The FreeRADIUS server $Id: 15bac2a4c627c01d1aa2047687b3418955ac7f00 $
Loading...
Searching...
No Matches
dict_tokenize.c
Go to the documentation of this file.
1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2 of the License, or
5 * (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
15 */
16
17/** Parse dictionary files
18 *
19 * @file src/lib/util/dict_tokenize.c
20 *
21 * @copyright 2019 The FreeRADIUS server project
22 * @copyright 2024 Arran Cudbard-Bell (a.cudbardb@freeradius.org)
23 */
24RCSID("$Id: 42ed7bc3a364b80ffe02e9a0698a942de573f0fb $")
25
26#include <freeradius-devel/radius/defs.h>
27#include <freeradius-devel/util/conf.h>
28#include <freeradius-devel/util/dict_fixup_priv.h>
29#include <freeradius-devel/util/file.h>
30#include <freeradius-devel/util/rand.h>
31#include <freeradius-devel/util/syserror.h>
32
33#include <sys/stat.h>
34
35/** Maximum number of arguments
36 *
37 * For any one keyword, this is the maxiumum number of arguments that can be passed.
38 */
39#define DICT_MAX_ARGV (8)
40
41/** Maximum stack size
42 *
43 * This is the maximum number of nested BEGIN and $INCLUDE statements.
44 */
45#define DICT_MAX_STACK (32)
46
47/** This represents explicit BEGIN/END frames pushed onto the stack
48 *
49 * These are flags to allow multiple nesting types to be passed to the search function.
50 */
51DIAG_OFF(attributes)
52typedef enum CC_HINT(flag_enum) {
53 NEST_NONE = 0x00,
54 NEST_TOP = 0x01, //!< top of the stack
55 NEST_PROTOCOL = 0x02, //!< BEGIN-PROTOCOL
56 NEST_VENDOR = 0x04, //!< BEGIN-VENDOR
57 NEST_ATTRIBUTE = 0x08 //!< BEGIN foo
59DIAG_ON(attributes)
60
61#define NEST_ANY (NEST_TOP | NEST_PROTOCOL | NEST_VENDOR | NEST_ATTRIBUTE)
62
64 { L("ATTRIBUTE"), NEST_ATTRIBUTE },
65 { L("NONE"), NEST_NONE },
66 { L("PROTOCOL"), NEST_PROTOCOL },
67 { L("TOP"), NEST_TOP },
68 { L("VENDOR"), NEST_VENDOR }
69};
71
73
74/** Parser context for dict_from_file
75 *
76 * Allows vendor and TLV context to persist across $INCLUDEs
77 */
78typedef struct {
79 char *filename; //!< name of the file where we read this entry
80 int line; //!< line number where we read this entry
81 fr_dict_attr_t const *da; //!< the da we care about
82 dict_nest_t nest; //!< for manual vs automatic begin / end things
83
84 fr_dict_keyword_finalise_t finalise; //!< function to call when popping
85 int member_num; //!< structure member numbers
86 fr_dict_attr_t const *struct_is_closed; //!< no more members are allowed
87 ssize_t struct_size; //!< size of the struct.
89
91 fr_dict_t *dict; //!< Protocol dictionary we're inserting attributes into.
92
93 dict_tokenize_frame_t stack[DICT_MAX_STACK]; //!< stack of attributes to track
94 int stack_depth; //!< points to the last used stack frame
95
96 fr_dict_attr_t *value_attr; //!< Cache of last attribute to speed up value processing.
97 fr_dict_attr_t const *relative_attr; //!< for ".82" instead of "1.2.3.82". only for parents of type "tlv"
99
100 char *filename; //!< current filename
101 int line; //!< current line
102};
103
105 char const *dir_name, char const *filename,
106 char const *src_file, int src_line);
107
108#define CURRENT_FRAME(_dctx) (&(_dctx)->stack[(_dctx)->stack_depth])
109#define CURRENT_DA(_dctx) (CURRENT_FRAME(_dctx)->da)
110#define CURRENT_FILENAME(_dctx) (CURRENT_FRAME(_dctx)->filename)
111#define CURRENT_LINE(_dctx) (CURRENT_FRAME(_dctx)->line)
112
113#define ASSERT_CURRENT_NEST(_dctx, _nest) fr_assert_msg(CURRENT_FRAME(_dctx)->nest == (_nest), "Expected frame type %s, got %s", \
114 fr_table_str_by_value(dict_nest_table, (_nest), "<INVALID>"), fr_table_str_by_value(dict_nest_table, CURRENT_FRAME(_dctx)->nest, "<INVALID>"))
115
117{
118 int i;
119
120 for (i = 0; i <= dctx->stack_depth; i++) {
121 dict_tokenize_frame_t const *frame = &dctx->stack[i];
122
123 FR_FAULT_LOG("[%d]: %s %s (%s): %s[%d]",
124 i,
125 fr_table_str_by_value(dict_nest_table, frame->nest, "<INVALID>"),
126 frame->da->name,
127 fr_type_to_str(frame->da->type),
128 frame->filename, frame->line);
129 }
130}
131
133{
134 int i;
135
136 for (i = dctx->stack_depth; i >= 0; i--) {
137 if (dctx->stack[i].nest & nest) return &dctx->stack[i];
138 }
139
140 return NULL;
141}
142
143static int CC_HINT(nonnull) dict_dctx_push(dict_tokenize_ctx_t *dctx, fr_dict_attr_t const *da, dict_nest_t nest)
144{
145 if ((dctx->stack_depth + 1) >= DICT_MAX_STACK) {
146 fr_strerror_const("Attribute definitions are nested too deep.");
147 return -1;
148 }
149
150 dctx->stack[++dctx->stack_depth] = (dict_tokenize_frame_t) {
151 .da = da,
152 .filename = dctx->filename,
153 .line = dctx->line,
154 .nest = nest,
155 };
156
157 return 0;
158}
159
160
161/** Pop the current stack frame
162 *
163 * @param[in] dctx Stack to pop from.
164 * @return
165 * - Pointer to the current stack frame.
166 * - NULL, if we're already at the root.
167 */
169{
170 if (dctx->stack_depth == 0) return NULL;
171
172 fr_assert(!dctx->stack[dctx->stack_depth].finalise);
173
174 return &dctx->stack[dctx->stack_depth--];
175}
176
177/** Unwind the stack until it points to a particular type of stack frame
178 *
179 * @param[in] dctx Stack to unwind.
180 * @param[in] nest Frame type to unwind to.
181 * @return
182 * - Pointer to the frame matching nest
183 * - NULL, if we unwound the complete stack and didn't find the frame.
184 */
186{
187 int i;
188
189 for (i = dctx->stack_depth; i >= 0; i--) {
191
192 /*
193 * We mash the stack depth here, because the finalisation function needs it. Plus, if
194 * there's any error, we don't care about the dctx stack, we just return up the C stack.
195 */
196 dctx->stack_depth = i;
197 frame = CURRENT_FRAME(dctx);
198
199 if (frame->finalise) {
200 if (frame->finalise(dctx) < 0) return NULL;
201 frame->finalise = NULL;
202 }
203
204 /*
205 * END-foo cannot be used without BEGIN-foo.
206 */
207 if (frame->filename && (frame->filename != dctx->filename) &&
208 (nest != NEST_ANY)) {
209 char const *name;
210
211 name = fr_table_str_by_value(dict_nest_table, nest, "<INVALID>");
212 fr_strerror_printf("END-%s in file %s[%d] without matching BEGIN-%s",
213 name, dctx->filename, dctx->line, name);
214 return NULL;
215 }
216
217 if ((frame->nest & nest) != 0) {
218 return frame;
219 }
220 }
221
222 return NULL;
223}
224
226{
227 return dict_dctx_unwind_until(dctx, NEST_ANY);
228}
229
230/*
231 * String split routine. Splits an input string IN PLACE
232 * into pieces, based on spaces.
233 */
234int fr_dict_str_to_argv(char *str, char **argv, int max_argc)
235{
236 int argc = 0;
237
238 while (*str) {
239 if (argc >= max_argc) break;
240
241 /*
242 * Chop out comments early.
243 */
244 if (*str == '#') {
245 *str = '\0';
246 break;
247 }
248
249 while ((*str == ' ') ||
250 (*str == '\t') ||
251 (*str == '\r') ||
252 (*str == '\n'))
253 *(str++) = '\0';
254
255 if (!*str) break;
256
257 argv[argc] = str;
258 argc++;
259
260 while (*str &&
261 (*str != ' ') &&
262 (*str != '\t') &&
263 (*str != '\r') &&
264 (*str != '\n'))
265 str++;
266 }
267
268 return argc;
269}
270
271static int dict_read_sscanf_i(unsigned int *pvalue, char const *str)
272{
273 int unsigned ret = 0;
274 int base = 10;
275 static char const *tab = "0123456789";
276
277 if ((str[0] == '0') &&
278 ((str[1] == 'x') || (str[1] == 'X'))) {
279 tab = "0123456789abcdef";
280 base = 16;
281
282 str += 2;
283 }
284
285 while (*str) {
286 char const *c;
287
288 if (*str == '.') break;
289
290 c = memchr(tab, tolower((uint8_t)*str), base);
291 if (!c) return 0;
292
293 ret *= base;
294 ret += (c - tab);
295 str++;
296 }
297
298 *pvalue = ret;
299 return 1;
300}
301
302/** Set a new root dictionary attribute
303 *
304 * @note Must only be called once per dictionary.
305 *
306 * @param[in] dict to modify.
307 * @param[in] name of dictionary root.
308 * @param[in] proto_number The artificial (or IANA allocated) number for the protocol.
309 * This is only used for
310 * @return
311 * - 0 on success.
312 * - -1 on failure.
313 */
314static int dict_root_set(fr_dict_t *dict, char const *name, unsigned int proto_number)
315{
316 fr_dict_attr_t *da;
317
318 fr_dict_attr_flags_t flags = {
319 .is_root = 1,
320 .type_size = 1,
321 .length = 1
322 };
323
324 if (!fr_cond_assert(!dict->root)) {
325 fr_strerror_const("Dictionary root already set");
326 return -1;
327 }
328
329 da = dict_attr_alloc_root(dict->pool, dict, name, proto_number, &(dict_attr_args_t){ .flags = &flags });
330 if (unlikely(!da)) return -1;
331
332 dict->root = da;
333 dict->root->dict = dict;
334 DA_VERIFY(dict->root);
335
336 return 0;
337}
338
340{
341 char *p;
343
344 /*
345 * Some types can have fixed length
346 */
347 p = strchr(name, '[');
348 if (p) {
349 char *q;
350 unsigned int length;
351
352 *p = '\0';
353 q = strchr(p + 1, ']');
354 if (!q) {
355 fr_strerror_printf("Invalid format for '%s[...]'", name);
356 return -1;
357 }
358
359 *q = '\0';
360 if (q[1]) {
361 fr_strerror_const("length, if present, must end type field");
362 return -1;
363 }
364
365 if (!dict_read_sscanf_i(&length, p + 1)) {
366 fr_strerror_printf("Invalid length for '%s[...]'", name);
367 return -1;
368 }
369
370 /*
371 * "length" has to fit into a uint8_t field.
372 */
373 if ((length == 0) || (length > 255)) {
374 fr_strerror_printf("Invalid length for '%s[...]'", name);
375 return -1;
376 }
377
378 /*
379 * Now that we have a length, check the data type.
380 */
381 if (strcmp(name, "octets") == 0) {
383
384 } else if (strcmp(name, "string") == 0) {
386
387 } else if (strcmp(name, "struct") == 0) {
389
390 } else if (strcmp(name, "union") == 0) {
392
393 } else if (strcmp(name, "bit") == 0) {
394 if (CURRENT_FRAME(dctx)->da->type != FR_TYPE_STRUCT) {
395 fr_strerror_const("Bit fields can only be defined as a MEMBER of data type 'struct'");
396 return -1;
397 }
398
399 (*da_p)->flags.extra = 1;
400 (*da_p)->flags.subtype = FLAG_BIT_FIELD;
401
402 if (length == 1) {
404 } else if (length <= 8) {
406 } else if (length <= 16) {
408 } else if (length <= 32) {
410 } else if (length <= 56) { /* for laziness in encode / decode */
412 } else {
413 fr_strerror_const("Invalid length for bit field");
414 return -1;
415 }
416
417 /*
418 * Cache where on a byte boundary this
419 * bit field ends. We could have the
420 * validation function loop through all
421 * previous siblings, but that's
422 * annoying.
423 */
424 (*da_p)->flags.flag_byte_offset = length;
425
426 } else {
427 fr_strerror_printf("Attributes of type '%s' cannot use the %s[...] syntax",
428 name, name);
429 return -1;
430 }
431
432 (*da_p)->flags.is_known_width = true;
433 (*da_p)->flags.length = length;
434 return dict_attr_type_init(da_p, type);
435 }
436
437 /*
438 * We default to using the standard FreeRADIUS types.
439 *
440 * However, if there is a protocol-specific type parsing
441 * function, we call that, too. That ordering allows the
442 * protocol-specific names to over-ride the default ones.
443 */
445
446 if (dctx->dict->proto->attr.type_parse &&
447 !dctx->dict->proto->attr.type_parse(&type, da_p, name)) {
448 return -1;
449 }
450
451 /*
452 * Still not known, or is still a NULL type, that's an error.
453 *
454 * The protocol-specific function can return an error if
455 * it has an error in its parsing. Or, it can return
456 * "true"
457 */
458 if (fr_type_is_null(type)) {
459 fr_strerror_printf("Unknown data type '%s'", name);
460 return -1;
461 }
462
463 return dict_attr_type_init(da_p, type);
464}
465
466/** Define a flag setting function, which sets one bit in a fr_dict_attr_flags_t
467 *
468 * This is here, because AFAIK there's no completely portable way to get the bit
469 * offset of a bit field in a structure.
470 */
471#define FLAG_FUNC(_name) \
472static int dict_flag_##_name(fr_dict_attr_t **da_p, UNUSED char const *value, UNUSED fr_dict_flag_parser_rule_t const *rules)\
473{ \
474 (*da_p)->flags._name = 1; \
475 return 0; \
476}
477
478FLAG_FUNC(array)
479
480static int dict_flag_clone(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rules)
481{
482 if (((*da_p)->type != FR_TYPE_TLV) && ((*da_p)->type != FR_TYPE_STRUCT)) {
483 fr_strerror_const("'clone=...' references can only be used for 'tlv' and 'struct' types");
484 return -1;
485 }
486
487 /*
488 * Allow cloning of any types, so long as
489 * the types are the same. We do the checks later.
490 */
492
493 /*
494 * We don't know how big the cloned reference is, so it isn't known width.
495 */
496 (*da_p)->flags.is_known_width = 0;
497
498 return 0;
499}
500
501FLAG_FUNC(counter)
502
503static int dict_flag_enum(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
504{
505 /*
506 * Allow enum=... as a synonym for
507 * "clone". We check the sources and not
508 * the targets, because that's easier.
509 *
510 * Plus, ENUMs are really just normal attributes
511 * in disguise.
512 */
513 if (!fr_type_is_leaf((*da_p)->type)) {
514 fr_strerror_const("'enum=...' references cannot be used for structural types");
515 return -1;
516 }
517
519
520 return 0;
521}
522
523FLAG_FUNC(internal)
524
525static int dict_flag_key(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
526{
527 fr_dict_attr_t *da = *da_p;
528 fr_dict_attr_t const *key;
530
531 if (fr_type_is_leaf(da->type)) {
532 if (value) {
533 fr_strerror_const("Attributes defining a 'key' field cannot specify a key reference");
534 return -1;
535 }
536
537 if ((da->type != FR_TYPE_UINT8) && (da->type != FR_TYPE_UINT16) && (da->type != FR_TYPE_UINT32)) {
538 fr_strerror_const("The 'key' flag can only be used for attributes of type 'uint8', 'uint16', or 'uint32'");
539 return -1;
540 }
541
542 if (da->flags.extra) {
543 fr_strerror_const("Bit fields cannot be key fields");
544 return -1;
545 }
546
547 da->flags.extra = 1;
548 da->flags.subtype = FLAG_KEY_FIELD;
549 return 0;
550 }
551
552 if (da->type != FR_TYPE_UNION) {
553 fr_strerror_printf("Attributes of type '%s' cannot define a 'key' reference", fr_type_to_str(da->type));
554 return -1;
555 }
556
557 if (!value) {
558 fr_strerror_const("Missing reference for 'key=...'");
559 return -1;
560 }
561
562 /*
563 * The reference must be to a sibling, which is marked "is key".
564 */
565 key = fr_dict_attr_by_name(NULL, da->parent, value);
566 if (!key) {
567 fr_strerror_printf("Invalid reference for 'key=...'. Parent %s does not have a child attribute named %s",
568 da->parent->name, value);
569 return -1;
570 }
571
572 if (da->parent != key->parent) {
573 fr_strerror_printf("Invalid reference for 'key=...'. Reference %s does not share a common parent",
574 value);
575 return -1;
576 }
577
578 if (!fr_dict_attr_is_key_field(key)) {
579 fr_strerror_printf("Invalid reference for 'key=...'. Reference %s is not a 'key' field",
580 value);
581 return -1;
582 }
583
584 /*
585 * Allocate the ref and save the value.
