR_TYPE_BOOL
A truth value.
@ FR_TYPE_VSA
Vendor-Specific, for RADIUS attribute 26.
@ FR_TYPE_OCTETS
Raw octets.
@ FR_TYPE_GROUP
A grouping of other attributes.
long int ssize_t
unsigned char uint8_t
ssize_t fr_slen_t
int strncasecmp(char *s1, char *s2, int n)
Definition missing.c:36
int strcasecmp(char *s1, char *s2)
Definition missing.c:66
#define fr_assert(_expr)
Definition rad_assert.h:38
static rc_request_t * current
char const * name
Test name (as specified in the request).
Definition radclient.h:102
static char const * name
size_t fr_sbuff_adv_past_allowed(fr_sbuff_t *sbuff, size_t len, bool const allowed[static UINT8_MAX+1], fr_sbuff_term_t const *tt)
Wind position past characters in the allowed set.
Definition sbuff.c:1805
bool const sbuff_char_class_int[UINT8_MAX+1]
Definition sbuff.c:68
#define FR_SBUFF_IN(_start, _len_or_end)
#define FR_SBUFF_IN_STR(_start)
PUBLIC int snprintf(char *string, size_t length, char *format, va_alist)
Definition snprintf.c:689
fr_aka_sim_id_type_t type
size_t strlcpy(char *dst, char const *src, size_t siz)
Definition strlcpy.c:34
char const * fr_syserror(int num)
Guaranteed to be thread-safe version of strerror.
Definition syserror.c:243
char const * str
Literal string.
Definition table.h:42
#define fr_table_value_by_str(_table, _name, _def)
Convert a string to a value using a sorted or ordered table.
Definition table.h:653
#define fr_table_str_by_value(_table, _number, _def)
Convert an integer to a string.
Definition table.h:772
#define TABLE_TYPE_NAME_FUNC_RPTR(_func, _our_table_type, _our_name, _our_def_type, _our_out_type)
Create a type-specific name-to-value function.
Definition table.h:144
static void const * table_sorted_value_by_str(void const *table, size_t table_len, size_t element_size, char const *name)
Convert a string to a value using a lexicographically sorted table.
Definition table.h:328
fr_table_elem_name_t name
Definition table.h:58
An element in an arbitrarily ordered array of name to num mappings.
Definition table.h:57
An element in a lexicographically sorted array of name to num mappings.
Definition table.h:49
char * talloc_typed_asprintf(TALLOC_CTX *ctx, char const *fmt,...)
Call talloc vasprintf, setting the type on the new chunk correctly.
Definition talloc.c:514
char * talloc_typed_strdup(TALLOC_CTX *ctx, char const *p)
Call talloc_strdup, setting the type on the new chunk correctly.
Definition talloc.c:467
fr_table_num_ordered_t const fr_time_precision_table[]
Definition time.c:46
#define FR_DICTIONARY_FILE
Definition conf.h:7
static fr_slen_t parent
Definition pair.h:841
void fr_strerror_clear(void)
Clears all pending messages from the talloc pools.
Definition strerror.c:576
#define fr_strerror_printf(_fmt,...)
Log to thread local error buffer.
Definition strerror.h:64
#define fr_strerror_printf_push(_fmt,...)
Add a message to an existing stack of messages at the tail.
Definition strerror.h:84
#define fr_strerror_const_push(_msg)
Definition strerror.h:227
#define fr_strerror_const(_msg)
Definition strerror.h:223
fr_table_num_ordered_t const fr_type_table[]
Map data types to names representing those types.
Definition types.c:31
size_t fr_type_table_len
Definition types.c:87
#define fr_type_is_structural(_x)
Definition types.h:393
@ FR_TYPE_VALUE_BOX_CURSOR
cursor over a fr_value_box_t
Definition types.h:89
@ FR_TYPE_UNION
A union of limited children.
Definition types.h:82
@ FR_TYPE_ATTR
A contains an attribute reference.
Definition types.h:84
@ FR_TYPE_PAIR_CURSOR
cursor over a fr_pair_t
Definition types.h:91
#define FR_TYPE_STRUCTURAL
Definition types.h:317
#define fr_type_is_null(_x)
Definition types.h:348
#define fr_type_is_tlv(_x)
Definition types.h:373
#define fr_type_is_leaf(_x)
Definition types.h:394
static char const * fr_type_to_str(fr_type_t type)
Return a static string containing the type name.
Definition types.h:455
#define fr_type_is_struct(_x)
Definition types.h:374
static fr_type_t fr_type_from_str(char const *type)
Return the constant value representing a type.
Definition types.h:465
#define FR_TYPE_LEAF
Definition types.h:318
int fr_value_box_cast_in_place(TALLOC_CTX *ctx, fr_value_box_t *vb, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv)
Convert one type of fr_value_box_t to another in place.
Definition value.c:3976
ssize_t fr_value_box_from_str(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, char const *in, size_t inlen, fr_sbuff_unescape_rules_t const *erules)
Definition value.c:5754
void fr_value_box_clear(fr_value_box_t *data)
Clear/free any existing value and metadata.
Definition value.c:4131
#define FR_VALUE_BOX_INITIALISER_NULL(_vb)
A static initialiser for stack/globally allocated boxes.
Definition value.h:510
int nonnull(2, 5))
#define fr_value_box_init(_vb, _type, _enumv, _tainted)
Initialise a fr_value_box_t.
Definition value.h:609
int format(printf, 5, 0))
static size_t char ** out
Definition value.h:1023