The FreeRADIUS server $Id: 15bac2a4c627c01d1aa2047687b3418955ac7f00 $
Loading...
Searching...
No Matches
dict_tokenize.c
Go to the documentation of this file.
1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2 of the License, or
5 * (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
15 */
16
17/** Parse dictionary files
18 *
19 * @file src/lib/util/dict_tokenize.c
20 *
21 * @copyright 2019 The FreeRADIUS server project
22 * @copyright 2024 Arran Cudbard-Bell (a.cudbardb@freeradius.org)
23 */
24RCSID("$Id: 0a093f48c59057315a3489b0653a95866fe4e6c4 $")
25
26#include <freeradius-devel/radius/defs.h>
27#include <freeradius-devel/util/conf.h>
28#include <freeradius-devel/util/dict_fixup_priv.h>
29#include <freeradius-devel/util/file.h>
30#include <freeradius-devel/util/rand.h>
31#include <freeradius-devel/util/syserror.h>
32
33#include <sys/stat.h>
34
35/** Maximum number of arguments
36 *
37 * For any one keyword, this is the maxiumum number of arguments that can be passed.
38 */
39#define DICT_MAX_ARGV (8)
40
41/** Maximum stack size
42 *
43 * This is the maximum number of nested BEGIN and $INCLUDE statements.
44 */
45#define DICT_MAX_STACK (32)
46
47/** This represents explicit BEGIN/END frames pushed onto the stack
48 *
49 * These are flags to allow multiple nesting types to be passed to the search function.
50 */
51DIAG_OFF(attributes)
52typedef enum CC_HINT(flag_enum) {
53 NEST_NONE = 0x00,
54 NEST_TOP = 0x01, //!< top of the stack
55 NEST_PROTOCOL = 0x02, //!< BEGIN-PROTOCOL
56 NEST_VENDOR = 0x04, //!< BEGIN-VENDOR
57 NEST_ATTRIBUTE = 0x08 //!< BEGIN foo
59DIAG_ON(attributes)
60
61#define NEST_ANY (NEST_TOP | NEST_PROTOCOL | NEST_VENDOR | NEST_ATTRIBUTE)
62
64 { L("ATTRIBUTE"), NEST_ATTRIBUTE },
65 { L("NONE"), NEST_NONE },
66 { L("PROTOCOL"), NEST_PROTOCOL },
67 { L("TOP"), NEST_TOP },
68 { L("VENDOR"), NEST_VENDOR }
69};
71
73
74/** Parser context for dict_from_file
75 *
76 * Allows vendor and TLV context to persist across $INCLUDEs
77 */
78typedef struct {
79 char *filename; //!< name of the file where we read this entry
80 int line; //!< line number where we read this entry
81 fr_dict_attr_t const *da; //!< the da we care about
82 dict_nest_t nest; //!< for manual vs automatic begin / end things
83
84 fr_dict_keyword_finalise_t finalise; //!< function to call when popping
85 int member_num; //!< structure member numbers
86 fr_dict_attr_t const *struct_is_closed; //!< no more members are allowed
87 ssize_t struct_size; //!< size of the struct.
89
91 fr_dict_t *dict; //!< Protocol dictionary we're inserting attributes into.
92
93 dict_tokenize_frame_t stack[DICT_MAX_STACK]; //!< stack of attributes to track
94 int stack_depth; //!< points to the last used stack frame
95
96 fr_dict_attr_t *value_attr; //!< Cache of last attribute to speed up value processing.