586 */
588 if (ext) {
589 fr_strerror_printf("Attribute already has a 'key=...' defined");
590 return -1;
591 }
592
593 ext = dict_attr_ext_alloc(da_p, FR_DICT_ATTR_EXT_KEY); /* can change da_p */
594 if (unlikely(!ext)) return -1;
595
597 ext->ref = key;
598
599 return 0;
600}
601
602static int dict_flag_length(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
603{
604 fr_dict_attr_t *da = *da_p;
605
606 if (strcmp(value, "uint8") == 0) {
607 da->flags.extra = 1;
608 da->flags.subtype = FLAG_LENGTH_UINT8;
609
610 } else if (strcmp(value, "uint16") == 0) {
611 da->flags.extra = 1;
612 da->flags.subtype = FLAG_LENGTH_UINT16;
613
614 } else {
615 fr_strerror_const("Invalid value given for the 'length' flag");
616 return -1;
617 }
618 da->flags.type_size = 0;
619
620 return 0;
621}
622
623static int dict_flag_offset(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
624{
625 fr_dict_attr_t *da = *da_p;
626 int offset;
627
628 if (da->type != FR_TYPE_STRUCT) {
629 fr_strerror_const("The 'offset' flag can only be used with data type 'struct'");
630 return -1;
631 }
632
633 if (!da->flags.extra || (!(da->flags.subtype == FLAG_LENGTH_UINT8) || (da->flags.subtype == FLAG_LENGTH_UINT16))) {
634 fr_strerror_const("The 'offset' flag can only be used in combination with 'length=uint8' or 'length=uint16'");
635 return -1;
636 }
637
638 offset = atoi(value);
639 if ((offset <= 0) || (offset > 255)) {
640 fr_strerror_const("The 'offset' value must be between 1..255");
641 return -1;
642 }
643 da->flags.type_size = offset;
644
645 return 0;
646}
647
649{
650 fr_dict_attr_t *da = *da_p;
651 int precision;
652
653 switch (da->type) {
654 case FR_TYPE_DATE:
656 break;
657
658 default:
659 fr_strerror_const("The 'precision' flag can only be used with data types 'date' or 'time'");
660 return -1;
661 }
662
664 if (precision < 0) {
665 fr_strerror_printf("Unknown %s precision '%s'", fr_type_to_str(da->type), value);
666 return -1;
667 }
668 da->flags.flag_time_res = precision;
669
670 return 0;
671}
672
673static int dict_flag_ref(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
674{
675 fr_dict_attr_t *da = *da_p;
676
677 if (da->flags.extra) {
678 fr_strerror_const("Cannot use 'ref' with other flags");
679 return -1;
680 }
681
682 if (da->type != FR_TYPE_GROUP) {
683 fr_strerror_printf("The 'ref' flag cannot be used for type '%s'",
684 fr_type_to_str(da->type));
685 return -1;
686 }
687
689
690 return 0;
691}
692
694{
695 fr_dict_attr_t *da = *da_p;
696
697 da->flags.secret = 1;
698
699 if ((da->type != FR_TYPE_STRING) && (da->type != FR_TYPE_OCTETS)) {
700 fr_strerror_const("The 'secret' flag can only be used with data types 'string' or 'octets'");
701 return -1;
702 }
703
704 return 0;
705}
706
707static int dict_flag_subtype(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
708{
709 fr_dict_attr_t *da = *da_p;
710 fr_type_t subtype;
711
712 switch (da->type) {
713 case FR_TYPE_DATE:
715 break;
716
717 default:
718 fr_strerror_const("The 'subtype' flag can only be used with data types 'date' or 'time'");
719 return -1;
720 }
721
722 subtype = fr_type_from_str(value);
723 if (fr_type_is_null(subtype)) {
724 unknown_type:
725 fr_strerror_printf("Unknown or unsupported %s type '%s'",
726 fr_type_to_str(subtype),
727 value);
728 return -1;
729 }
730
731 switch (subtype) {
732 default:
733 goto unknown_type;
734
735 case FR_TYPE_INT16:
736 if (da->type == FR_TYPE_DATE) goto unknown_type;
737 da->flags.length = 2;
738 break;
739
740 case FR_TYPE_UINT16:
741 da->flags.is_unsigned = true;
742 da->flags.length = 2;
743 break;
744
745 case FR_TYPE_INT32:
746 if (da->type == FR_TYPE_DATE) goto unknown_type;
747 da->flags.length = 4;
748 break;
749
750 case FR_TYPE_UINT32:
751 da->flags.is_unsigned = true;
752 da->flags.length = 4;
753 break;
754
755 case FR_TYPE_INT64:
756 if (da->type == FR_TYPE_DATE) goto unknown_type;
757 da->flags.length = 8;
758 break;
759
760 case FR_TYPE_UINT64:
761 da->flags.is_unsigned = true;
762 da->flags.length = 8;
763 break;
764 }
765
766 return 0;
767}
768
769FLAG_FUNC(unsafe)
770
771/** A lookup function for dictionary attribute flags
772 *
773 */
775 fr_dict_attr_flag_to_parser, fr_dict_flag_parser_rule_t const *, fr_dict_flag_parser_rule_t const *)
776
777static int CC_HINT(nonnull) dict_process_flag_field(dict_tokenize_ctx_t *dctx, char *name, fr_dict_attr_t **da_p)
778{
779 static fr_dict_flag_parser_t dict_common_flags[] = {
780 { L("array"), { .func = dict_flag_array } },
781 { L("clone"), { .func = dict_flag_clone, .needs_value = true } },
782 { L("counter"), { .func = dict_flag_counter } },
783 { L("enum"), { .func = dict_flag_enum, .needs_value = true } },
784 { L("internal"), { .func = dict_flag_internal } },
785 { L("key"), { .func = dict_flag_key } },
786 { L("length"), { .func = dict_flag_length, .needs_value = true } },
787 { L("offset"), { .func = dict_flag_offset, .needs_value = true } },
788 { L("precision"), { .func = dict_flag_precision, .needs_value = true } },
789 { L("ref"), { .func = dict_flag_ref, .needs_value = true } },
790 { L("secret"), { .func = dict_flag_secret } },
791 { L("subtype"), { .func = dict_flag_subtype, .needs_value = true } },
792 { L("unsafe"), { .func = dict_flag_unsafe } },
793 };
794 static size_t dict_common_flags_len = NUM_ELEMENTS(dict_common_flags);
795
796 char *p, *next = NULL;
797
798 if ((*da_p)->type == FR_TYPE_NULL) {
799 fr_strerror_const("Type must be specified before parsing flags");
800 return -1;
801 }
802
803 for (p = name; p && *p != '\0' ; p = next) {
804 char *key, *value;
805 fr_dict_flag_parser_rule_t const *parser;
806
807 key = p;
808
809 /*
810 * Search for the first '=' or ','
811 */
812 for (next = p + 1; *next && (*next != '=') && (*next != ','); next++) {
813 /* do nothing */
814 }
815
816 /*
817 * We have a value, zero out the '=' and point to the value.
818 */
819 if (*next == '=') {
820 *(next++) = '\0';
821 value = next;
822
823 if (!*value || (*value == ',')) {
824 fr_strerror_printf("Missing value after '%s='", key);
825 return -1;
826 }
827 } else {
828 value = NULL;
829 }
830
831 /*
832 * Skip any trailing text in the value.
833 */
834 for (/* nothing */; *next; next++) {
835 if (*next == ',') {
836 *(next++) = '\0';
837 break;
838 }
839 }
840
841 /*
842 * Search the protocol table, then the main table.
843 * This allows protocols to overload common flags.
844 */
845 if (!((dctx->dict->proto->attr.flags.table &&
846 fr_dict_attr_flag_to_parser(&parser, dctx->dict->proto->attr.flags.table,
847 dctx->dict->proto->attr.flags.table_len, key, NULL)) ||
848 fr_dict_attr_flag_to_parser(&parser, dict_common_flags, dict_common_flags_len, key, NULL))) {
849 fr_strerror_printf("Unknown flag '%s'", key);
850 return -1;
851 }
852
853 if (parser->needs_value && !value) {
854 fr_strerror_printf("Flag '%s' requires a value", key);
855 return -1;
856 }
857
858 if (unlikely(parser->func(da_p, value, parser) < 0)) return -1;
859 }
860
861 /*
862 * Don't check the flags field for validity via
863 * dict_attr_flags_valid(). It may be updated by various
864 * protocol-specific callback functions. And,
865 * fr_dict_attr_add() calls dict_attr_flags_valid() anyways.
866 */
867
868 return 0;
869}
870
872{
873 if (dict_fixup_apply(&dctx->fixup) < 0) return -1;
874
875 dctx->value_attr = NULL;
876 dctx->relative_attr = NULL;
877
878 return 0;
879}
880
881static inline CC_HINT(always_inline)
883{
884 da->filename = CURRENT_FILENAME(dctx);
885 da->line = CURRENT_LINE(dctx);
886}
887
888/** Add an attribute to the dictionary, or add it to a list of attributes to clone later
889 *
890 * @param[in] fixup context to add an entry to (if needed).
891 * @param[in] da_p to either add, or create a fixup for.
892 * @return
893 * - 0 on success, and an attribute was added.
894 * - 1 on success, and a deferred entry was added.
895 * - -1 on failure.
896 */
898{
900 fr_dict_attr_t *da = *da_p;
901 int ret = 0;
902
903 /*
904 * Check for any references associated with the attribute,
905 * if they're unresolved, then add fixups.
906 *
907 * We do this now, as we know the attribute memory chunk
908 * is stable, and we can safely add the fixups.
909 */
911 if (ref && fr_dict_attr_ref_is_unresolved(ref->type)) {
912 /*
913 * See if we can immediately apply the ref.
914 */
915 fr_dict_attr_t const *src;
916
917 switch (fr_dict_attr_ref_type(ref->type)) {
919 /*
920 * IF the ref exists, we can always add it. The ref won't be changed later.
921 */
922 if (fr_dict_protocol_reference(&src, da->parent, &FR_SBUFF_IN_STR(ref->unresolved)) < 0) return -1;
923
924 if (src && (dict_attr_ref_set(*da_p, src, FR_DICT_ATTR_REF_ALIAS) < 0)) return -1;
925
926 if (fr_dict_attr_add_initialised(da) < 0) {
927 error:
928 talloc_free(da);
929 *da_p = NULL;
930 return -1;
931 }
932
933 if (!src && (dict_fixup_group_enqueue(fixup, da, ref->unresolved) < 0)) return -1;
934 ret = 1;
935 break;
936
938 /*
939 * Do NOT copy the enums now. Later dictionaries may add more values, and we
940 * want to be able to copy all values.
941 */
942 if (fr_dict_attr_add_initialised(da) < 0) goto error;
943
944 if (dict_fixup_clone_enum_enqueue(fixup, da, ref->unresolved) < 0) return -1;
945 break;
946
948 /*
949 * @todo - if we defer this clone, we get errors loading dictionary.wimax. That
950 * likely means there are issues with the dict_fixup_clone_apply() function.
951 */
952 if (fr_dict_protocol_reference(&src, da->parent, &FR_SBUFF_IN_STR(ref->unresolved)) < 0) return -1;
953 if (src) {
954 if (dict_fixup_clone(da_p, src) < 0) return -1;
955 break;
956 }
957
958 if (dict_fixup_clone_enqueue(fixup, da, ref->unresolved) < 0) return -1;
959 ret = 1;
960 break;
961
962 default:
963 fr_strerror_const("Unknown reference type");
964 return -1;
965 }
966 } else {
967 if (fr_dict_attr_add_initialised(da) < 0) goto error;
968 }
969
970 return ret;
971}
972
973/** Check if this definition is a duplicate, and if it is, whether we should skip it error out
974 *
975 * @return
976 * - 1 if this is not a duplicate.
977 * - 0 if this is a duplicate, and we should ignore the definition.
978 * - -1 if this is a duplicate, and we should error out.
979 */
981{
982 fr_dict_attr_t const *dup_name = NULL;
983 fr_dict_attr_t const *dup_num = NULL;
984 fr_dict_attr_t const *found;
985
986 /*
987 * Search in the parent for a duplicate by name and then by num
988 */
989 if (!da->parent) return 1; /* no parent no conflicts possible */
990
991 dup_name = fr_dict_attr_by_name(NULL, da->parent, da->name);
992 if (da->flags.name_only) dup_num = fr_dict_attr_child_by_num(da->parent, da->attr);
993
994 /*
995 * Not a duplicate...
996 */
997 if (!dup_name && !dup_num) return 1;
998
999 found = dup_name ? dup_name : dup_num;
1000
1001 switch (da->type) {
1002 /*
1003 * For certain STRUCTURAL types, we allow strict duplicates
1004 * as if the user wants to add extra children in the custom
1005 * dictionary, or wants to avoid ordering issues between
1006 * multiple dictionaries, we need to support this.
1007 */
1008 case FR_TYPE_VSA:
1009 case FR_TYPE_VENDOR:
1010 case FR_TYPE_TLV:
1011 if (fr_dict_attr_cmp_fields(da, found) == 0) return -1;
1012 break;
1013
1014 default:
1015 break;
1016 }
1017
1018 if (dup_name) {
1019 fr_strerror_printf("Duplicate attribute name '%s' in namespace '%s'. Originally defined %s[%d]",
1020 da->name, da->parent->name, dup_name->filename, dup_name->line);
1021 return 0;
1022 }
1023
1024 fr_strerror_printf("Duplicate attribute number %u in parent '%s'. Originally defined %s[%d]",
1025 da->attr, da->parent->name, dup_num->filename, dup_num->line);
1026 return 0;
1027}
1028
1030{
1031 fr_dict_attr_t const *da;
1032 dict_tokenize_frame_t const *frame = CURRENT_FRAME(dctx);
1033
1034 da = frame->da;
1035 fr_assert(da->type == FR_TYPE_STRUCT);
1036
1037 /*
1038 * The structure was fixed-size, but the fields don't fill it. That's an error.
1039 *
1040 * Since process_member() checks for overflow, the check here is really only for
1041 * underflow.
1042 */
1043 if (da->flags.is_known_width) {
1044 if (CURRENT_FRAME(dctx)->struct_size != da->flags.length) {
1045 fr_strerror_printf("MEMBERs of %s struct[%u] do not exactly fill the fixed-size structure",
1046 da->name, da->flags.length);
1047 return -1;
1048 }
1049
1050 return 0;
1051 }
1052
1053 /*
1054 * If we have discovered that the structure has a fixed size, then update the da with that
1055 * information.
1056 */
1057 if (frame->struct_size <= 255) {
1058 UNCONST(fr_dict_attr_t *, da)->flags.length = frame->struct_size;
1059 } /* else length 0 means "unknown / variable size / too large */
1060
1061 return 0;
1062}
1063
1065{
1066 /*
1067 * Adding an attribute of type 'struct' is an implicit
1068 * BEGIN-STRUCT.
1069 */
1070 if (da->type == FR_TYPE_STRUCT) {
1071 if (dict_dctx_push(dctx, da, NEST_NONE) < 0) return -1;
1072
1073 CURRENT_FRAME(dctx)->finalise = dict_struct_finalise;
1074 dctx->value_attr = NULL;
1075
1076 } else if (fr_type_is_leaf(da->type)) {
1077 dctx->value_attr = da;
1078
1079 } else {
1080 dctx->value_attr = NULL;
1081 }
1082
1083 return 0;
1084}
1085
1087 fr_dict_attr_t const *parent, char const *name,
1088 char const *type_name, char *flag_name,
1089 fr_dict_attr_flags_t const *base_flags)
1090{
1091 fr_dict_attr_t *da, *to_free = NULL;
1092
1093 /*
1094 * Dictionaries need to have real names, not shitty ones.
1095 */
1096 if (strncmp(name, "Attr-", 5) == 0) {
1097 fr_strerror_const("Invalid name");
1098 return -1;
1099 }
1100
1101 /*
1102 * Allocate the attribute here, and then fill in the fields
1103 * as we start parsing the various elements of the definition.
1104 */
1105 if (!*da_p) {
1106 da = dict_attr_alloc_null(dctx->dict->pool, dctx->dict->proto);
1107 if (unlikely(!da)) return -1;
1108 to_free = da;
1109
1110 } else {
1111 da = *da_p;
1112 }
1113 dict_attr_location_set(dctx, da);
1114 da->dict = dctx->dict;
1115
1116 /*
1117 * Set some fields to be friendlier to the type / flag
1118 * parsing and validation routines.
1119 */
1120 da->parent = parent;
1121 da->name = name;
1122
1123 /*
1124 * Set the attribute flags from the base flags.
1125 */
1126 memcpy(&da->flags, base_flags, sizeof(da->flags));
1127
1128 /*
1129 * Set the base type of the attribute.
1130 */
1131 if (dict_process_type_field(dctx, type_name, &da) < 0) {
1132 error:
1133 if (da == to_free) talloc_free(to_free);
1134 return -1;
1135 }
1136
1137 /*
1138 * Clear the temporary parent pointer.
1139 */
1140 da->parent = NULL;
1141 if (unlikely(dict_attr_parent_init(&da, parent) < 0)) goto error;
1142
1143 /*
1144 * Parse optional flags. We pass in the partially allocated
1145 * attribute so that flags can be set directly.
1146 *
1147 * Where flags contain variable length fields, this is
1148 * significantly easier than populating a temporary struct.
1149 */
1150 if (flag_name) if (dict_process_flag_field(dctx, flag_name, &da) < 0) goto error;
1151
1152 da->name = NULL; /* the real name will be a talloc'd chunk */
1153
1154 *da_p = da;
1155 return 0;
1156}
1157
1158/*
1159 * Process the $INCLUDE command
1160 */
1161static int dict_read_process_include(dict_tokenize_ctx_t *dctx, char **argv, int argc, char const *dir)
1162{
1163 int rcode;
1164 int stack_depth = dctx->stack_depth;
1165 char *filename = dctx->filename;
1166 int line = dctx->line;
1167
1168 /*
1169 * Allow "$INCLUDE" or "$INCLUDE-", but
1170 * not anything else.
1171 */
1172 if ((argv[0][8] != '\0') && ((argv[0][8] != '-') || (argv[0][9] != '\0'))) {
1173 fr_strerror_printf("Invalid keyword '%s'", argv[0]);
1174 return -1;
1175 }
1176
1177 if (argc != 2) {
1178 fr_strerror_printf("Unexpected text after $INCLUDE at %s[%d]", fr_cwd_strip(filename), line);
1179 return -1;
1180 }
1181
1182 /*
1183 * Allow limited macro capability, so
1184 * people don't have to remember where
1185 * the root dictionaries are located.
1186 */
1187 if (strncmp(argv[1], "${dictdir}/", 11) != 0) {
1188 rcode = _dict_from_file(dctx, dir, argv[1], filename, line);
1189 } else {
1190 rcode = _dict_from_file(dctx, fr_dict_global_ctx_dir(), argv[1] + 11, filename, line);
1191 }
1192
1193 if ((rcode == -2) && (argv[0][8] == '-')) {
1194 fr_strerror_clear(); /* delete all errors */
1195 return 0;
1196 }
1197
1198 if (rcode < 0) {
1199 fr_strerror_printf_push("from $INCLUDE at %s[%d]", fr_cwd_strip(filename), line);
1200 return -1;
1201 }
1202
1203 if (dctx->stack_depth < stack_depth) {
1204 fr_strerror_printf("unexpected END-??? in $INCLUDE at %s[%d]",
1205 fr_cwd_strip(filename), line);
1206 return -1;
1207 }
1208
1209 /*
1210 * Reset the filename and line number.
1211 */
1212 dctx->filename = filename;
1213 dctx->line = line;
1214
1215 return 0;
1216}
1217
1218static int dict_read_parse_format(char const *format, int *ptype, int *plength, bool *pcontinuation)
1219{
1220 char const *p;
1221 int type, length;
1222 bool continuation = false;
1223
1224 if (strncasecmp(format, "format=", 7) != 0) {
1225 fr_strerror_printf("Invalid format for VENDOR. Expected 'format=', got '%s'",
1226 format);
1227 return -1;
1228 }
1229
1230 p = format + 7;
1231 if ((strlen(p) < 3) ||
1232 !isdigit((uint8_t)p[0]) ||
1233 (p[1] != ',') ||
1234 !isdigit((uint8_t)p[2]) ||
1235 (p[3] && (p[3] != ','))) {
1236 fr_strerror_printf("Invalid format for VENDOR. Expected text like '1,1', got '%s'",
1237 p);
1238 return -1;
1239 }
1240
1241 type = (int)(p[0] - '0');
1242 length = (int)(p[2] - '0');
1243
1244 if ((type != 1) && (type != 2) && (type != 4)) {
1245 fr_strerror_printf("Invalid type value %d for VENDOR", type);
1246 return -1;
1247 }
1248
1249 if ((length != 0) && (length != 1) && (length != 2)) {
1250 fr_strerror_printf("Invalid length value %d for VENDOR", length);
1251 return -1;
1252 }
1253
1254 if (p[3] == ',') {
1255 if (!p[4]) {
1256 fr_strerror_printf("Invalid format for VENDOR. Expected text like '1,1', got '%s'",
1257 p);
1258 return -1;
1259 }
1260
1261 if ((p[4] != 'c') ||
1262 (p[5] != '\0')) {
1263 fr_strerror_printf("Invalid format for VENDOR. Expected text like '1,1', got '%s'",
1264 p);
1265 return -1;
1266 }
1267 continuation = true;
1268
1269 if ((type != 1) || (length != 1)) {
1270 fr_strerror_const("Only VSAs with 'format=1,1' can have continuations");
1271 return -1;
1272 }
1273 }
1274
1275 *ptype = type;
1276 *plength = length;
1277 *pcontinuation = continuation;
1278 return 0;
1279}
1280
1281/*
1282 * Process the ALIAS command
1283 *
1284 * ALIAS name ref
1285 *
1286 * Creates an attribute "name" in the root namespace of the current
1287 * dictionary, which is a pointer to "ref".