97 fr_dict_attr_t const *relative_attr; //!< for ".82" instead of "1.2.3.82". only for parents of type "tlv"
99
100 char *filename; //!< current filename
101 int line; //!< current line
102};
103
105 char const *dir_name, char const *filename,
106 char const *src_file, int src_line);
107
108#define CURRENT_FRAME(_dctx) (&(_dctx)->stack[(_dctx)->stack_depth])
109#define CURRENT_DA(_dctx) (CURRENT_FRAME(_dctx)->da)
110#define CURRENT_FILENAME(_dctx) (CURRENT_FRAME(_dctx)->filename)
111#define CURRENT_LINE(_dctx) (CURRENT_FRAME(_dctx)->line)
112
113#define ASSERT_CURRENT_NEST(_dctx, _nest) fr_assert_msg(CURRENT_FRAME(_dctx)->nest == (_nest), "Expected frame type %s, got %s", \
114 fr_table_str_by_value(dict_nest_table, (_nest), "<INVALID>"), fr_table_str_by_value(dict_nest_table, CURRENT_FRAME(_dctx)->nest, "<INVALID>"))
115
117{
118 int i;
119
120 for (i = 0; i <= dctx->stack_depth; i++) {
121 dict_tokenize_frame_t const *frame = &dctx->stack[i];
122
123 FR_FAULT_LOG("[%d]: %s %s (%s): %s[%d]",
124 i,
125 fr_table_str_by_value(dict_nest_table, frame->nest, "<INVALID>"),
126 frame->da->name,
127 fr_type_to_str(frame->da->type),
128 frame->filename, frame->line);
129 }
130}
131
133{
134 int i;
135
136 for (i = dctx->stack_depth; i >= 0; i--) {
137 if (dctx->stack[i].nest & nest) return &dctx->stack[i];
138 }
139
140 return NULL;
141}
142
143static int CC_HINT(nonnull) dict_dctx_push(dict_tokenize_ctx_t *dctx, fr_dict_attr_t const *da, dict_nest_t nest)
144{
145 if ((dctx->stack_depth + 1) >= DICT_MAX_STACK) {
146 fr_strerror_const("Attribute definitions are nested too deep.");
147 return -1;
148 }
149
150 dctx->stack[++dctx->stack_depth] = (dict_tokenize_frame_t) {
151 .da = da,
152 .filename = dctx->filename,
153 .line = dctx->line,
154 .nest = nest,
155 };
156
157 return 0;
158}
159
160
161/** Pop the current stack frame
162 *
163 * @param[in] dctx Stack to pop from.
164 * @return
165 * - Pointer to the current stack frame.
166 * - NULL, if we're already at the root.
167 */
169{
170 if (dctx->stack_depth == 0) return NULL;
171
172 fr_assert(!dctx->stack[dctx->stack_depth].finalise);
173
174 return &dctx->stack[dctx->stack_depth--];
175}
176
177/** Unwind the stack until it points to a particular type of stack frame
178 *
179 * @param[in] dctx Stack to unwind.
180 * @param[in] nest Frame type to unwind to.
181 * @return
182 * - Pointer to the frame matching nest
183 * - NULL, if we unwound the complete stack and didn't find the frame.
184 */
186{
187 int i;
188
189 for (i = dctx->stack_depth; i >= 0; i--) {
191
192 /*
193 * We mash the stack depth here, because the finalisation function needs it. Plus, if
194 * there's any error, we don't care about the dctx stack, we just return up the C stack.
195 */
196 dctx->stack_depth = i;
197 frame = CURRENT_FRAME(dctx);
198
199 if (frame->finalise) {
200 if (frame->finalise(dctx) < 0) return NULL;
201 frame->finalise = NULL;
202 }
203
204 /*
205 * END-foo cannot be used without BEGIN-foo.
206 */
207 if (frame->filename && (frame->filename != dctx->filename) &&
208 (nest != NEST_ANY)) {
209 char const *name;
210
211 name = fr_table_str_by_value(dict_nest_table, nest, "<INVALID>");
212 fr_strerror_printf("END-%s in file %s[%d] without matching BEGIN-%s",
213 name, dctx->filename, dctx->line, name);
214 return NULL;
215 }
216
217 if ((frame->nest & nest) != 0) {
218 return frame;
219 }
220 }
221
222 return NULL;
223}
224
226{
227 return dict_dctx_unwind_until(dctx, NEST_ANY);
228}
229
230/*
231 * String split routine. Splits an input string IN PLACE
232 * into pieces, based on spaces.
233 */
234int fr_dict_str_to_argv(char *str, char **argv, int max_argc)
235{
236 int argc = 0;
237
238 while (*str) {
239 if (argc >= max_argc) break;
240
241 /*
242 * Chop out comments early.
243 */
244 if (*str == '#') {
245 *str = '\0';
246 break;
247 }
248
249 while ((*str == ' ') ||
250 (*str == '\t') ||
251 (*str == '\r') ||
252 (*str == '\n'))
253 *(str++) = '\0';
254
255 if (!*str) break;
256
257 argv[argc] = str;
258 argc++;
259
260 while (*str &&
261 (*str != ' ') &&
262 (*str != '\t') &&
263 (*str != '\r') &&
264 (*str != '\n'))
265 str++;
266 }
267
268 return argc;
269}
270
271static int dict_read_sscanf_i(unsigned int *pvalue, char const *str)
272{
273 int unsigned ret = 0;
274 int base = 10;
275 static char const *tab = "0123456789";
276
277 if ((str[0] == '0') &&
278 ((str[1] == 'x') || (str[1] == 'X'))) {
279 tab = "0123456789abcdef";
280 base = 16;
281
282 str += 2;
283 }
284
285 while (*str) {
286 char const *c;
287
288 if (*str == '.') break;
289
290 c = memchr(tab, tolower((uint8_t)*str), base);
291 if (!c) return 0;
292
293 ret *= base;
294 ret += (c - tab);
295 str++;
296 }
297
298 *pvalue = ret;
299 return 1;
300}
301
302/** Set a new root dictionary attribute
303 *
304 * @note Must only be called once per dictionary.