1288 */
1289static int dict_read_process_alias(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
1290{
1291 fr_dict_attr_t const *da;
1292 fr_dict_attr_t const *parent = CURRENT_FRAME(dctx)->da;
1293 fr_dict_attr_t const *ref_namespace;
1294
1295 if (argc != 2) {
1296 fr_strerror_const("Invalid ALIAS syntax");
1297 return -1;
1298 }
1299
1300 /*
1301 * Dictionaries need to have real names, not shitty ones.
1302 */
1303 if (strncmp(argv[0], "Attr-", 5) == 0) {
1304 fr_strerror_const("Invalid ALIAS name");
1305 return -1;
1306 }
1307
1308 /*
1309 * Relative refs get resolved from the current namespace.
1310 */
1311 if (argv[1][0] == '.') {
1312 ref_namespace = parent;
1313 /*
1314 * No dot, so we're looking in the root namespace.
1315 */
1316 } else {
1317 ref_namespace = dctx->dict->root;
1318 }
1319
1320 /*
1321 * The <ref> can be a name.
1322 */
1323 da = fr_dict_attr_by_oid(NULL, ref_namespace, argv[1]);
1324 if (!da) {
1325 /*
1326 * If we can't find it now, the file
1327 * containing the ALIASes may have
1328 * been allowed before the ALIASed
1329 * attributes.
1330 */
1331 return dict_fixup_alias_enqueue(&dctx->fixup, CURRENT_FILENAME(dctx), CURRENT_LINE(dctx),
1332 fr_dict_attr_unconst(parent), argv[0],
1333 fr_dict_attr_unconst(ref_namespace), argv[1]);
1334 }
1335
1336 return dict_attr_alias_add(fr_dict_attr_unconst(parent), argv[0], da);
1337}
1338
1339/*
1340 * Process the ATTRIBUTE command
1341 */
1342static int dict_read_process_attribute(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
1343{
1344 bool set_relative_attr;
1345
1346 ssize_t slen;
1347 unsigned int attr;
1348
1349 fr_dict_attr_t const *parent, *key = NULL;
1350 fr_dict_attr_t *da;
1351 fr_value_box_t box;
1352
1353 if ((argc < 3) || (argc > 4)) {
1354 fr_strerror_const("Invalid ATTRIBUTE syntax");
1355 return -1;
1356 }
1357
1358#ifdef STATIC_ANALYZER
1359 if (!dctx->dict) return -1;
1360#endif
1361
1362 /*
1363 * A non-relative ATTRIBUTE definition means that it is
1364 * in the context of the previous BEGIN-FOO. So we
1365 * unwind the stack to match.
1366 */
1367 if (argv[1][0] != '.') {
1368 dict_tokenize_frame_t const *frame;
1369
1370 frame = dict_dctx_unwind(dctx);
1371 if (!frame) return -1;
1372
1373 parent = frame->da;
1374
1375 /*
1376 * Allow '0xff00' as attribute numbers, but only
1377 * if there is no OID component.
1378 */
1379 if (strchr(argv[1], '.') == 0) {
1380 if (!dict_read_sscanf_i(&attr, argv[1])) {
1381 fr_strerror_const("Invalid ATTRIBUTE number");
1382 return -1;
1383 }
1384
1385 } else {
1386 slen = fr_dict_attr_by_oid_legacy(dctx->dict, &parent, &attr, argv[1]);
1387 if (slen <= 0) return -1;
1388 }
1389
1390 /*
1391 * We allow relative attributes only for TLVs.
1392 *
1393 * We haven't parsed the type field yet, so we
1394 * just check it here manually.
1395 */
1396 set_relative_attr = (strcasecmp(argv[2], "tlv") == 0);
1397
1398 } else {
1399 if (!dctx->relative_attr) {
1400 fr_strerror_const("Unknown parent for partial OID");
1401 return -1;
1402 }
1403
1404 parent = dctx->relative_attr;
1405
1406 slen = fr_dict_attr_by_oid_legacy(dctx->dict, &parent, &attr, argv[1]);
1407 if (slen <= 0) return -1;
1408
1409 set_relative_attr = false;
1410 }
1411
1412 if (!fr_cond_assert(parent)) return -1; /* Should have provided us with a parent */
1413
1414 /*
1415 * Members of a 'struct' MUST use MEMBER, not ATTRIBUTE.
1416 */
1417 if (parent->type == FR_TYPE_STRUCT) {
1418 fr_strerror_printf("Member %s of ATTRIBUTE %s type 'struct' MUST use the \"MEMBER\" keyword",
1419 argv[0], parent->name);
1420 return -1;
1421 }
1422
1423 /*
1424 * A UNION can have child ATTRIBUTEs
1425 */
1426 if (parent->type == FR_TYPE_UNION) {
1428
1429 /*
1430 * The parent is a union. Get and verify the key ref.
1431 */
1433 fr_assert(ext != NULL);
1434
1435 /*
1436 * Double-check names against the reference.
1437 */
1438 key = ext->ref;
1439 fr_assert(key);
1441 }
1442
1443 da = dict_attr_alloc_null(dctx->dict->pool, dctx->dict->proto);
1444 if (unlikely(!da)) return -1;
1445
1446 /*
1447 * Record the attribute number BEFORE we parse the type and flags.
1448 *
1449 * This is needed for the DER dictionaries, and 'option'.
1450 *
1451 * It can also be useful for other protocols, which may
1452 * have restrictions on the various fields. It is
1453 * therefore useful to have all fields initialized before
1454 * the type/flag validation routines are called.
1455 */
1456 if (unlikely(dict_attr_num_init(da, attr) < 0)) {
1457 error:
1458 talloc_free(da);
1459 return -1;
1460 }
1461
1462 /*
1463 * Check the attribute number against the allowed values.
1464 */
1465 if (key) {
1466 fr_value_box_init(&box, FR_TYPE_UINT32, NULL, false);
1467 box.vb_uint32 = attr;
1468
1469 if (fr_value_box_cast_in_place(da, &box, key->type, NULL) < 0) {
1470 fr_strerror_printf_push("Invalid attribute number as key field %s has data type %s",
1471 key->name, fr_type_to_str(key->type));
1472 goto error;
1473 }
1474 }
1475
1476 if (dict_read_process_common(dctx, &da, parent, argv[0], argv[2],
1477 (argc > 3) ? argv[3] : NULL, base_flags) < 0) {
1478 goto error;
1479 }
1480
1481 if (da->flags.extra && (da->flags.subtype == FLAG_BIT_FIELD)) {
1482 fr_strerror_const("Bit fields can only be defined as a MEMBER of data type 'struct'");
1483 goto error;
1484 }
1485
1486 /*
1487 * Unions need a key field. And key fields can only appear inside of a struct.
1488 */
1489 if (da->type == FR_TYPE_UNION) {
1490 fr_strerror_const("ATTRIBUTEs of type 'union' can only be defined as a MEMBER of data type 'struct'");
1491 return -1;
1492 }
1493
1494 /*
1495 * Cross-check fixed lengths.
1496 */
1497 if (key && (parent->flags.is_known_width)) {
1498 if (!da->flags.is_known_width) {
1499 da->flags.is_known_width = 1;
1500 da->flags.length = parent->flags.length;
1501
1502 } else if (da->flags.length != parent->flags.length) {
1503 fr_strerror_printf("Invalid length %u for struct, the parent union %s has a different length %u",
1504 da->flags.length, parent->name, parent->flags.length);
1505 return -1;
1506 }
1507 }
1508
1509#ifdef WITH_DICTIONARY_WARNINGS
1510 /*
1511 * Hack to help us discover which vendors have illegal
1512 * attributes.
1513 */
1514 if (!vendor && (attr < 256) &&
1515 !strstr(fn, "rfc") && !strstr(fn, "illegal")) {
1516 fprintf(stderr, "WARNING: Illegal attribute %s in %s\n",
1517 argv[0], fn);
1518 }
1519#endif
1520
1521 /*
1522 * Set the attribute name
1523 */
1524 if (unlikely(dict_attr_finalise(&da, argv[0]) < 0)) {
1525 goto error;
1526 }
1527
1528 /*
1529 * Check to see if this is a duplicate attribute
1530 * and whether we should ignore it or error out...
1531 */
1532 switch (dict_attr_allow_dup(da)) {
1533 case 1:
1534 break;
1535
1536 case 0:
1537 talloc_free(da);
1538 return 0;
1539
1540 default:
1541 goto error;
1542 }
1543
1544 /*
1545 * Add the attribute we allocated earlier
1546 */
1547 switch (dict_attr_add_or_fixup(&dctx->fixup, &da)) {
1548 default:
1549 goto error;
1550
1551 /* New attribute, fixup stack */
1552 case 0:
1553 /*
1554 * Dynamically define where VSAs go. Note that we CANNOT
1555 * define VSAs until we define an attribute of type VSA!
1556 */
1557 if (da->type == FR_TYPE_VSA) {
1558 if (parent->flags.is_root) dctx->dict->vsa_parent = attr;
1559
1560 if (dict_fixup_vsa_enqueue(&dctx->fixup, da) < 0) {
1561 return -1; /* Leaves attr added */
1562 }
1563 }
1564
1565 /*
1566 * Add the VALUE to the key attribute, and ensure that
1567 * the VALUE also contains a pointer to the child struct.
1568 */
1569 if (key && (dict_attr_enum_add_name(fr_dict_attr_unconst(key), da->name, &box, false, true, da) < 0)) {
1570 goto error;
1571 }
1572
1573 /*
1574 * Adding an attribute of type 'struct' is an implicit
1575 * BEGIN-STRUCT.
1576 */
1577 if (da->type == FR_TYPE_STRUCT) {
1578 if (dict_dctx_push(dctx, da, NEST_NONE) < 0) return -1;
1579
1580 CURRENT_FRAME(dctx)->finalise = dict_struct_finalise;
1581 dctx->value_attr = NULL;
1582 } else {
1583 dctx->value_attr = da;
1584 }
1585
1586 if (set_relative_attr) dctx->relative_attr = da;
1587 break;
1588
1589 /* Deferred attribute, don't begin the TLV section automatically */
1590 case 1:
1591 break;
1592 }
1593
1594 return 0;
1595}
1596
1597static int dict_read_process_begin(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
1598{
1599 dict_tokenize_frame_t const *frame;
1600 fr_dict_attr_t const *da;
1601 fr_dict_attr_t const *common;
1602
1603 dctx->value_attr = NULL;
1604 dctx->relative_attr = NULL;
1605
1606 if (argc != 1) {
1607 fr_strerror_const("Invalid BEGIN keyword. Expected BEGIN <name>");
1608 return -1;
1609 }
1610
1612 if (!fr_cond_assert_msg(frame, "Context stack doesn't have an attribute or dictionary "
1613 "root to begin searching from %s[%d]", CURRENT_FILENAME(dctx), CURRENT_LINE(dctx)) ||
1614 !fr_cond_assert_msg(fr_type_is_structural(frame->da->type), "Context attribute is not structural %s[%d]",
1615 CURRENT_FILENAME(dctx), CURRENT_LINE(dctx))) {
1616 return -1;
1617 }
1618
1619 /*
1620 * Not really a reference as we don't support any of the
1621 * fancy syntaxes like refs do. A straight OID string
1622 * resolved from the current level of nesting is all we support.
1623 */
1624 da = fr_dict_attr_by_oid(NULL, frame->da, argv[0]);
1625 if (!da) {
1626 fr_strerror_printf("BEGIN %s is not resolvable in current context '%s'", argv[0], frame->da->name);
1627 return -1;
1628 }
1629
1630 if (!fr_type_is_tlv(da->type) && !fr_type_is_struct(da->type) && (da->type != FR_TYPE_UNION)) {
1631 fr_strerror_printf("BEGIN %s cannot be used with data type '%s'",
1632 argv[0],
1633 fr_type_to_str(da->type));
1634 return -1;
1635 }
1636
1637 common = fr_dict_attr_common_parent(frame->da, da, true);
1638 if (!common) {
1639 fr_strerror_printf("BEGIN %s should be a child of '%s'",
1640 argv[0], CURRENT_FRAME(dctx)->da->name);
1641 return -1;
1642 }
1643
1644 return dict_dctx_push(dctx, da, NEST_ATTRIBUTE);
1645}
1646
1647static int dict_read_process_begin_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc,
1648 UNUSED fr_dict_attr_flags_t *base_flags)
1649{
1650 fr_dict_t *found;
1651 dict_tokenize_frame_t const *frame;
1652
1653 dctx->value_attr = NULL;
1654 dctx->relative_attr = NULL;
1655
1656 if (argc != 1) {
1657 fr_strerror_const("Invalid BEGIN-PROTOCOL entry");
1658 return -1;
1659 }
1660
1661 /*
1662 * If we're not parsing in the context of the internal
1663 * dictionary, then we don't allow BEGIN-PROTOCOL
1664 * statements.
1665 */
1666 if (dctx->dict != dict_gctx->internal) {
1667 fr_strerror_const("Nested BEGIN-PROTOCOL statements are not allowed");
1668 return -1;
1669 }
1670
1671 found = dict_by_protocol_name(argv[0]);
1672 if (!found) {
1673 fr_strerror_printf("Unknown protocol '%s'", argv[0]);
1674 return -1;
1675 }
1676
1678 if (frame) {
1679 fr_strerror_printf("BEGIN-PROTOCOL cannot be used inside of any other BEGIN/END block. Previous definition is at %s[%d]",
1680 frame->filename, frame->line);
1681 return -1;
1682 }
1683
1684 /*
1685 * Add a temporary fixup pool
1686 *
1687 * @todo - make a nested ctx?
1688 */
1689 dict_fixup_init(NULL, &dctx->fixup);
1690
1691 /*
1692 * We're in the middle of loading this dictionary. Tell
1693 * fr_dict_protocol_afrom_file() to suppress recursive references.
1694 */
1695 found->loading = true;
1696
1697 dctx->dict = found;
1698
1699 return dict_dctx_push(dctx, dctx->dict->root, NEST_PROTOCOL);
1700}
1701
1702static int dict_read_process_begin_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc,
1703 UNUSED fr_dict_attr_flags_t *base_flags)
1704{
1705 fr_dict_vendor_t const *vendor;
1707
1708 fr_dict_attr_t const *vsa_da;
1709 fr_dict_attr_t const *vendor_da;
1710 fr_dict_attr_t *new;
1711 dict_tokenize_frame_t const *frame;
1712 char *p;
1713
1714 dctx->value_attr = NULL;
1715 dctx->relative_attr = NULL;
1716
1717 if (argc < 1) {
1718 fr_strerror_const("Invalid BEGIN-VENDOR entry");
1719 return -1;
1720 }
1721
1722 vendor = fr_dict_vendor_by_name(dctx->dict, argv[0]);
1723 if (!vendor) {
1724 fr_strerror_printf("Unknown vendor '%s'", argv[0]);
1725 return -1;
1726 }
1727
1728 /*
1729 * Check for extended attr VSAs
1730 *
1731 * BEGIN-VENDOR foo parent=Foo-Encapsulation-Attr
1732 */
1733 if (argc > 1) {
1734 fr_dict_attr_t const *da;
1735
1736 if (strncmp(argv[1], "parent=", 7) != 0) {
1737 fr_strerror_printf("BEGIN-VENDOR invalid argument (%s)", argv[1]);
1738 return -1;
1739 }
1740
1741 p = argv[1] + 7;
1742 da = fr_dict_attr_by_oid(NULL, CURRENT_FRAME(dctx)->da, p);
1743 if (!da) {
1744 fr_strerror_printf("BEGIN-VENDOR invalid argument (%s)", argv[1]);
1745 return -1;
1746 }
1747
1748 if (da->type != FR_TYPE_VSA) {
1749 fr_strerror_printf("Invalid parent for BEGIN-VENDOR. "
1750 "Attribute '%s' should be 'vsa' but is '%s'", p,
1751 fr_type_to_str(da->type));
1752 return -1;
1753 }
1754
1755 vsa_da = da;
1756
1757 } else if (dctx->dict->vsa_parent) {
1758 /*
1759 * Check that the protocol-specific VSA parent exists.
1760 */
1761 vsa_da = dict_attr_child_by_num(CURRENT_FRAME(dctx)->da, dctx->dict->vsa_parent);
1762 if (!vsa_da) {
1763 fr_strerror_printf("Failed finding VSA parent for Vendor %s",
1764 vendor->name);
1765 return -1;
1766 }
1767
1768 } else if (dctx->dict->string_based) {
1769 vsa_da = dctx->dict->root;
1770
1771 } else {
1772 fr_strerror_printf("BEGIN-VENDOR is forbidden for protocol %s - it has no ATTRIBUTE of type 'vsa'",
1773 dctx->dict->root->name);
1774 return -1;
1775 }
1776
1777 frame = dict_dctx_find_frame(dctx, NEST_VENDOR);
1778 if (frame) {
1779 fr_strerror_printf("Nested BEGIN-VENDOR is forbidden. Previous definition is at %s[%d]",
1780 frame->filename, frame->line);
1781 return -1;
1782 }
1783
1784 /*
1785 * Create a VENDOR attribute on the fly, either in the context
1786 * of the VSA (26) attribute.
1787 */
1788 vendor_da = dict_attr_child_by_num(vsa_da, vendor->pen);
1789 if (!vendor_da) {
1790 memset(&flags, 0, sizeof(flags));
1791
1792 flags.type_size = dctx->dict->proto->default_type_size;
1793 flags.length = dctx->dict->proto->default_type_length;
1794
1795 /*
1796 * See if this vendor has
1797 * specific sizes for type /
1798 * length.
1799 *
1800 * @todo - Make this more protocol agnostic!
1801 */
1802 if ((vsa_da->type == FR_TYPE_VSA) &&
1803 (vsa_da->parent->flags.is_root)) {
1804 fr_dict_vendor_t const *dv;
1805
1806 dv = fr_dict_vendor_by_num(dctx->dict, vendor->pen);
1807 if (dv) {
1808 flags.type_size = dv->type;
1809 flags.length = dv->length;
1810 }
1811 }
1812
1813 new = dict_attr_alloc(dctx->dict->pool,
1814 vsa_da, argv[0], vendor->pen, FR_TYPE_VENDOR,
1815 &(dict_attr_args_t){ .flags = &flags });
1816 if (unlikely(!new)) return -1;
1817
1818 if (dict_attr_child_add(UNCONST(fr_dict_attr_t *, vsa_da), new) < 0) {
1819 talloc_free(new);
1820 return -1;
1821 }
1822
1823 if (dict_attr_add_to_namespace(UNCONST(fr_dict_attr_t *, vsa_da), new) < 0) {
1824 talloc_free(new);
1825 return -1;
1826 }
1827
1828 vendor_da = new;
1829 } else {
1830 fr_assert(vendor_da->type == FR_TYPE_VENDOR);
1831 }
1832
1833 return dict_dctx_push(dctx, vendor_da, NEST_VENDOR);
1834}
1835
1836/*
1837 * Process the DEFINE command
1838 *
1839 * Which is mostly like ATTRIBUTE, but does not have a number.
1840 */
1841static int dict_read_process_define(dict_tokenize_ctx_t *dctx, char **argv, int argc,
1842 fr_dict_attr_flags_t *base_flags)
1843{
1844 fr_dict_attr_t const *parent;
1845 fr_dict_attr_t *da = NULL;
1846 dict_tokenize_frame_t const *frame;
1847
1848 if ((argc < 2) || (argc > 3)) {
1849 fr_strerror_const("Invalid DEFINE syntax");
1850 return -1;
1851 }
1852
1853 frame = dict_dctx_unwind(dctx);
1854 if (!fr_cond_assert(frame && frame->da)) return -1; /* Should have provided us with a parent */
1855
1856 parent = frame->da;
1857
1858 /*
1859 * Members of a 'struct' MUST use MEMBER, not ATTRIBUTE.
1860 */
1861 if (parent->type == FR_TYPE_STRUCT) {
1862 fr_strerror_printf("Member %s of parent %s type 'struct' MUST use the \"MEMBER\" keyword",
1863 argv[0], parent->name);
1864 return -1;
1865 }
1866
1867 if (parent->type == FR_TYPE_UNION) {
1868 fr_strerror_printf("Parent attribute %s is of type 'union', and can only have STRUCT children",
1869 parent->name);
1870 return -1;
1871 }
1872
1873 /*
1874 * We don't set the attribute number before parsing the
1875 * type and flags. The number is chosen internally, and
1876 * no one should depend on it.
1877 */
1878 if (dict_read_process_common(dctx, &da, parent, argv[0], argv[1],
1879 (argc > 2) ? argv[2] : NULL, base_flags) < 0) {
1880 return -1;
1881 }
1882
1883 /*
1884 * Certain structural types MUST have numbers.
1885 */
1886 switch (da->type) {
1887 case FR_TYPE_VSA:
1888 case FR_TYPE_VENDOR:
1889 fr_strerror_printf("DEFINE cannot be used for type '%s'", argv[1]);
1890 error:
1891 talloc_free(da);
1892 return -1;
1893
1894 default:
1895 break;
1896 }
1897
1898 if (da->flags.extra && (da->flags.subtype == FLAG_BIT_FIELD)) {
1899 fr_strerror_const("Bit fields can only be defined as a MEMBER of data type 'struct'");
1900 goto error;
1901 }
1902
1903#ifdef STATIC_ANALYZER
1904 if (!dctx->dict) goto error;
1905#endif
1906
1907 /*
1908 * Since there is no number, the attribute cannot be
1909 * encoded as a number.
1910 */
1911 da->flags.name_only = true;
1912
1913 /*
1914 * Add an attribute number now so the allocations occur in order
1915 */
1916 if (unlikely(dict_attr_num_init_name_only(da) < 0)) goto error;
1917
1918 /*
1919 * Set the attribute name
1920 */
1921 if (unlikely(dict_attr_finalise(&da, argv[0]) < 0)) goto error;
1922
1923 /*
1924 * Check to see if this is a duplicate attribute
1925 * and whether we should ignore it or error out...
1926 */
1927 switch (dict_attr_allow_dup(da)) {
1928 case 1:
1929 break;
1930
1931 case 0:
1932 talloc_free(da);
1933 return 0;
1934
1935 default:
1936 goto error;
1937 }
1938
1939 /*
1940 * Add the attribute we allocated earlier
1941 */
1942 switch (dict_attr_add_or_fixup(&dctx->fixup, &da)) {
1943 default:
1944 goto error;
1945
1946 /* New attribute, fixup stack */
1947 case 0:
1948 if (dict_set_value_attr(dctx, da) < 0) return -1;
1949
1950 if (da->type == FR_TYPE_TLV) {
1951 dctx->relative_attr = da;
1952 } else {
1953 dctx->relative_attr = NULL;
1954 }
1955 break;
1956
1957 /* Deferred attribute, don't begin the TLV section automatically */
1958 case 1:
1959 break;
1960 }
1961
1962 return 0;
1963}
1964
1965static int dict_read_process_end(dict_tokenize_ctx_t *dctx, char **argv, int argc,
1966 UNUSED fr_dict_attr_flags_t *base_flags)
1967{
1968 fr_dict_attr_t const *current;
1969 fr_dict_attr_t const *da;
1970 dict_tokenize_frame_t const *frame;
1971
1972 dctx->value_attr = NULL;
1973 dctx->relative_attr = NULL;
1974
1975 if (argc > 2) {
1976 fr_strerror_const("Invalid END syntax, expected END <ref>");
1977 return -1;
1978 }
1979
1980 /*
1981 * Unwind until we hit an attribute nesting section
1982 */
1984 return -1;
1985 }
1986
1987 /*
1988 * Pop the stack to get the attribute we're ending.
1989 */
1990 current = dict_dctx_pop(dctx)->da;
1991
1992 /*
1993 * No checks on the attribute, we're just popping _A_ frame,
1994 * we don't care what attribute it represents.
1995 */
1996 if (argc == 1) return 0;
1997
1998 /*
1999 * This is where we'll have begun the previous search to
2000 * evaluate the BEGIN keyword.
2001 */
2003 if (!fr_cond_assert(frame)) return -1;
2004
2005 da = fr_dict_attr_by_oid(NULL, frame->da, argv[0]);
2006 if (!da) {
2007 fr_strerror_const_push("Failed resolving attribute in BEGIN entry");
2008 return -1;
2009 }
2010
2011 if (da != current) {
2012 fr_strerror_printf("END %s does not match previous BEGIN %s", argv[0], current->name);
2013 return -1;
2014 }
2015
2016 return 0;
2017}
2018
2019static int dict_read_process_end_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2020 UNUSED fr_dict_attr_flags_t *base_flags)
2021{
2022 fr_dict_t const *found;
2023
2024 dctx->value_attr = NULL;
2025 dctx->relative_attr = NULL;
2026
2027 if (argc != 1) {
2028 fr_strerror_const("Invalid END-PROTOCOL entry");
2029 return -1;
2030 }
2031
2032 found = dict_by_protocol_name(argv[0]);
2033 if (!found) {
2034 fr_strerror_printf("END-PROTOCOL %s does not refer to a valid protocol", argv[0]);
2035 return -1;
2036 }
2037
2038 if (found != dctx->dict) {
2039 fr_strerror_printf("END-PROTOCOL %s does not match previous BEGIN-PROTOCOL %s",
2040 argv[0], dctx->dict->root->name);
2041 return -1;
2042 }
2043
2044 /*
2045 * Unwind until we get to a BEGIN-PROTOCOL nesting.
2046 */
2048 return -1;
2049 }
2050
2051 if (found->root != CURRENT_FRAME(dctx)->da) {
2052 fr_strerror_printf("END-PROTOCOL %s does not match previous BEGIN-PROTOCOL %s", argv[0],
2053 CURRENT_FRAME(dctx)->da->name);
2054 return -1;
2055 }
2056
2057 /*
2058 * Applies fixups to any attributes added to the protocol
2059 * dictionary. Note that the finalise function prints
2060 * out the original filename / line of the error. So we
2061 * don't need to do that here.
2062 */
2063 if (dict_finalise(dctx) < 0) return -1;
2064
2066
2067 fr_assert(!dctx->stack[dctx->stack_depth].finalise);
2068 dctx->stack_depth--; /* nuke the BEGIN-PROTOCOL */
2069
2071 dctx->dict = dict_gctx->internal;
2072
2073 return 0;
2074}
2075
2076static int dict_read_process_end_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2077 UNUSED fr_dict_attr_flags_t *base_flags)
2078{
2079 fr_dict_vendor_t const *vendor;
2080
2081 dctx->value_attr = NULL;
2082 dctx->relative_attr = NULL;
2083
2084 if (argc != 1) {
2085 fr_strerror_const("END-VENDOR is missing vendor name");
2086 return -1;
2087 }
2088
2089 vendor = fr_dict_vendor_by_name(dctx->dict, argv[0]);
2090 if (!vendor) {
2091 fr_strerror_printf("Unknown vendor '%s'", argv[0]);
2092 return -1;
2093 }
2094
2095 /*
2096 * Unwind until we get to a BEGIN-VENDOR nesting.
2097 */
2098 if (!dict_dctx_unwind_until(dctx, NEST_VENDOR)) {
2099 return -1;
2100 }
2101
2102 if (vendor->pen != CURRENT_FRAME(dctx)->da->attr) {
2103 fr_strerror_printf("END-VENDOR %s does not match previous BEGIN-VENDOR %s", argv[0],
2104 CURRENT_FRAME(dctx)->da->name);
2105 return -1;
2106 }
2107
2108 fr_assert(!dctx->stack[dctx->stack_depth].finalise);
2109 dctx->stack_depth--; /* nuke the BEGIN-VENDOR */
2110
2111 return 0;
2112}
2113
2114/*
2115 * Process the ENUM command
2116 */
2117static int dict_read_process_enum(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2118 fr_dict_attr_flags_t *base_flags)
2119{
2120 fr_dict_attr_t const *parent;
2121 fr_dict_attr_t *da = NULL;
2122
2123 if (argc != 2) {
2124 fr_strerror_const("Invalid ENUM syntax");
2125 return -1;
2126 }
2127
2128 /*
2129 * Dictionaries need to have real names, not shitty ones.
2130 */
2131 if (strncmp(argv[0], "Attr-", 5) == 0) {
2132 fr_strerror_const("Invalid ENUM name");
2133 return -1;
2134 }
2135
2136#ifdef STATIC_ANALYZER
2137 if (!dctx->dict) goto error;
2138#endif
2139
2140 /*
2141 * Allocate the attribute here, and then fill in the fields
2142 * as we start parsing the various elements of the definition.
2143 */
2144 da = dict_attr_alloc_null(dctx->dict->pool, dctx->dict->proto);
2145 if (unlikely(da == NULL)) return -1;
2146 dict_attr_location_set(dctx, da);
2147 da->dict = dctx->dict;
2148
2149 /*
2150 * Set the attribute flags from the base flags.
2151 */
2152 memcpy(&da->flags, base_flags, sizeof(da->flags));
2153
2154 da->flags.name_only = true; /* values for ENUM are irrelevant */
2155 da->flags.internal = true; /* ENUMs will never get encoded into a protocol */
2156#if 0
2157 flags.is_enum = true; /* it's an enum, and can't be assigned to a #fr_pair_t */
2158#endif
2159
2160 /*
2161 * Set the base type of the attribute.
2162 */
2163 if (dict_process_type_field(dctx, argv[1], &da) < 0) {
2164 error:
2165 talloc_free(da);
2166 return -1;
2167 }
2168
2169 if (da->flags.extra && (da->flags.subtype == FLAG_BIT_FIELD)) {
2170 fr_strerror_const("Bit fields can only be defined as a MEMBER of a data type 'struct'");
2171 goto error;
2172 }
2173
2174 switch (da->type) {
2175 case FR_TYPE_LEAF:
2176 break;
2177
2178 default:
2179 fr_strerror_printf("ENUMs can only be a leaf type, not %s",
2180 fr_type_to_str(da->type));
2181 break;
2182 }
2183
2184 parent = CURRENT_FRAME(dctx)->da;
2185 if (!parent) {
2186 fr_strerror_const("Invalid location for ENUM");
2187 goto error;
2188 }
2189
2190 /*
2191 * ENUMs cannot have a flag field, so we don't parse that.
2192 *
2193 * Maybe we do want a flag field for named time deltas?
2194 */
2195
2196 if (unlikely(dict_attr_parent_init(&da, parent) < 0)) goto error;
2197 if (unlikely(dict_attr_finalise(&da, argv[0]) < 0)) goto error;
2198
2199 /*
2200 * Add the attribute we allocated earlier
2201 */
2202 switch (dict_attr_add_or_fixup(&dctx->fixup, &da)) {
2203 default:
2204 goto error;
2205
2206 case 0:
2207 memcpy(&dctx->value_attr, &da, sizeof(da));
2208 break;
2209
2210 case 1:
2211 break;
2212 }
2213
2214 return 0;
2215}
2216
2217/*
2218 * Process the FLAGS command
2219 */
2220static int dict_read_process_flags(UNUSED dict_tokenize_ctx_t *dctx, char **argv, int argc,
2221 fr_dict_attr_flags_t *base_flags)
2222{
2223 bool sense = true;
2224
2225 if (argc == 1) {
2226 char *p;
2227
2228 p = argv[0];
2229 if (*p == '!') {
2230 sense = false;
2231 p++;
2232 }
2233
2234 if (strcmp(p, "internal") == 0) {
2235 base_flags->internal = sense;
2236 return 0;
2237 }
2238 }
2239
2240 fr_strerror_const("Invalid FLAGS syntax");
2241 return -1;
2242}
2243
2244/*
2245 * Process the MEMBER command
2246 */
2247static int dict_read_process_member(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2248 fr_dict_attr_flags_t *base_flags)
2249{
2250 fr_dict_attr_t *da = NULL;
2251
2252 if ((argc < 2) || (argc > 3)) {
2253 fr_strerror_const("Invalid MEMBER syntax");
2254 return -1;
2255 }
2256
2257 if (CURRENT_FRAME(dctx)->da->type != FR_TYPE_STRUCT) {
2258 fr_strerror_printf("MEMBER can only be used for ATTRIBUTEs of type 'struct', not for data type %s",
2259 fr_type_to_str(CURRENT_FRAME(dctx)->da->type));
2260 return -1;
2261 }
2262
2263 /*
2264 * Check if the parent 'struct' is fixed size. And if
2265 * so, complain if we're adding a variable sized member.
2266 */
2267 if (CURRENT_FRAME(dctx)->struct_is_closed) {
2268 fr_strerror_printf("Cannot add MEMBER to 'struct' %s after a variable sized member %s",
2269 CURRENT_FRAME(dctx)->da->name,
2270 CURRENT_FRAME(dctx)->struct_is_closed->name);
2271 return -1;
2272 }
2273
2274 /*
2275 * We don't set the attribute number before parsing the
2276 * type and flags. The number is chosen internally, and
2277 * no one should depend on it.
2278 *
2279 * Although _arguably_, it may be useful to know which
2280 * field this is, 0..N?
2281 */
2282 if (dict_read_process_common(dctx, &da, CURRENT_FRAME(dctx)->da, argv[0], argv[1],
2283 (argc > 2) ? argv[2] : NULL, base_flags) < 0) {
2284 return -1;
2285 }
2286
2287#ifdef STATIC_ANALYZER
2288 if (!dctx->dict) goto error;
2289#endif
2290
2291 /*
2292 * If our parent is a fixed-size struct, then we have to be fixed-size, too.
2293 */
2294 da->flags.is_known_width |= CURRENT_FRAME(dctx)->da->flags.is_known_width;
2295
2296 /*
2297 * Double check any bit field magic
2298 */
2299 if (CURRENT_FRAME(dctx)->member_num > 0) {
2300 fr_dict_attr_t const *previous;
2301
2302 previous = dict_attr_child_by_num(CURRENT_FRAME(dctx)->da,
2303 CURRENT_FRAME(dctx)->member_num);
2304 /*
2305 * Check that the previous bit field ended on a
2306 * byte boundary.
2307 *
2308 * Note that the previous attribute might be a deferred TLV, in which case it doesn't
2309 * exist. That's fine.
2310 */
2311 if (previous && previous->flags.extra && (previous->flags.subtype == FLAG_BIT_FIELD)) {
2312 /*
2313 * This attribute is a bit field. Keep
2314 * track of where in the byte we are
2315 * located.
2316 */
2317 if (da->flags.extra && (da->flags.subtype == FLAG_BIT_FIELD)) {
2318 da->flags.flag_byte_offset = (da->flags.length + previous->flags.flag_byte_offset) & 0x07;
2319
2320 } else {
2321 if (previous->flags.flag_byte_offset != 0) {
2322 fr_strerror_printf("Previous bitfield %s did not end on a byte boundary",
2323 previous->name);
2324 error:
2325 talloc_free(da);
2326 return -1;
2327 }
2328 }
2329 }
2330 }
2331
2332 /*
2333 * Ensure that no previous child has "key" or "length" set.
2334 */
2335 if (da->type == FR_TYPE_TLV) {
2336 fr_dict_attr_t const *key;
2337 int i;
2338
2339 /*
2340 * @todo - cache the key field in the stack frame, so we don't have to loop over the children.
2341 */
2342 for (i = 1; i <= CURRENT_FRAME(dctx)->member_num; i++) {
2343 key = dict_attr_child_by_num(CURRENT_FRAME(dctx)->da, i);
2344 if (!key) continue; /* really should be WTF? */
2345
2346 if (fr_dict_attr_is_key_field(key)) {
2347 fr_strerror_printf("'struct' %s has a 'key' field %s, and cannot end with a TLV %s",
2348 CURRENT_FRAME(dctx)->da->name, key->name, argv[0]);
2349 goto error;
2350 }
2351
2352 if (da_is_length_field(key)) {
2353 fr_strerror_printf("'struct' %s has a 'length' field %s, and cannot end with a TLV %s",
2354 CURRENT_FRAME(dctx)->da->name, key->name, argv[0]);
2355 goto error;
2356 }
2357 }
2358
2359 /*
2360 * TLVs are variable sized, and close the parent struct.
2361 */
2362 CURRENT_FRAME(dctx)->struct_is_closed = da;
2363 }
2364
2365 /*
2366 * Unions close the parent struct, even if they're fixed size. For now, the struct to/from
2367 * network code assumes that a union is the last member of a structure.
2368 */
2369 if (da->type == FR_TYPE_UNION) {
2370 CURRENT_FRAME(dctx)->struct_is_closed = da;
2371 }
2372
2373 if (unlikely(dict_attr_num_init(da, ++CURRENT_FRAME(dctx)->member_num) < 0)) goto error;
2374 if (unlikely(dict_attr_finalise(&da, argv[0]) < 0)) goto error;
2375
2376 /*
2377 * Check to see if this is a duplicate attribute
2378 * and whether we should ignore it or error out...
2379 */
2380 switch (dict_attr_allow_dup(da)) {
2381 case 1:
2382 break;
2383
2384 case 0:
2385 talloc_free(da);
2386 return 0;
2387
2388 default:
2389 goto error;
2390 }
2391
2392 switch (dict_attr_add_or_fixup(&dctx->fixup, &da)) {
2393 default:
2394 goto error;
2395
2396 case 1:
2397 /*
2398 * @todo - a MEMBER can theoretically have a "ref=..", though non currently do.
2399 *
2400 * If the ref is deferred, then we cannot finalise the parent struct until we have
2401 * resolved the reference. But the "finalise struct on fixup" code isn't written. So
2402 * instead of silently doing the wrong thing, we just return an error.
2403 */
2404 fr_strerror_printf("Cannot have MEMBER with deferred ref=...");
2405 return -1;
2406
2407 case 0:
2408 /*
2409 * New attribute - avoid lots of indentation.
2410 */
2411 break;
2412 }
2413
2414 /*
2415 * Check if this MEMBER closes the structure.
2416 *
2417 * Close this struct if the child struct is variable sized. For now, it we only support
2418 * child structs at the end of the parent.
2419 *
2420 * The solution is to update the unwind() function to check if the da we've
2421 * unwound to is a struct, and then if so... get the last child, and mark it
2422 * closed.
2423 *
2424 * @todo - a MEMBER which is of type 'struct' and has 'clone=foo', we delay the clone
2425 * until after all of the dictionaries have been loaded. As such, this attribute
2426 * is unknown width, and MUST be at the end of the parent structure.
2427 *
2428 * If the cloned MEMBER is in the middle of a structure, then the user will get an opaque
2429 * error. But that case should be rare.
2430 */
2431 if (!da->flags.is_known_width) {
2432 /*
2433 * The child is unknown width, but we were told that the parent has known width.
2434 * That's an error.
2435 */
2436 if (CURRENT_FRAME(dctx)->da->flags.length) {
2437 fr_strerror_printf("'struct' %s has fixed size %u, but member %s is of unknown size",
2438 CURRENT_FRAME(dctx)->da->name, CURRENT_FRAME(dctx)->da->flags.length,
2439 argv[0]);
2440 return -1;
2441 }
2442
2443 /*
2444 * Mark the structure as closed by this attribute. And then set the size to
2445 * zero, for "unknown size".
2446 */
2447 CURRENT_FRAME(dctx)->struct_is_closed = da;
2448 CURRENT_FRAME(dctx)->struct_size = 0;
2449
2450 /*
2451 * A 'struct' can have a MEMBER of type 'tlv', but ONLY
2452 * as the last entry in the 'struct'. If we see that,
2453 * set the previous attribute to the TLV we just added.
2454 * This allows the children of the TLV to be parsed as
2455 * partial OIDs, so we don't need to know the full path
2456 * to them.
2457 */
2458 if (da->type == FR_TYPE_TLV) {
2460 CURRENT_FRAME(dctx)->member_num);
2461 if (dctx->relative_attr && (dict_dctx_push(dctx, dctx->relative_attr, NEST_NONE) < 0)) return -1;
2462 }
2463
2464 } else if (CURRENT_FRAME(dctx)->da->flags.length) {
2465 /*
2466 * The parent is fixed size, so we track the length of the children.
2467 */
2468 CURRENT_FRAME(dctx)->struct_size += da->flags.length;
2469
2470 /*
2471 * Adding this child may result in an overflow, so we check that.
2472 */
2473 if (CURRENT_FRAME(dctx)->struct_size > CURRENT_FRAME(dctx)->da->flags.length) {
2474 fr_strerror_printf("'struct' %s has fixed size %u, but member %s overflows that length",
2475 CURRENT_FRAME(dctx)->da->name, CURRENT_FRAME(dctx)->da->flags.length,
2476 argv[0]);
2477 return -1;
2478 }
2479 }
2480
2481 /*
2482 * Set or clear the attribute for VALUE statements.
2483 */
2484 return dict_set_value_attr(dctx, da);
2485}
2486
2487/** Process a STRUCT name attr value
2488 *
2489 * Define struct 'name' when key 'attr' has 'value'.
2490 *
2491 * Which MUST be a sub-structure of another struct
2492 */
2493static int dict_read_process_struct(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2494 UNUSED fr_dict_attr_flags_t *base_flags)
2495{
2497 int i;
2498 fr_dict_attr_t const *parent = NULL;
2499 fr_dict_attr_t const *key = NULL;
2500 unsigned int attr;
2501 char const *name = argv[0];
2502 char const *value;
2503 char *flags = NULL;
2504 fr_dict_attr_t *da;
2505
2506 fr_assert(dctx->stack_depth > 0);
2507
2508 /*
2509 * Old-stle: unwind the stack until we find a parent which has a child named for key_attr.
2510 */
2511 parent = CURRENT_FRAME(dctx)->da;
2512 if (parent->type != FR_TYPE_UNION) {
2513 char const *key_attr;
2514
2515 if ((argc < 3) || (argc > 4)) {
2516 fr_strerror_const("Invalid STRUCT syntax");
2517 return -1;
2518 }
2519
2520 key_attr = argv[1];
2521 value = argv[2];
2522 if (argc == 4) flags = argv[3];
2523
2524 parent = NULL;
2525 for (i = dctx->stack_depth; i > 0; i--) {
2526 key = dict_attr_by_name(NULL, dctx->stack[i].da, key_attr);
2527 if (key) {
2528 parent = key;
2529 dctx->stack_depth = i;
2530 break;
2531 }
2532 }
2533
2534 /*
2535 * No parent was found, maybe the reference is a fully qualified name from the root.
2536 */
2537 if (!parent) {
2538 parent = fr_dict_attr_by_oid(NULL, CURRENT_FRAME(dctx)->da->dict->root, key_attr);
2539
2540 if (!parent) {
2541 fr_strerror_printf("Invalid STRUCT definition, unknown key attribute %s",
2542 key_attr);
2543 return -1;
2544 }
2545
2547 fr_strerror_printf("Attribute '%s' is not a 'key' attribute", key_attr);
2548 return -1;
2549 }
2550
2551 key = parent;
2552 }
2553
2554 } else {
2556
2557 /*
2558 * STRUCT inside of a UNION doesn't need to specify the name of the key.
2559 *
2560 * STRUCT name value [flags]
2561 */
2562 if ((argc < 2) || (argc > 3)) {
2563 fr_strerror_const("Invalid STRUCT syntax");
2564 return -1;
2565 }
2566
2567 value = argv[1];
2568 if (argc == 3) flags = argv[2];
2569
2570 /*
2571 * The parent is a union. Get and verify the key ref.
2572 */
2574 fr_assert(ext != NULL);
2575
2576 /*
2577 * Double-check names against the reference.
2578 */
2579 key = ext->ref;
2580 fr_assert(key);
2582 }
2583
2584 /*
2585 * Rely on dict_attr_flags_valid() to ensure that
2586 * da->type is an unsigned integer, AND that da->parent->type == struct
2587 */
2588 if (!fr_cond_assert(parent->parent->type == FR_TYPE_STRUCT)) return -1;
2589
2590 /*
2591 * Parse the value, which should be a small integer.
2592 */
2593 if (fr_value_box_from_str(NULL, &box, key->type, NULL, value, strlen(value), NULL) < 0) {
2594 fr_strerror_printf_push("Invalid value for STRUCT \"%s\"", value);
2595 return -1;
2596 }
2597
2598 /*
2599 * Allocate the attribute here, and then fill in the fields
2600 * as we start parsing the various elements of the definition.
2601 */
2602 da = dict_attr_alloc_null(dctx->dict->pool, dctx->dict->proto);
2603 if (unlikely(da == NULL)) return -1;
2604 dict_attr_location_set(dctx, da);
2605 da->dict = dctx->dict;
2606
2608 error:
2609 talloc_free(da);
2610 return -1;
2611 }
2612
2613 /*
2614 * Structs can be prefixed with 16-bit lengths, but not
2615 * with any other type of length.
2616 */
2617 if (flags) {
2618 if (dict_process_flag_field(dctx, flags, &da) < 0) goto error;
2619 }
2620
2621 /*
2622 * Create a unique number for the child attribute, based on the value of the key.
2623 */
2624 switch (key->type) {
2625 case FR_TYPE_UINT8:
2626 attr = box.vb_uint8;
2627 break;
2628
2629 case FR_TYPE_UINT16:
2630 attr = box.vb_uint16;
2631 break;
2632
2633 case FR_TYPE_UINT32:
2634 attr = box.vb_uint32;
2635 break;
2636
2637 default:
2638 fr_assert(0); /* should have been checked earlier when the key attribute was defined */
2639 return -1;
2640 }
2641
2642 if (unlikely(dict_attr_num_init(da, attr) < 0)) goto error;
2643 if (unlikely(dict_attr_parent_init(&da, parent) < 0)) goto error;
2644 if (unlikely(dict_attr_finalise(&da, name) < 0)) goto error;
2645
2646 /*
2647 * Check to see if this is a duplicate attribute
2648 * and whether we should ignore it or error out...
2649 */
2650 switch (dict_attr_allow_dup(da)) {
2651 case 1:
2652 break;
2653
2654 case 0:
2655 talloc_free(da);
2656 return 0;
2657
2658 default:
2659 goto error;
2660 }
2661
2662 /*
2663 * Add the STRUCT to the global namespace, and as a child of "parent".
2664 */
2665 switch (dict_attr_add_or_fixup(&dctx->fixup, &da)) {
2666 default:
2667 goto error;
2668
2669 /* FIXME: Should dict_attr_enum_add_name also be called in the fixup code? */
2670 case 0:
2671 da = dict_attr_by_name(NULL, parent, name);
2672 if (!da) return -1;
2673
2674 /*
2675 * A STRUCT definition is an implicit BEGIN-STRUCT.
2676 */
2677 dctx->relative_attr = NULL;
2678 if (dict_dctx_push(dctx, da, NEST_NONE) < 0) return -1;
2679
2680 /*
2681 * Add the VALUE to the key attribute, and ensure that
2682 * the VALUE also contains a pointer to the child struct.
2683 */
2684 if (dict_attr_enum_add_name(fr_dict_attr_unconst(key), name, &box, false, true, da) < 0) {
2685 fr_value_box_clear(&box);
2686 return -1;
2687 }
2688 fr_value_box_clear(&box);
2689 break;
2690
2691 case 1:
2692 break;
2693 }
2694
2695 return 0;
2696}
2697
2698/** Process a value alias
2699 *
2700 */
2701static int dict_read_process_value(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2702 UNUSED fr_dict_attr_flags_t *base_flags)
2703{
2704 fr_dict_attr_t *da;
2706 size_t enum_len;
2707 fr_dict_attr_t const *parent = CURRENT_FRAME(dctx)->da;
2708 fr_dict_attr_t const *enumv = NULL;
2709
2710 if (argc != 3) {
2711 fr_strerror_const("Invalid VALUE syntax");
2712 return -1;
2713 }
2714
2715 /*
2716 * Most VALUEs are bunched together by ATTRIBUTE. We can
2717 * save a lot of lookups on dictionary initialization by
2718 * caching the last attribute for a VALUE.
2719 *
2720 * If it's not the same, we look up the attribute in the
2721 * current context, which is generally:
2722 *
2723 * * the current attribute of type `struct`
2724 * * if no `struct`, then the VENDOR for VSAs
2725 * * if no VENDOR, then the dictionary root
2726 */
2727 if (!dctx->value_attr || (strcasecmp(argv[0], dctx->value_attr->name) != 0)) {
2728 fr_dict_attr_t const *tmp;
2729
2730 if (!(tmp = fr_dict_attr_by_oid(NULL, parent, argv[0]))) goto fixup;
2731 dctx->value_attr = fr_dict_attr_unconst(tmp);
2732 }
2733 da = dctx->value_attr;
2734
2735 /*
2736 * Verify the enum name matches the expected from.
2737 */
2738 enum_len = strlen(argv[1]);
2739 if (fr_dict_enum_name_from_substr(NULL, NULL, &FR_SBUFF_IN(argv[1], enum_len), NULL) != (fr_slen_t) enum_len) {
2740 fr_strerror_printf_push("Invalid VALUE name '%s' for attribute '%s'", argv[1], da->name);
2741 return -1;
2742 }
2743
2744 /*
2745 * enum names cannot be integers. People should just use the integer instead.
2746 *
2747 * But what about IPv6 addresses, which also use a "::" prefix?
2748 *
2749 * The ::FOO addresses were historically part of the "ipv4 compatible ipv6 address" range
2750 * "::0.0.0.0/96". That range has since been deprecated, and the "::FOO" range is tracked in the
2751 * IANA Special-Purpose Address Registry. That lists three things beginning with ::
2752 *
2753 * * ::/128 - unspecified address (i.e. ::0/128).
2754 * * ::1/128 - Loopback address
2755 * * ::ffff:0:0/96 - IPv4-mapped address.
2756 *
2757 * Since IPv6 addresses are 128 bits, the first two are just ::0 and ::1. No other possibilities
2758 * exist.
2759 *
2760 * For the range "::ffff:0:0/96", a value such as "::ffff:192.168.1.2 is not a valid enum name.
2761 * It contains an extra ':' (and MUST contain the extra ':'), and the ':' is not allowed in an
2762 * enum name.
2763 *
2764 * IANA could assign other values in the :: range, but this seems unlikely.
2765 *
2766 * As a result, the only overlap between enum ::FOO and IPv6 addresses is the single case of ::1.
2767 * This check disallows that.
2768 */
2769 if (fr_sbuff_adv_past_allowed( &FR_SBUFF_IN(argv[1], enum_len), SIZE_MAX, sbuff_char_class_int, NULL) == enum_len) {
2770 fr_strerror_printf("Invalid VALUE name '%s' for attribute '%s' - the name cannot be an integer", argv[1], da->name);
2771 return -1;
2772 }
2773
2774 /*
2775 * Remember which attribute is associated with this
2776 * value. This allows us to define enum
2777 * values before the attribute exists, and fix them
2778 * up later.
2779 */
2780 if (!da) {
2781 fixup:
2782 if (!fr_cond_assert_msg(dctx->fixup.pool, "fixup pool context invalid")) return -1;
2783
2785 CURRENT_FILENAME(dctx), CURRENT_LINE(dctx),
2786 argv[0], strlen(argv[0]),
2787 argv[1], strlen(argv[1]),
2788 argv[2], strlen(argv[2]), parent) < 0) {
2789 fr_strerror_const("Out of memory");
2790 return -1;
2791 }
2792 return 0;
2793 }
2794
2795 /*
2796 * Only a leaf types can have values defined.
2797 */
2798 if (!fr_type_is_leaf(da->type)) {
2799 fr_strerror_printf("Cannot define VALUE for attribute '%s' of data type '%s'", da->name,
2800 fr_type_to_str(da->type));
2801 return -1;
2802 }
2803
2804 /*
2805 * Pass in the root for type attr, so that we can find the reference.
2806 */
2807 if (da->type == FR_TYPE_ATTR) enumv = fr_dict_root(da->dict);
2808
2809 if (fr_value_box_from_str(NULL, &value, da->type, enumv,
2810 argv[2], strlen(argv[2]),
2811 NULL) < 0) {
2812 fr_strerror_printf_push("Invalid VALUE '%s' for attribute '%s' of data type '%s'",
2813 argv[2],
2814 da->name,
2815 fr_type_to_str(da->type));
2816 return -1;
2817 }
2818
2819 if (fr_dict_enum_add_name(da, argv[1], &value, false, true) < 0) {
2821 return -1;
2822 }
2824
2825 return 0;
2826}
2827
2828/*
2829 * Process the VENDOR command
2830 */
2831static int dict_read_process_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
2832{
2833 unsigned int value;
2834 int type, length;
2835 bool continuation = false;
2836 fr_dict_vendor_t const *dv;
2837 fr_dict_vendor_t *mutable;
2838 fr_dict_t *dict = dctx->dict;
2839
2840 dctx->value_attr = NULL;
2841 dctx->relative_attr = NULL;
2842
2843 if ((argc < 2) || (argc > 3)) {
2844 fr_strerror_const("Invalid VENDOR syntax");
2845 return -1;
2846 }
2847
2848 /*
2849 * Validate all entries
2850 */
2851 if (!dict_read_sscanf_i(&value, argv[1])) {
2852 fr_strerror_const("Invalid number in VENDOR");
2853 return -1;
2854 }
2855
2856 /*
2857 * Look for a format statement. Allow it to over-ride the hard-coded formats below.
2858 */
2859 if (argc == 3) {
2860 if (dict_read_parse_format(argv[2], &type, &length, &continuation) < 0) return -1;
2861
2862 } else {
2863 type = length = 1;
2864 }
2865
2866 /* Create a new VENDOR entry for the list */
2867 if (dict_vendor_add(dict, argv[0], value) < 0) return -1;
2868
2869 dv = fr_dict_vendor_by_num(dict, value);
2870 if (!dv) {
2871 fr_strerror_const("Failed adding format for VENDOR");
2872 return -1;
2873 }
2874
2875 mutable = UNCONST(fr_dict_vendor_t *, dv);
2876 mutable->type = type;
2877 mutable->length = length;
2878 mutable->continuation = continuation;
2879
2880 return 0;
2881}
2882
2883/** Register the specified dictionary as a protocol dictionary
2884 *
2885 * Allows vendor and TLV context to persist across $INCLUDEs
2886 */
2887static int dict_read_process_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flag)
2888{
2889 unsigned int value;
2890 unsigned int type_size = 0;
2891 fr_dict_t *dict;
2892 fr_dict_attr_t *mutable;
2893 bool require_dl = false;
2894 bool string_based = false;
2895
2896 /*
2897 * We cannot define a PROTOCOL inside of another protocol.
2898 */
2899 if (CURRENT_FRAME(dctx)->nest != NEST_TOP) {
2900 fr_strerror_const("PROTOCOL definitions cannot occur inside of any other BEGIN/END block");
2901 return -1;
2902 }
2903
2904 dctx->value_attr = NULL;
2905 dctx->relative_attr = NULL;
2906
2907 if ((argc < 2) || (argc > 3)) {
2908 fr_strerror_const("Missing arguments after PROTOCOL. Expected PROTOCOL <num> <name>");
2909 return -1;
2910 }
2911
2912 /*
2913 * Validate all entries
2914 */
2915 if (!dict_read_sscanf_i(&value, argv[1])) {
2916 fr_strerror_printf("Invalid number '%s' following PROTOCOL", argv[1]);
2917 return -1;
2918 }
2919
2920 /*
2921 * 255 protocols FR_TYPE_GROUP type_size hack
2922 */
2923 if (!value) {
2924 fr_strerror_printf("Invalid value '%u' following PROTOCOL", value);
2925 return -1;
2926 }
2927
2928 /*
2929 * Look for a format statement. This may specify the
2930 * type length of the protocol's types.
2931 */
2932 if (argc == 3) {
2933 char const *p;
2934 char *q;
2935
2936 /*
2937 * For now, we don't allow multiple options here.
2938 *
2939 * @todo - allow multiple options.
2940 */
2941 if (strcmp(argv[2], "verify=lib") == 0) {
2942 require_dl = true;
2943 goto post_option;
2944 }
2945
2946 if (strcmp(argv[2], "format=string") == 0) {
2947 type_size = 4;
2948 string_based = true;
2949 goto post_option;
2950 }
2951
2952 if (strncasecmp(argv[2], "format=", 7) != 0) {
2953 fr_strerror_printf("Invalid format for PROTOCOL. Expected 'format=', got '%s'", argv[2]);
2954 return -1;
2955 }
2956 p = argv[2] + 7;
2957
2958 type_size = strtoul(p, &q, 10);
2959 if (q != (p + strlen(p))) {
2960 fr_strerror_printf("Found trailing garbage '%s' after format specifier", p);
2961 return -1;
2962 }
2963 }
2964post_option:
2965
2966 /*
2967 * Cross check name / number.
2968 */
2969 dict = dict_by_protocol_name(argv[0]);
2970 if (dict) {
2971#ifdef STATIC_ANALYZER
2972 if (!dict->root) return -1;
2973#endif
2974
2975 if (dict->root->attr != value) {
2976 fr_strerror_printf("Conflicting numbers %u vs %u for PROTOCOL \"%s\"",
2977 dict->root->attr, value, dict->root->name);
2978 return -1;
2979 }
2980
2981 } else if ((dict = dict_by_protocol_num(value)) != NULL) {
2982#ifdef STATIC_ANALYZER
2983 if (!dict->root || !dict->root->name || !argv[0]) return -1;
2984#endif
2985
2986 if (strcasecmp(dict->root->name, argv[0]) != 0) {
2987 fr_strerror_printf("Conflicting names current \"%s\" vs new \"%s\" for PROTOCOL %u",
2988 dict->root->name, argv[0], dict->root->attr);
2989 return -1;
2990 }
2991 }
2992
2993 /*
2994 * And check types no matter what.
2995 */
2996 if (dict) {
2997 if (type_size && (dict->root->flags.type_size != type_size)) {
2998 fr_strerror_printf("Conflicting flags for PROTOCOL \"%s\" (current %d versus new %u)",
2999 dict->root->name, dict->root->flags.type_size, type_size);
3000 return -1;
3001 }
3002
3003 /*
3004 * Do NOT talloc_free() dict on error.
3005 */
3006 return dict_dctx_push(dctx, dict->root, NEST_NONE);
3007 }
3008
3009 dict = dict_alloc(dict_gctx);
3010
3011 /*
3012 * Try to load protocol-specific validation routines.
3013 * Some protocols don't need them, so it's OK if the
3014 * validation routines don't exist.
3015 */
3016 if ((dict_dlopen(dict, argv[0]) < 0) && require_dl) {
3017 error:
3018 talloc_free(dict);
3019 return -1;
3020 }
3021
3022 /*
3023 * Set the root attribute with the protocol name
3024 */
3025 if (dict_root_set(dict, argv[0], value) < 0) goto error;
3026
3027 if (dict_protocol_add(dict) < 0) goto error;
3028
3029 mutable = UNCONST(fr_dict_attr_t *, dict->root);
3030 dict->string_based = string_based;
3031 if (!type_size) {
3032 mutable->flags.type_size = dict->proto->default_type_size;
3033 mutable->flags.length = dict->proto->default_type_length;
3034 } else {
3035 mutable->flags.type_size = type_size;
3036 mutable->flags.length = 1; /* who knows... */
3037 }
3038
3039 /*
3040 * Make the root available on the stack, in case
3041 * something wants to begin it. Note that we mark it as
3042 * NONE, so that it can be cleaned up by anything.
3043 *
3044 * This stack entry is just a place-holder so that the
3045 * BEGIN statement can find the dictionary.
3046 */
3047 if (unlikely(dict_dctx_push(dctx, dict->root, NEST_NONE) < 0)) goto error;
3048
3049 return 0;
3050}
3051
3052/** Maintain a linked list of filenames which we've seen loading this dictionary
3053 *
3054 * This is used for debug messages, so we have a copy of the original file path
3055 * that we can reference from fr_dict_attr_t without having the memory bloat of
3056 * assigning a buffer to every attribute.
3057 */
3058static inline int dict_filename_add(char **filename_out, fr_dict_t *dict, char const *filename,
3059 char const *src_file, int src_line)
3060{
3062
3063 file = talloc_zero(dict, fr_dict_filename_t);
3064 if (unlikely(!file)) {
3065 oom:
3066 fr_strerror_const("Out of memory");
3067 return -1;
3068 }
3069 *filename_out = file->filename = talloc_typed_strdup(file, filename);
3070 if (unlikely(!*filename_out)) goto oom;
3071
3072 if (src_file) {
3073 file->src_line = src_line;
3074 file->src_file = talloc_typed_strdup(file, src_file);
3075 if (!file->src_file) goto oom;
3076 }
3077
3078 fr_dlist_insert_tail(&dict->filenames, file);
3079
3080 return 0;
3081}
3082
3083#ifndef NDEBUG
3084/** See if we have already loaded the file,
3085 *
3086 */
3087static inline bool dict_filename_loaded(fr_dict_t *dict, char const *filename,
3088 char const *src_file, int src_line)
3089{
3091
3092 for (file = (fr_dict_filename_t *) fr_dlist_head(&dict->filenames);
3093 file != NULL;
3094 file = (fr_dict_filename_t *) fr_dlist_next(&dict->filenames, &file->entry)) {
3095 if (file->src_file && src_file) {
3096 if (file->src_line != src_line) continue;
3097 if (strcmp(file->src_file, src_file) != 0) continue;
3098 }
3099
3100 if (strcmp(file->filename, filename) == 0) return true; /* this should always be true */
3101 }
3102
3103 return false;
3104}
3105#endif
3106
3107/** Process an inline BEGIN PROTOCOL block
3108 *
3109 * This function is called *after* the PROTOCOL handler.
3110 */
3112{
3114 fr_assert(CURRENT_DA(dctx)->flags.is_root);
3115
3116 /*
3117 * Rewrite it in place.
3118 */
3119 CURRENT_FRAME(dctx)->nest = NEST_PROTOCOL;
3120 dctx->dict = CURRENT_DA(dctx)->dict;
3121
3122 return 0;
3123}
3124
3125/** Keyword parser
3126 *
3127 * @param[in] dctx containing the dictionary we're currently parsing.
3128 * @param[in] argv arguments to the keyword.
3129 * @param[in] argc number of arguments.
3130 * @param[in] base_flags set in the context of the current file.
3131 * @return
3132 * - 0 on success.
3133 * - -1 on failure.
3134 */
3135typedef int (*fr_dict_keyword_parse_t)(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags);
3136
3137/** Pushes a new frame onto the top of the stack based on the current frame
3138 *
3139 * Whenever a protocol, vendor, or attribute is defined in the dictionary it either mutates or
3140 * pushes a new NONE frame onto the stack. This holds the last defined object at a given level
3141 * of nesting.
3142 *
3143 * This function is used to push an additional frame onto the stack, effectively entering the
3144 * context of the last defined object at a given level of nesting
3145 *
3146 * @param[in] dctx Contains the current state of the dictionary parser.
3147 * Used to track what PROTOCOL, VENDOR or TLV block
3148 * we're in.
3149 * @return
3150 * - 0 on success.
3151 * - -1 on failure.
3152 */
3154
3155typedef struct {
3156 fr_dict_keyword_parse_t parse; //!< Function to parse the keyword with.
3157 fr_dict_section_begin_t begin; //!< Can have a BEGIN prefix
3159
3160typedef struct {
3161 fr_table_elem_name_t name; //!< Name of the keyword, e.g. "ATTRIBUTE"
3162 fr_dict_keyword_parser_t value; //!< Value to return from lookup.
3164
3166 fr_dict_keyword, fr_dict_keyword_parser_t const *, fr_dict_keyword_parser_t const *)
3167
3168/** Parse a dictionary file
3169 *
3170 * @param[in] dctx Contains the current state of the dictionary parser.
3171 * Used to track what PROTOCOL, VENDOR or TLV block
3172 * we're in. Block context changes in $INCLUDEs should
3173 * not affect the context of the including file.
3174 * @param[in] dir_name Directory containing the dictionary we're loading.
3175 * @param[in] filename we're parsing.
3176 * @param[in] src_file The including file.
3177 * @param[in] src_line Line on which the $INCLUDE or $NCLUDE- statement was found.
3178 * @return
3179 * - 0 on success.
3180 * - -1 on failure.
3181 */
3182static int _dict_from_file(dict_tokenize_ctx_t *dctx,
3183 char const *dir_name, char const *filename,
3184 char const *src_file, int src_line)
3185{
3186 static fr_dict_keyword_t const keywords[] = {
3187 { L("ALIAS"), { .parse = dict_read_process_alias } },
3188 { L("ATTRIBUTE"), { .parse = dict_read_process_attribute } },
3189 { L("BEGIN-PROTOCOL"), { .parse = dict_read_process_begin_protocol } },
3190 { L("BEGIN-VENDOR"), { .parse = dict_read_process_begin_vendor } },
3191 { L("DEFINE"), { .parse = dict_read_process_define } },
3192 { L("END"), { .parse = dict_read_process_end } },
3193 { L("END-PROTOCOL"), { .parse = dict_read_process_end_protocol } },
3194 { L("END-VENDOR"), { .parse = dict_read_process_end_vendor } },
3195 { L("ENUM"), { .parse = dict_read_process_enum } },
3196 { L("FLAGS"), { .parse = dict_read_process_flags } },
3197 { L("MEMBER"), { .parse = dict_read_process_member } },
3198 { L("PROTOCOL"), { .parse = dict_read_process_protocol, .begin = dict_begin_protocol }},
3199 { L("STRUCT"), { .parse = dict_read_process_struct } },
3200 { L("VALUE"), { .parse = dict_read_process_value } },
3201 { L("VENDOR"), { .parse = dict_read_process_vendor } },
3202 };
3203
3204 FILE *fp;
3205 char dir[256], fn[256];
3206 char buf[256];
3207 char *p;
3208 int line = 0;
3209
3210 struct stat statbuf;
3211 char *argv[DICT_MAX_ARGV];
3212 int argc;
3213
3214 int stack_depth = dctx->stack_depth;
3215
3216 /*
3217 * Base flags are only set for the current file
3218 */
3219 fr_dict_attr_flags_t base_flags = {};
3220
3221 if (!fr_cond_assert(!dctx->dict->root || CURRENT_FRAME(dctx)->da)) return -1;
3222
3223 if ((strlen(dir_name) + 3 + strlen(filename)) > sizeof(dir)) {
3224 fr_strerror_printf("%s: Filename name too long", "Error reading dictionary");
3225 return -1;
3226 }
3227
3228 /*
3229 * If it's an absolute dir, forget the parent dir,
3230 * and remember the new one.
3231 *
3232 * If it's a relative dir, tack on the current filename
3233 * to the parent dir. And use that.
3234 */
3235 if (!FR_DIR_IS_RELATIVE(filename)) {
3236 strlcpy(dir, filename, sizeof(dir));
3237 p = strrchr(dir, FR_DIR_SEP);
3238 if (p) {
3239 p[1] = '\0';
3240 } else {
3241 strlcat(dir, "/", sizeof(dir));
3242 }
3243
3244 strlcpy(fn, filename, sizeof(fn));
3245 } else {
3246 strlcpy(dir, dir_name, sizeof(dir));
3247 p = strrchr(dir, FR_DIR_SEP);
3248 if (p) {
3249 if (p[1]) strlcat(dir, "/", sizeof(dir));
3250 } else {
3251 strlcat(dir, "/", sizeof(dir));
3252 }
3253 strlcat(dir, filename, sizeof(dir));
3254 p = strrchr(dir, FR_DIR_SEP);
3255 if (p) {
3256 p[1] = '\0';
3257 } else {
3258 strlcat(dir, "/", sizeof(dir));
3259 }
3260
3261 p = strrchr(filename, FR_DIR_SEP);
3262 if (p) {
3263 snprintf(fn, sizeof(fn), "%s%s", dir, p);
3264 } else {
3265 snprintf(fn, sizeof(fn), "%s%s", dir, filename);
3266 }
3267 }
3268
3269 /*
3270 * See if we have already loaded this filename. If so, suppress it.
3271 */
3272#ifndef NDEBUG
3273 if (unlikely(dict_filename_loaded(dctx->dict, fn, src_file, src_line))) {
3274 fr_strerror_printf("ERROR - we have a recursive $INCLUDE or load of dictionary %s", fn);
3275 return -1;
3276 }
3277#endif
3278
3279 if ((fp = fopen(fn, "r")) == NULL) {
3280 if (!src_file) {
3281 fr_strerror_printf("Couldn't open dictionary %s: %s", fr_syserror(errno), fn);
3282 } else {
3283 fr_strerror_printf("Error reading dictionary: %s[%d]: Couldn't open dictionary '%s': %s",
3284 fr_cwd_strip(src_file), src_line, fn,
3285 fr_syserror(errno));
3286 }
3287 return -2;
3288 }
3289
3290 /*
3291 * If fopen works, this works.
3292 */
3293 if (fstat(fileno(fp), &statbuf) < 0) {
3294 fr_strerror_printf("Failed stating dictionary \"%s\" - %s", fn, fr_syserror(errno));
3295
3296 perm_error:
3297 fclose(fp);
3298 return -1;
3299 }
3300
3301 if (!S_ISREG(statbuf.st_mode)) {
3302 fr_strerror_printf("Dictionary is not a regular file: %s", fn);
3303 goto perm_error;
3304 }
3305
3306 /*
3307 * Globally writable dictionaries means that users can control
3308 * the server configuration with little difficulty.
3309 */
3310#ifdef S_IWOTH
3311 if (dict_gctx->perm_check && ((statbuf.st_mode & S_IWOTH) != 0)) {
3312 fr_strerror_printf("Dictionary is globally writable: %s. "
3313 "Refusing to start due to insecure configuration", fn);
3314 goto perm_error;
3315 }
3316#endif
3317
3318 /*
3319 * Now that we've opened the file, copy the filename into the dictionary and add it to the ctx
3320 * This string is safe to assign to the filename pointer in any attributes added beneath the
3321 * dictionary.
3322 */
3323 if (unlikely(dict_filename_add(&dctx->filename, dctx->dict, fn, src_file, src_line) < 0)) {
3324 goto perm_error;
3325 }
3326
3327 while (fgets(buf, sizeof(buf), fp) != NULL) {
3328 bool do_begin = false;
3329 fr_dict_keyword_parser_t const *parser;
3330 char **argv_p = argv;
3331
3332 dctx->line = ++line;
3333
3334 switch (buf[0]) {
3335 case '#':
3336 case '\0':
3337 case '\n':
3338 case '\r':
3339 continue;
3340 }
3341
3342 /*
3343 * Comment characters should NOT be appearing anywhere but
3344 * as start of a comment;
3345 */
3346 p = strchr(buf, '#');
3347 if (p) *p = '\0';
3348
3349 argc = fr_dict_str_to_argv(buf, argv, DICT_MAX_ARGV);
3350 if (argc == 0) continue;
3351
3352 if (argc == 1) {
3353 /*
3354 * Be nice.
3355 */
3356 if ((strcmp(argv[0], "BEGIN") == 0) ||
3357 (fr_dict_keyword(&parser, keywords, NUM_ELEMENTS(keywords), argv_p[0], NULL))) {
3358 fr_strerror_printf("Keyword %s is missing all of its arguments", argv[0]);
3359 } else {
3360 fr_strerror_printf("Invalid syntax - unknown keyword %s", argv[0]);
3361 }
3362
3363 error:
3364 fr_strerror_printf_push("Failed parsing dictionary at %s[%d]", fr_cwd_strip(fn), line);
3365 fclose(fp);
3366 return -1;
3367 }
3368
3369 /*
3370 * Special prefix for "beginnable" keywords.
3371 * These are keywords that can automatically change
3372 * the context of subsequent definitions if they're
3373 * prefixed with a BEGIN keyword.
3374 */
3375 if (strcasecmp(argv_p[0], "BEGIN") == 0) {
3376 do_begin = true;
3377 argv_p++;
3378 argc--;
3379 }
3380
3381 if (fr_dict_keyword(&parser, keywords, NUM_ELEMENTS(keywords), argv_p[0], NULL)) {
3382 /*
3383 * We are allowed to have attributes
3384 * named for keywords. Most notably
3385 * "value". If there's no such attribute
3386 * 'value', then the user will get a
3387 * descriptive error.
3388 */
3389 if (do_begin && !parser->begin) {
3390 goto process_begin;
3391 }
3392
3393 if (unlikely(parser->parse(dctx, argv_p + 1 , argc - 1, &base_flags) < 0)) goto error;
3394
3395 /*
3396 * We've processed the definition, now enter the section
3397 */
3398 if (do_begin && unlikely(parser->begin(dctx) < 0)) goto error;
3399 continue;
3400 }
3401
3402 /*
3403 * It's a naked BEGIN keyword
3404 */
3405 if (do_begin) {
3406 process_begin:
3407 if (unlikely(dict_read_process_begin(dctx, argv_p, argc, &base_flags) < 0)) goto error;
3408 continue;
3409 }
3410
3411 /*
3412 * See if we need to import another dictionary.
3413 */
3414 if (strncasecmp(argv_p[0], "$INCLUDE", 8) == 0) {
3415 /*
3416 * Included files operate on a copy of the context.
3417 *
3418 * This copy means that they inherit the
3419 * current context, including parents,
3420 * TLVs, etc. But if the included file
3421 * leaves a "dangling" TLV or "last
3422 * attribute", then it won't affect the
3423 * parent.
3424 */
3425 if (dict_read_process_include(dctx, argv_p, argc, dir) < 0) goto error;
3426 continue;
3427 } /* $INCLUDE */
3428
3429 /*
3430 * Any other string: We don't recognize it.
3431 */
3432 fr_strerror_printf("Invalid keyword '%s'", argv_p[0]);
3433 goto error;
3434 }
3435
3436 /*
3437 * Unwind until the stack depth matches what we had on input.
3438 */
3439 while (dctx->stack_depth > stack_depth) {
3440 dict_tokenize_frame_t *frame = CURRENT_FRAME(dctx);
3441
3442 if (frame->nest == NEST_PROTOCOL) {
3443 fr_strerror_printf("BEGIN-PROTOCOL at %s[%d] is missing END-PROTOCOL",
3444 fr_cwd_strip(frame->filename), line);
3445 goto error;
3446 }
3447
3448 if (frame->nest == NEST_ATTRIBUTE) {
3449 fr_strerror_printf("BEGIN %s at %s[%d] is missing END %s",
3450 frame->da->name, fr_cwd_strip(frame->filename), line,
3451 frame->da->name);
3452 goto error;
3453 }
3454
3455 if (frame->nest == NEST_VENDOR) {
3456 fr_strerror_printf("BEGIN-VENDOR at %s[%d] is missing END-VENDOR",
3457 fr_cwd_strip(frame->filename), line);
3458 goto error;
3459 }
3460
3461 /*
3462 * Run any necessary finalise callback, and then pop the frame.
3463 */
3464 if (frame->finalise) {
3465 if (frame->finalise(dctx) < 0) goto error;
3466 frame->finalise = NULL;
3467 }
3468
3469 fr_assert(!dctx->stack[dctx->stack_depth].finalise);
3470 dctx->stack_depth--;
3471 }
3472
3473 fclose(fp);
3474
3475 return 0;
3476}
3477
3478static int dict_from_file(fr_dict_t *dict,
3479 char const *dir_name, char const *filename,
3480 char const *src_file, int src_line)
3481{
3482 int ret;
3484
3485 memset(&dctx, 0, sizeof(dctx));
3486 dctx.dict = dict;
3487 dict_fixup_init(NULL, &dctx.fixup);
3488 dctx.stack[0].da = dict->root;
3489 dctx.stack[0].nest = NEST_TOP;
3490
3491 ret = _dict_from_file(&dctx, dir_name, filename, src_file, src_line);
3492 if (ret < 0) {
3493 talloc_free(dctx.fixup.pool);
3494 return ret;
3495 }
3496
3497 /*
3498 * Applies to any attributes added to the *internal*
3499 * dictionary.
3500 *
3501 * Fixups should have been applied already to any protocol
3502 * dictionaries.
3503 */
3504 return dict_finalise(&dctx);
3505}
3506
3507/** (Re-)Initialize the special internal dictionary
3508 *
3509 * This dictionary has additional programmatically generated attributes added to it,
3510 * and is checked in addition to the protocol specific dictionaries.
3511 *
3512 * @note The dictionary pointer returned in out must have its reference counter
3513 * decremented with #fr_dict_free when no longer used.
3514 *
3515 * @param[out] out Where to write pointer to the internal dictionary.
3516 * @param[in] dict_subdir name of the internal dictionary dir (may be NULL).
3517 * @param[in] dependent Either C src file, or another dictionary.
3518 * @return
3519 * - 0 on success.
3520 * - -1 on failure.
3521 */
3522int fr_dict_internal_afrom_file(fr_dict_t **out, char const *dict_subdir, char const *dependent)
3523{
3524 fr_dict_t *dict;
3525 char *dict_path = NULL;
3526 size_t i;
3527 fr_dict_attr_flags_t flags = { .internal = true };
3528 char *type_name;
3529 fr_dict_attr_t *cast_base;
3531
3532 if (unlikely(!dict_gctx)) {
3533 fr_strerror_const("fr_dict_global_ctx_init() must be called before loading dictionary files");
3534 return -1;
3535 }
3536
3537 /*
3538 * Increase the reference count of the internal dictionary.
3539 */
3540 if (dict_gctx->internal) {
3543 return 0;
3544 }
3545
3546 dict_path = dict_subdir ?
3547 talloc_asprintf(NULL, "%s%c%s", fr_dict_global_ctx_dir(), FR_DIR_SEP, dict_subdir) :
3548 talloc_strdup(NULL, fr_dict_global_ctx_dir());
3549
3550 fr_strerror_clear(); /* Ensure we don't report spurious errors */
3551
3552 dict = dict_alloc(dict_gctx);
3553 if (!dict) {
3554 error:
3555 if (!dict_gctx->internal) talloc_free(dict);
3556 talloc_free(dict_path);
3557 return -1;
3558 }
3559
3560 /*
3561 * Set the root name of the dictionary
3562 */
3563 if (dict_root_set(dict, "internal", 0) < 0) goto error;
3564
3565 if (dict_path && dict_from_file(dict, dict_path, FR_DICTIONARY_FILE, NULL, 0) < 0) goto error;
3566
3567 TALLOC_FREE(dict_path);
3568
3569 dict_dependent_add(dict, dependent);
3570
3571 if (!dict_gctx->internal) {
3572 dict_gctx->internal = dict;
3573 dict_dependent_add(dict, "global");
3574 }
3575
3576 /*
3577 * Try to load libfreeradius-internal, too. If that
3578 * fails (i.e. fuzzers???), ignore it.
3579 */
3580 (void) dict_dlopen(dict, "internal");
3581
3582 cast_base = dict_attr_child_by_num(dict->root, FR_CAST_BASE);
3583 if (!cast_base) {
3584 fr_strerror_printf("Failed to find 'Cast-Base' in internal dictionary");
3585 goto error;
3586 }
3587
3588 fr_assert(cast_base->type == FR_TYPE_UINT8);
3589 fr_value_box_init(&box, FR_TYPE_UINT8, NULL, false);
3590
3591 /*
3592 * Add cast attributes. We do it this way,
3593 * so cast attributes get added automatically for new types.
3594 *
3595 * We manually add the attributes to the dictionary, and bypass
3596 * fr_dict_attr_add(), because we know what we're doing, and
3597 * that function does too many checks.
3598 */
3599 for (i = 0; i < fr_type_table_len; i++) {
3602
3603 switch (p->value) {
3604 case FR_TYPE_NULL: /* Can't cast to NULL */
3605 case FR_TYPE_VENDOR: /* Vendors can't exist in dictionaries as attributes */
3606 continue;
3607 }
3608
3609 type_name = talloc_typed_asprintf(NULL, "Tmp-Cast-%s", p->name.str);
3610
3611 n = dict_attr_alloc(dict->pool, dict->root, type_name,
3612 FR_CAST_BASE + p->value, p->value, &(dict_attr_args_t){ .flags = &flags});
3613 if (!n) {
3614 talloc_free(type_name);
3615 goto error;
3616 }
3617
3618 if (dict_attr_add_to_namespace(dict->root, n) < 0) {
3619 fr_strerror_printf_push("Failed inserting '%s' into internal dictionary", type_name);
3620 talloc_free(type_name);
3621 goto error;
3622 }
3623
3624 talloc_free(type_name);
3625
3626 /*
3627 * Set up parenting for the attribute.
3628 */
3629 if (dict_attr_child_add(dict->root, n) < 0) goto error;
3630
3631 /*
3632 * Add the enum, too.
3633 */
3634 box.vb_uint8 = p->value;
3635 if (dict_attr_enum_add_name(cast_base, p->name.str, &box, false, false, NULL) < 0) {
3636 fr_strerror_printf_push("Failed adding '%s' as a VALUE into internal dictionary", p->name.str);
3637 goto error;
3638 }
3639 }
3640
3641 *out = dict;
3642
3643 return 0;
3644}
3645
3646/** (Re)-initialize a protocol dictionary
3647 *
3648 * Initialize the directory, then fix the attr number of all attributes.
3649 *
3650 * @param[out] out Where to write a pointer to the new dictionary. Will free existing
3651 * dictionary if files have changed and *out is not NULL.
3652 * @param[in] proto_name that we're loading the dictionary for.
3653 * @param[in] proto_dir Explicitly set where to hunt for the dictionary files. May be NULL.
3654 * @param[in] dependent Either C src file, or another dictionary.
3655 * @return
3656 * - 0 on success.
3657 * - -1 on failure.
3658 */
3659int fr_dict_protocol_afrom_file(fr_dict_t **out, char const *proto_name, char const *proto_dir, char const *dependent)
3660{
3661 char *dict_dir = NULL;
3662 fr_dict_t *dict;
3663 bool added = false;
3664
3665 *out = NULL;
3666
3667 if (unlikely(!dict_gctx)) {
3668 fr_strerror_const("fr_dict_global_ctx_init() must be called before loading dictionary files");
3669 return -1;
3670 }
3671
3672 if (unlikely(!dict_gctx->internal)) {
3673 fr_strerror_const("Internal dictionary must be initialised before loading protocol dictionaries");
3674 return -1;
3675 }
3676
3677 /*
3678 * Increment the reference count if the dictionary
3679 * has already been loaded and return that.
3680 */
3681 dict = dict_by_protocol_name(proto_name);
3682 if (dict) {
3683 /*
3684 * If we're in the middle of loading this dictionary, then the only way we get back here
3685 * is via a circular reference. So we catch that, and drop the circular dependency.
3686 *
3687 * When we have A->B->A, it means that we don't need to track B->A, because we track
3688 * A->B. And if A is freed, then B is freed.
3689 */
3690 added = true;
3691 dict_dependent_add(dict, dependent);
3692
3693 /*
3694 * But we only return a pre-existing dict if _this function_ has loaded it.
3695 */
3696 if (dict->loaded) {
3697 *out = dict;
3698 return 0;
3699 }
3700
3701 /*
3702 * Set the flag to true _before_ loading the file. That prevents recursion.
3703 */
3704 dict->loaded = true;
3705 }
3706
3707 if (!proto_dir) {
3708 dict_dir = talloc_asprintf(NULL, "%s%c%s", fr_dict_global_ctx_dir(), FR_DIR_SEP, proto_name);
3709 } else {
3710 dict_dir = talloc_asprintf(NULL, "%s%c%s", fr_dict_global_ctx_dir(), FR_DIR_SEP, proto_dir);
3711 }
3712
3713 fr_strerror_clear(); /* Ensure we don't report spurious errors */
3714
3715 /*
3716 * Start in the context of the internal dictionary,
3717 * and switch to the context of a protocol dictionary
3718 * when we hit a BEGIN-PROTOCOL line.
3719 *
3720 * This allows a single file to provide definitions
3721 * for multiple protocols, which'll probably be useful
3722 * at some point.
3723 */
3724 if (dict_from_file(dict_gctx->internal, dict_dir, FR_DICTIONARY_FILE, NULL, 0) < 0) {
3725 error:
3726 if (dict) dict->loading = false;
3727 talloc_free(dict_dir);
3728 return -1;
3729 }
3730
3731 /*
3732 * Check the dictionary actually defined the protocol
3733 */
3734 dict = dict_by_protocol_name(proto_name);
3735 if (!dict) {
3736 fr_strerror_printf("Dictionary \"%s\" missing \"BEGIN-PROTOCOL %s\" declaration", dict_dir, proto_name);
3737 goto error;
3738 }
3739
3740 /*
3741 * Initialize the library.
3742 */
3743 dict->loaded = true;
3744 if (dict->proto && dict->proto->init) {
3745 if (dict->proto->init() < 0) goto error;
3746 }
3747 dict->loading = false;
3748
3749 dict->dir = talloc_steal(dict, dict_dir);
3750
3751 if (!added) dict_dependent_add(dict, dependent);
3752
3753 *out = dict;
3754
3755 return 0;
3756}
3757
3758/* Alloc a new root dictionary attribute
3759 *
3760 * @note Must only be called once per dictionary.
3761 *
3762 * @param[in] proto_name that we're loading the dictionary for.
3763 * @param[in] proto_number The artificial (or IANA allocated) number for the protocol.
3764 * @return
3765 * - A pointer to the new dict context on success.
3766 * - NULL on failure.
3767 */
3768fr_dict_t *fr_dict_alloc(char const *proto_name, unsigned int proto_number)
3769{
3770 fr_dict_t *dict;
3771
3772 if (unlikely(!dict_gctx)) {
3773 fr_strerror_printf("fr_dict_global_ctx_init() must be called before loading dictionary files");
3774 return NULL;
3775 }
3776
3777 /*
3778 * Alloc dict instance.
3779 */
3780 dict = dict_alloc(dict_gctx);
3781 if (!dict) return NULL;
3782
3783 /*
3784 * Set the root name of the dictionary
3785 */
3786 if (dict_root_set(dict, proto_name, proto_number) < 0) {
3787 talloc_free(dict);
3788 return NULL;
3789 }
3790
3791 return dict;
3792}
3793
3794/** Read supplementary attribute definitions into an existing dictionary
3795 *
3796 * @param[in] dict Existing dictionary.
3797 * @param[in] dir dictionary is located in.
3798 * @param[in] filename of the dictionary.
3799 * @return
3800 * - 0 on success.
3801 * - -1 on failure.
3802 */
3803int fr_dict_read(fr_dict_t *dict, char const *dir, char const *filename)
3804{
3805 INTERNAL_IF_NULL(dict, -1);
3806
3807 if (!dir) dir = dict->dir;
3808
3809 if (unlikely(dict->read_only)) {
3810 fr_strerror_printf("%s dictionary has been marked as read only", fr_dict_root(dict)->name);
3811 return -1;
3812 }
3813
3814 if (!dict->vendors_by_name) {
3815 fr_strerror_printf("%s: Must initialise dictionary before calling fr_dict_read()", __FUNCTION__);
3816 return -1;
3817 }
3818
3819 return dict_from_file(dict, dir, filename, NULL, 0);
3820}
3821
3822/*
3823 * External API for testing
3824 */
3826{
3827 int argc;
3828 char *argv[DICT_MAX_ARGV];
3829 int ret;
3830 fr_dict_attr_flags_t base_flags;
3832
3833 INTERNAL_IF_NULL(dict, -1);
3834
3835 argc = fr_dict_str_to_argv(buf, argv, DICT_MAX_ARGV);
3836 if (argc == 0) return 0;
3837
3838
3839 memset(&dctx, 0, sizeof(dctx));
3840 dctx.dict = dict;
3841 dctx.stack[0].nest = NEST_TOP;
3842
3843 if (dict_fixup_init(NULL, &dctx.fixup) < 0) return -1;
3844
3845 if (strcasecmp(argv[0], "VALUE") == 0) {
3846 if (argc < 4) {
3847 fr_strerror_printf("VALUE needs at least 4 arguments, got %i", argc);
3848 error:
3849 TALLOC_FREE(dctx.fixup.pool);
3850 return -1;
3851 }
3852
3853 if (!fr_dict_attr_by_oid(NULL, fr_dict_root(dict), argv[1])) {
3854 fr_strerror_printf("Attribute '%s' does not exist in dictionary \"%s\"",
3855 argv[1], dict->root->name);
3856 goto error;
3857 }
3858 ret = dict_read_process_value(&dctx, argv + 1, argc - 1, &base_flags);
3859 if (ret < 0) goto error;
3860
3861 } else if (strcasecmp(argv[0], "ATTRIBUTE") == 0) {
3862 if (parent && (parent != dict->root)) {
3863 (void) dict_dctx_push(&dctx, parent, NEST_NONE);
3864 }
3865
3866 memset(&base_flags, 0, sizeof(base_flags));
3867
3868 ret = dict_read_process_attribute(&dctx,
3869 argv + 1, argc - 1, &base_flags);
3870 if (ret < 0) goto error;
3871 } else if (strcasecmp(argv[0], "VENDOR") == 0) {
3872 ret = dict_read_process_vendor(&dctx, argv + 1, argc - 1, &base_flags);
3873 if (ret < 0) goto error;
3874 } else {
3875 fr_strerror_printf("Invalid input '%s'", argv[0]);
3876 goto error;
3877 }
3878
3879 return dict_finalise(&dctx);
3880}
int const char * file
Definition acutest.h:702
int n
Definition acutest.h:577
int const char int line
Definition acutest.h:702
#define UNCONST(_type, _ptr)
Remove const qualification from a pointer.
Definition build.h:167
#define RCSID(id)
Definition build.h:485
#define L(_str)
Helper for initialising arrays of string literals.
Definition build.h:209
#define NDEBUG_UNUSED
Definition build.h:328
#define DIAG_ON(_x)
Definition build.h:460
#define unlikely(_x)
Definition build.h:383
#define UNUSED
Definition build.h:317
#define NUM_ELEMENTS(_t)
Definition build.h:339
#define DIAG_OFF(_x)
Definition build.h:459
#define fr_cond_assert(_x)
Calls panic_action ifndef NDEBUG, else logs error and evaluates to value of _x.
Definition debug.h:131
#define FR_FAULT_LOG(_fmt,...)
Definition debug.h:50
#define fr_cond_assert_msg(_x, _fmt,...)
Calls panic_action ifndef NDEBUG, else logs error and evaluates to value of _x.
Definition debug.h:148
size_t type
Length of type data.
Definition dict.h:255
int fr_dict_attr_add_initialised(fr_dict_attr_t *da)
A variant of fr_dict_attr_t that allows a pre-allocated, populated fr_dict_attr_t to be added.
Definition dict_util.c:1666
fr_slen_t fr_dict_enum_name_from_substr(fr_sbuff_t *out, fr_sbuff_parse_error_t *err, fr_sbuff_t *in, fr_sbuff_term_t const *tt)
Extract an enumeration name from a string.
Definition dict_util.c:3648
int fr_dict_enum_add_name(fr_dict_attr_t *da, char const *name, fr_value_box_t const *value, bool coerce, bool replace)
Add a value name.
Definition dict_util.c:2033
char const * name
Vendor name.
Definition dict.h:257
unsigned int is_root
Is root of a dictionary.
Definition dict.h:77
fr_dict_attr_t const * fr_dict_attr_common_parent(fr_dict_attr_t const *a, fr_dict_attr_t const *b, bool is_ancestor)
Find a common ancestor that two TLV type attributes share.
Definition dict_util.c:2129
int fr_dict_protocol_reference(fr_dict_attr_t const **da_p, fr_dict_attr_t const *root, fr_sbuff_t *in)
Resolve a reference string to a dictionary attribute.
Definition dict_fixup.c:135
fr_dict_attr_t const * fr_dict_attr_by_name(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *attr))
Locate a fr_dict_attr_t by its name.
Definition dict_util.c:3355
fr_dict_attr_t * fr_dict_attr_unconst(fr_dict_attr_t const *da)
Coerce to non-const.
Definition dict_util.c:4732
fr_dict_attr_t const * fr_dict_root(fr_dict_t const *dict)
Return the root attribute of a dictionary.
Definition dict_util.c:2492
fr_dict_flag_parse_func_t func
Custom parsing function to convert a flag value string to a C type value.
Definition dict.h:375
unsigned int internal
Internal attribute, should not be received in protocol packets, should not be encoded.
Definition dict.h:89
#define DA_VERIFY(_x)
Definition dict.h:68
fr_slen_t fr_dict_attr_by_oid_legacy(fr_dict_t const *dict, fr_dict_attr_t const **parent, unsigned int *attr, char const *oid)
Get the leaf attribute of an OID string.
Definition dict_util.c:2217
uint32_t pen
Private enterprise number.
Definition dict.h:253
#define da_is_length_field(_da)
Definition dict.h:161
uint8_t type_size
For TLV2 and root attributes.
Definition dict.h:142
size_t length
Length of length data.
Definition dict.h:256
char const * fr_dict_global_ctx_dir(void)
Definition dict_util.c:4627
@ FR_DICT_ATTR_EXT_REF
Attribute references another attribute and/or dictionary.
Definition dict.h:171
@ FR_DICT_ATTR_EXT_KEY
UNION attribute references a key.
Definition dict.h:173
fr_dict_vendor_t const * fr_dict_vendor_by_name(fr_dict_t const *dict, char const *name)
Look up a vendor by its name.
Definition dict_util.c:2749
bool needs_value
This parsing flag must have a value. Else we error.
Definition dict.h:377
fr_dict_attr_t const * fr_dict_attr_by_oid(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *oid))
Resolve an attribute using an OID string.
Definition dict_util.c:2465
fr_dict_vendor_t const * fr_dict_vendor_by_num(fr_dict_t const *dict, uint32_t vendor_pen)
Look up a vendor by its PEN.
Definition dict_util.c:2772
fr_dict_attr_t const * fr_dict_attr_child_by_num(fr_dict_attr_t const *parent, unsigned int attr)
Check if a child attribute exists in a parent using an attribute number.
Definition dict_util.c:3420
#define fr_dict_attr_is_key_field(_da)
Definition dict.h:159
@ FLAG_LENGTH_UINT8
string / octets type is prefixed by uint8 of length
Definition dict.h:155
@ FLAG_LENGTH_UINT16
string / octets type is prefixed by uint16 of length
Definition dict.h:156
@ FLAG_KEY_FIELD
this is a key field for a subsequent struct
Definition dict.h:153
@ FLAG_BIT_FIELD
bit field inside of a struct
Definition dict.h:154
static int8_t fr_dict_attr_cmp_fields(const fr_dict_attr_t *a, const fr_dict_attr_t *b)
Compare two dictionary attributes by their contents.
Definition dict.h:658
uint8_t length
length of the attribute
Definition dict.h:134
Values of the encryption flags.
Protocol specific custom flag definitnion.
Definition dict.h:405
Private enterprise.
Definition dict.h:252
#define fr_dict_attr_ref_type(_type)
Definition dict_ext.h:72
fr_dict_attr_ref_type_t type
The state of the reference.
Definition dict_ext.h:78
static void * fr_dict_attr_ext(fr_dict_attr_t const *da, fr_dict_attr_ext_t ext)
Definition dict_ext.h:141
#define fr_dict_attr_ref_is_unresolved(_type)
Definition dict_ext.h:71
@ FR_DICT_ATTR_REF_ENUM
The attribute is an enumeration value.
Definition dict_ext.h:64
@ FR_DICT_ATTR_REF_KEY
it is a UNION which has a ref to a key, and children.
Definition dict_ext.h:65
@ FR_DICT_ATTR_REF_ALIAS
The attribute is an alias for another attribute.
Definition dict_ext.h:60
@ FR_DICT_ATTR_REF_CLONE
The attribute is a "copy" of another attribute.
Definition dict_ext.h:63
Attribute extension - Holds a reference to an attribute in another dictionary.
Definition dict_ext.h:77
static int dict_attr_ref_set(fr_dict_attr_t const *da, fr_dict_attr_t const *ref, fr_dict_attr_ref_type_t type)
static int dict_attr_ref_aunresolved(fr_dict_attr_t **da_p, char const *ref, fr_dict_attr_ref_type_t type)
static void * dict_attr_ext_alloc(fr_dict_attr_t **da_p, fr_dict_attr_ext_t ext)
Allocate an attribute extension.
int dict_fixup_apply(dict_fixup_ctx_t *fctx)
Apply all outstanding fixes to a set of dictionaries.
Definition dict_fixup.c:868
int dict_fixup_enumv_enqueue(dict_fixup_ctx_t *fctx, char const *filename, int line, char const *attr, size_t attr_len, char const *name, size_t name_len, char const *value, size_t value_len, fr_dict_attr_t const *parent)
Add an enumeration value to an attribute which has not yet been defined.
Definition dict_fixup.c:273
int dict_fixup_alias_enqueue(dict_fixup_ctx_t *fctx, char const *filename, int line, fr_dict_attr_t *alias_parent, char const *alias, fr_dict_attr_t *ref_parent, char const *ref)
Resolve a group reference.
Definition dict_fixup.c:797
int dict_fixup_clone_enqueue(dict_fixup_ctx_t *fctx, fr_dict_attr_t *da, char const *ref)
Clone one area of a tree into another.
Definition dict_fixup.c:423
int dict_fixup_init(TALLOC_CTX *ctx, dict_fixup_ctx_t *fctx)
Initialise a fixup ctx.
Definition dict_fixup.c:849
int dict_fixup_clone_enum_enqueue(dict_fixup_ctx_t *fctx, fr_dict_attr_t *da, char const *ref)
Clone enumeration values from one attribute to another.
Definition dict_fixup.c:633
int dict_fixup_vsa_enqueue(dict_fixup_ctx_t *fctx, fr_dict_attr_t *da)
Push a fixup for a VSA.
Definition dict_fixup.c:736
int dict_fixup_clone(fr_dict_attr_t **dst_p, fr_dict_attr_t const *src)
Clone a dictionary attribute from a ref.
Definition dict_fixup.c:456
int dict_fixup_group_enqueue(dict_fixup_ctx_t *fctx, fr_dict_attr_t *da, char const *ref)
Resolve a group reference.
Definition dict_fixup.c:356
TALLOC_CTX * pool
Temporary pool for fixups, reduces holes.
int dict_attr_enum_add_name(fr_dict_attr_t *da, char const *name, fr_value_box_t const *value, bool coerce, bool replace, fr_dict_attr_t const *child_struct)
Definition dict_util.c:1828
int dict_attr_type_init(fr_dict_attr_t **da_p, fr_type_t type)
Initialise type specific fields within the dictionary attribute.
Definition dict_util.c:588
int dict_attr_parent_init(fr_dict_attr_t **da_p, fr_dict_attr_t const *parent)
Initialise fields which depend on a parent attribute.
Definition dict_util.c:682
#define dict_attr_alloc(_ctx, _parent, _name, _attr, _type, _args)
Definition dict_priv.h:239
fr_dict_t * dict_alloc(TALLOC_CTX *ctx)
Allocate a new dictionary.
Definition dict_util.c:4005
#define INTERNAL_IF_NULL(_dict, _ret)
Set the internal dictionary if none was provided.
Definition dict_priv.h:45
int dict_attr_add_to_namespace(fr_dict_attr_t const *parent, fr_dict_attr_t *da)
Add an attribute to the name table for an attribute.
Definition dict_util.c:1600
fr_dict_attr_t * dict_attr_child_by_num(fr_dict_attr_t const *parent, unsigned int attr)
Internal version of fr_dict_attr_child_by_num.
Definition dict_util.c:3373
fr_dict_attr_t * dict_attr_by_name(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *name)
Definition dict_util.c:3309
fr_dict_t * dict_by_protocol_num(unsigned int num)
Internal version of fr_dict_by_protocol_num.
Definition dict_util.c:2614
int dict_attr_child_add(fr_dict_attr_t *parent, fr_dict_attr_t *child)
Add a child to a parent.
Definition dict_util.c:1501
int dict_vendor_add(fr_dict_t *dict, char const *name, unsigned int num)
Add a vendor to the dictionary.
Definition dict_util.c:1384
int dict_attr_alias_add(fr_dict_attr_t const *parent, char const *alias, fr_dict_attr_t const *ref)
Add an alias to an existing attribute.
Definition dict_util.c:1249
int dict_attr_finalise(fr_dict_attr_t **da_p, char const *name)
Set remaining fields in a dictionary attribute before insertion.
Definition dict_util.c:777
int dict_attr_num_init(fr_dict_attr_t *da, unsigned int num)
Set the attribute number (if any)
Definition dict_util.c:733
int dict_attr_num_init_name_only(fr_dict_attr_t *da)
Set the attribute number (if any)
Definition dict_util.c:751
int dict_dlopen(fr_dict_t *dict, char const *name)
Definition dict_util.c:3688
fr_dict_t * dict_by_protocol_name(char const *name)
Internal version of fr_dict_by_protocol_name.
Definition dict_util.c:2600
fr_dict_t * internal
Magic internal dictionary.
Definition dict_priv.h:155
fr_dict_attr_t * dict_attr_alloc_null(TALLOC_CTX *ctx, fr_dict_protocol_t const *dict)
Partial initialisation functions.
Definition dict_util.c:985
int dict_dependent_add(fr_dict_t *dict, char const *dependent)
Record a new dependency on a dictionary.
Definition dict_util.c:3780
#define dict_attr_alloc_root(_ctx, _dict, _name, _attr, _args)
Definition dict_priv.h:231
int dict_protocol_add(fr_dict_t *dict)
Add a protocol to the global protocol table.
Definition dict_util.c:1311
fr_dict_gctx_t * dict_gctx
Top level structure containing global dictionary state.
Definition dict_util.c:42
bool perm_check
Whether we should check dictionary file permissions as they're loaded.
Definition dict_priv.h:132
Optional arguments for initialising/allocating attributes.
Definition dict_priv.h:175
Entry in the filename list of files associated with this dictionary.
Definition dict_priv.h:69
Test enumeration values.
Definition dict_test.h:92
fr_dict_keyword_finalise_t finalise
function to call when popping
static fr_table_num_sorted_t const dict_nest_table[]
static int dict_read_process_include(dict_tokenize_ctx_t *dctx, char **argv, int argc, char const *dir)
dict_nest_t nest
for manual vs automatic begin / end things
dict_fixup_ctx_t fixup
static int dict_read_process_common(dict_tokenize_ctx_t *dctx, fr_dict_attr_t **da_p, fr_dict_attr_t const *parent, char const *name, char const *type_name, char *flag_name, fr_dict_attr_flags_t const *base_flags)
#define NEST_ANY
static int dict_read_process_attribute(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
int member_num
structure member numbers
static int dict_filename_add(char **filename_out, fr_dict_t *dict, char const *filename, char const *src_file, int src_line)
Maintain a linked list of filenames which we've seen loading this dictionary.
static int dict_process_type_field(dict_tokenize_ctx_t *dctx, char const *name, fr_dict_attr_t **da_p)
static int dict_read_process_alias(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
static int _dict_from_file(dict_tokenize_ctx_t *dctx, char const *dir_name, char const *filename, char const *src_file, int src_line)
fr_dict_section_begin_t begin
Can have a BEGIN prefix.
static int dict_attr_allow_dup(fr_dict_attr_t const *da)
Check if this definition is a duplicate, and if it is, whether we should skip it error out.
static int dict_finalise(dict_tokenize_ctx_t *dctx)
static int dict_read_process_member(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
fr_dict_t * fr_dict_alloc(char const *proto_name, unsigned int proto_number)
static int dict_flag_ref(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static int dict_flag_precision(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static int dict_read_process_end(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
int stack_depth
points to the last used stack frame
ssize_t struct_size
size of the struct.
static int dict_read_process_struct(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
Process a STRUCT name attr value.
fr_dict_attr_t const * struct_is_closed
no more members are allowed
char * filename
current filename
int(* fr_dict_keyword_parse_t)(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
Keyword parser.
static int dict_read_process_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
int fr_dict_protocol_afrom_file(fr_dict_t **out, char const *proto_name, char const *proto_dir, char const *dependent)
(Re)-initialize a protocol dictionary
int(* fr_dict_section_begin_t)(dict_tokenize_ctx_t *dctx)
Pushes a new frame onto the top of the stack based on the current frame.
int fr_dict_str_to_argv(char *str, char **argv, int max_argc)
static int dict_read_sscanf_i(unsigned int *pvalue, char const *str)
static int dict_read_process_define(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
static size_t const dict_nest_table_len
static int dict_read_parse_format(char const *format, int *ptype, int *plength, bool *pcontinuation)
static int dict_read_process_begin_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
#define ASSERT_CURRENT_NEST(_dctx, _nest)
static dict_tokenize_frame_t const * dict_dctx_unwind_until(dict_tokenize_ctx_t *dctx, dict_nest_t nest)
Unwind the stack until it points to a particular type of stack frame.
static int dict_from_file(fr_dict_t *dict, char const *dir_name, char const *filename, char const *src_file, int src_line)
fr_dict_attr_t const * da
the da we care about
fr_dict_attr_t * value_attr
Cache of last attribute to speed up value processing.
static int dict_read_process_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flag)
Register the specified dictionary as a protocol dictionary.
#define FLAG_FUNC(_name)
Define a flag setting function, which sets one bit in a fr_dict_attr_flags_t.
#define CURRENT_LINE(_dctx)
static dict_tokenize_frame_t const * dict_dctx_pop(dict_tokenize_ctx_t *dctx)
Pop the current stack frame.
char * filename
name of the file where we read this entry
static int dict_set_value_attr(dict_tokenize_ctx_t *dctx, fr_dict_attr_t *da)
static int dict_read_process_enum(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
int line
current line
#define CURRENT_FILENAME(_dctx)
static int dict_struct_finalise(dict_tokenize_ctx_t *dctx)
static int dict_flag_offset(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static int dict_read_process_begin_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
static int dict_flag_key(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
fr_dict_t * dict
Protocol dictionary we're inserting attributes into.
static int dict_begin_protocol(NDEBUG_UNUSED dict_tokenize_ctx_t *dctx)
Process an inline BEGIN PROTOCOL block.
static int dict_flag_clone(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rules)
dict_tokenize_frame_t stack[DICT_MAX_STACK]
stack of attributes to track
int line
line number where we read this entry
static bool dict_filename_loaded(fr_dict_t *dict, char const *filename, char const *src_file, int src_line)
See if we have already loaded the file,.
static int dict_flag_enum(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static dict_tokenize_frame_t const * dict_dctx_unwind(dict_tokenize_ctx_t *dctx)
#define CURRENT_DA(_dctx)
#define DICT_MAX_ARGV
Maximum number of arguments.
static int dict_read_process_value(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
Process a value alias.
static dict_tokenize_frame_t const * dict_dctx_find_frame(dict_tokenize_ctx_t *dctx, dict_nest_t nest)
fr_dict_keyword_parser_t value
Value to return from lookup.
static int dict_flag_length(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static int dict_read_process_end_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
int fr_dict_read(fr_dict_t *dict, char const *dir, char const *filename)
Read supplementary attribute definitions into an existing dictionary.
#define DICT_MAX_STACK
Maximum stack size.
int fr_dict_parse_str(fr_dict_t *dict, char *buf, fr_dict_attr_t const *parent)
static int dict_flag_subtype(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static int dict_read_process_begin(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
int fr_dict_internal_afrom_file(fr_dict_t **out, char const *dict_subdir, char const *dependent)
(Re-)Initialize the special internal dictionary
static int dict_dctx_push(dict_tokenize_ctx_t *dctx, fr_dict_attr_t const *da, dict_nest_t nest)
static int dict_read_process_flags(UNUSED dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
static int dict_attr_add_or_fixup(dict_fixup_ctx_t *fixup, fr_dict_attr_t **da_p)
Add an attribute to the dictionary, or add it to a list of attributes to clone later.
int(* fr_dict_keyword_finalise_t)(dict_tokenize_ctx_t *dctx)
#define CURRENT_FRAME(_dctx)
static void dict_attr_location_set(dict_tokenize_ctx_t *dctx, fr_dict_attr_t *da)
fr_dict_attr_t const * relative_attr
for ".82" instead of "1.2.3.82". only for parents of type "tlv"
static int dict_flag_secret(fr_dict_attr_t **da_p, UNUSED char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
fr_table_elem_name_t name
Name of the keyword, e.g. "ATTRIBUTE".
static int dict_read_process_end_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
fr_dict_keyword_parse_t parse
Function to parse the keyword with.
void dict_dctx_debug(dict_tokenize_ctx_t *dctx)
dict_nest_t
This represents explicit BEGIN/END frames pushed onto the stack.
@ NEST_TOP
top of the stack
@ NEST_VENDOR
BEGIN-VENDOR.
@ NEST_PROTOCOL
BEGIN-PROTOCOL.
@ NEST_ATTRIBUTE
BEGIN foo.
@ NEST_NONE
static int dict_root_set(fr_dict_t *dict, char const *name, unsigned int proto_number)
Set a new root dictionary attribute.
Parser context for dict_from_file.
static void * fr_dlist_head(fr_dlist_head_t const *list_head)
Return the HEAD item of a list or NULL if the list is empty.
Definition dlist.h:486
static int fr_dlist_insert_tail(fr_dlist_head_t *list_head, void *ptr)
Insert an item into the tail of a list.
Definition dlist.h:378
static void * fr_dlist_next(fr_dlist_head_t const *list_head, void const *ptr)
Get the next item in a list.
Definition dlist.h:555
char const * fr_cwd_strip(char const *filename)
Intended to be used in logging functions to make output more readable.
Definition file.c:384
talloc_free(reap)
static int stack_depth
Definition radmin.c:157
fr_type_t
@ FR_TYPE_TIME_DELTA
A period of time measured in nanoseconds.
@ FR_TYPE_TLV
Contains nested attributes.
@ FR_TYPE_STRING
String of printable characters.
@ FR_TYPE_NULL
Invalid (uninitialised) attribute type.
@ FR_TYPE_UINT16
16 Bit unsigned integer.
@ FR_TYPE_INT64
64 Bit signed integer.
@ FR_TYPE_INT16
16 Bit signed integer.
@ FR_TYPE_DATE
Unix time stamp, always has value >2^31.
@ FR_TYPE_UINT8
8 Bit unsigned integer.
@ FR_TYPE_UINT32
32 Bit unsigned integer.
@ FR_TYPE_STRUCT
like TLV, but without T or L, and fixed-width children
@ FR_TYPE_INT32
32 Bit signed integer.
@ FR_TYPE_VENDOR
Attribute that represents a vendor in the attribute tree.
@ FR_TYPE_UINT64
64 Bit unsigned integer.
@ FR_TYPE_BOOL
A truth value.
@ FR_TYPE_VSA
Vendor-Specific, for RADIUS attribute 26.
@ FR_TYPE_OCTETS
Raw octets.
@ FR_TYPE_GROUP
A grouping of other attributes.
long int ssize_t
unsigned char uint8_t
ssize_t fr_slen_t
int strncasecmp(char *s1, char *s2, int n)
Definition missing.c:36
int strcasecmp(char *s1, char *s2)
Definition missing.c:66
#define fr_assert(_expr)
Definition rad_assert.h:38
static rc_request_t * current
char const * name
Test name (as specified in the request).
Definition radclient.h:101
static char const * name
size_t fr_sbuff_adv_past_allowed(fr_sbuff_t *sbuff, size_t len, bool const allowed[static UINT8_MAX+1], fr_sbuff_term_t const *tt)
Wind position past characters in the allowed set.
Definition sbuff.c:1805
bool const sbuff_char_class_int[UINT8_MAX+1]
Definition sbuff.c:68
#define FR_SBUFF_IN(_start, _len_or_end)
#define FR_SBUFF_IN_STR(_start)
PUBLIC int snprintf(char *string, size_t length, char *format, va_alist)
Definition snprintf.c:689
fr_aka_sim_id_type_t type
size_t strlcat(char *dst, char const *src, size_t siz)
Definition strlcat.c:35
size_t strlcpy(char *dst, char const *src, size_t siz)
Definition strlcpy.c:34
char const * fr_syserror(int num)
Guaranteed to be thread-safe version of strerror.
Definition syserror.c:243
char const * str
Literal string.
Definition table.h:42
#define fr_table_value_by_str(_table, _name, _def)
Convert a string to a value using a sorted or ordered table.
Definition table.h:653
#define fr_table_str_by_value(_table, _number, _def)
Convert an integer to a string.
Definition table.h:772
#define TABLE_TYPE_NAME_FUNC_RPTR(_func, _our_table_type, _our_name, _our_def_type, _our_out_type)
Create a type-specific name-to-value function.
Definition table.h:144
static void const * table_sorted_value_by_str(void const *table, size_t table_len, size_t element_size, char const *name)
Convert a string to a value using a lexicographically sorted table.
Definition table.h:328
fr_table_elem_name_t name
Definition table.h:58
An element in an arbitrarily ordered array of name to num mappings.
Definition table.h:57
An element in a lexicographically sorted array of name to num mappings.
Definition table.h:49
char * talloc_typed_asprintf(TALLOC_CTX *ctx, char const *fmt,...)
Call talloc vasprintf, setting the type on the new chunk correctly.
Definition talloc.c:514
char * talloc_typed_strdup(TALLOC_CTX *ctx, char const *p)
Call talloc_strdup, setting the type on the new chunk correctly.
Definition talloc.c:467
fr_table_num_ordered_t const fr_time_precision_table[]
Definition time.c:46
#define FR_DICTIONARY_FILE
Definition conf.h:7
static fr_slen_t parent
Definition pair.h:841
void fr_strerror_clear(void)
Clears all pending messages from the talloc pools.
Definition strerror.c:576
#define fr_strerror_printf(_fmt,...)
Log to thread local error buffer.
Definition strerror.h:64
#define fr_strerror_printf_push(_fmt,...)
Add a message to an existing stack of messages at the tail.
Definition strerror.h:84
#define fr_strerror_const_push(_msg)
Definition strerror.h:227
#define fr_strerror_const(_msg)
Definition strerror.h:223
fr_table_num_ordered_t const fr_type_table[]
Map data types to names representing those types.
Definition types.c:31
size_t fr_type_table_len
Definition types.c:87
#define fr_type_is_structural(_x)
Definition types.h:393
@ FR_TYPE_UNION
A union of limited children.
Definition types.h:82
@ FR_TYPE_ATTR
A contains an attribute reference.
Definition types.h:84
#define fr_type_is_null(_x)
Definition types.h:348
#define fr_type_is_tlv(_x)
Definition types.h:373
#define fr_type_is_leaf(_x)
Definition types.h:394
static char const * fr_type_to_str(fr_type_t type)
Return a static string containing the type name.
Definition types.h:455
#define fr_type_is_struct(_x)
Definition types.h:374
static fr_type_t fr_type_from_str(char const *type)
Return the constant value representing a type.
Definition types.h:465
#define FR_TYPE_LEAF
Definition types.h:318
int fr_value_box_cast_in_place(TALLOC_CTX *ctx, fr_value_box_t *vb, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv)
Convert one type of fr_value_box_t to another in place.
Definition value.c:3990
ssize_t fr_value_box_from_str(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, char const *in, size_t inlen, fr_sbuff_unescape_rules_t const *erules)
Definition value.c:5761
void fr_value_box_clear(fr_value_box_t *data)
Clear/free any existing value and metadata.
Definition value.c:4145
#define FR_VALUE_BOX_INITIALISER_NULL(_vb)
A static initialiser for stack/globally allocated boxes.
Definition value.h:510
int nonnull(2, 5))
#define fr_value_box_init(_vb, _type, _enumv, _tainted)
Initialise a fr_value_box_t.
Definition value.h:609
int format(printf, 5, 0))
static size_t char ** out
Definition value.h:1023