305 *
306 * @param[in] dict to modify.
307 * @param[in] name of dictionary root.
308 * @param[in] proto_number The artificial (or IANA allocated) number for the protocol.
309 * This is only used for
310 * @return
311 * - 0 on success.
312 * - -1 on failure.
313 */
314static int dict_root_set(fr_dict_t *dict, char const *name, unsigned int proto_number)
315{
316 fr_dict_attr_t *da;
317
318 fr_dict_attr_flags_t flags = {
319 .is_root = 1,
320 .type_size = 1,
321 .length = 1
322 };
323
324 if (!fr_cond_assert(!dict->root)) {
325 fr_strerror_const("Dictionary root already set");
326 return -1;
327 }
328
329 da = dict_attr_alloc_root(dict->pool, dict, name, proto_number, &(dict_attr_args_t){ .flags = &flags });
330 if (unlikely(!da)) return -1;
331
332 dict->root = da;
333 dict->root->dict = dict;
334 DA_VERIFY(dict->root);
335
336 return 0;
337}
338
340{
341 char *p;
343
344 /*
345 * Some types can have fixed length
346 */
347 p = strchr(name, '[');
348 if (p) {
349 char *q;
350 unsigned int length;
351
352 *p = '\0';
353 q = strchr(p + 1, ']');
354 if (!q) {
355 fr_strerror_printf("Invalid format for '%s[...]'", name);
356 return -1;
357 }
358
359 *q = '\0';
360 if (q[1]) {
361 fr_strerror_const("length, if present, must end type field");
362 return -1;
363 }
364
365 if (!dict_read_sscanf_i(&length, p + 1)) {
366 fr_strerror_printf("Invalid length for '%s[...]'", name);
367 return -1;
368 }
369
370 /*
371 * "length" has to fit into the flags.length field.
372 */
373 if ((length == 0) || (length > UINT16_MAX)) {
374 fr_strerror_printf("Invalid length for '%s[...]'", name);
375 return -1;
376 }
377
378 /*
379 * Now that we have a length, check the data type.
380 */
381 if (strcmp(name, "octets") == 0) {
383
384 } else if (strcmp(name, "string") == 0) {
386
387 } else if (strcmp(name, "struct") == 0) {
389
390 } else if (strcmp(name, "union") == 0) {
392
393 } else if (strcmp(name, "bit") == 0) {
394 if (CURRENT_FRAME(dctx)->da->type != FR_TYPE_STRUCT) {
395 fr_strerror_const("Bit fields can only be defined as a MEMBER of data type 'struct'");
396 return -1;
397 }
398
399 (*da_p)->flags.extra = 1;
400 (*da_p)->flags.subtype = FLAG_BIT_FIELD;
401
402 if (length == 1) {
404 } else if (length <= 8) {
406 } else if (length <= 16) {
408 } else if (length <= 32) {
410 } else if (length <= 56) { /* for laziness in encode / decode */
412 } else {
413 fr_strerror_const("Invalid length for bit field");
414 return -1;
415 }
416
417 /*
418 * Cache where on a byte boundary this
419 * bit field ends. We could have the
420 * validation function loop through all
421 * previous siblings, but that's
422 * annoying.
423 */
424 (*da_p)->flags.flag_byte_offset = length;
425
426 } else {
427 fr_strerror_printf("Attributes of type '%s' cannot use the %s[...] syntax",
428 name, name);
429 return -1;
430 }
431
432 (*da_p)->flags.is_known_width = true;
433 (*da_p)->flags.length = length;
434 return dict_attr_type_init(da_p, type);
435 }
436
437 /*
438 * We default to using the standard FreeRADIUS types.
439 *
440 * However, if there is a protocol-specific type parsing
441 * function, we call that, too. That ordering allows the
442 * protocol-specific names to over-ride the default ones.
443 */
445
446 if (dctx->dict->proto->attr.type_parse &&
447 !dctx->dict->proto->attr.type_parse(&type, da_p, name)) {
448 return -1;
449 }
450
451 /*
452 * Still not known, or is still a NULL type, that's an error.
453 *
454 * The protocol-specific function can return an error if
455 * it has an error in its parsing. Or, it can return
456 * "true"
457 */
458 if (fr_type_is_null(type)) {
459 fr_strerror_printf("Unknown data type '%s'", name);
460 return -1;
461 }
462
463 return dict_attr_type_init(da_p, type);
464}
465
466/** Define a flag setting function, which sets one bit in a fr_dict_attr_flags_t
467 *
468 * This is here, because AFAIK there's no completely portable way to get the bit
469 * offset of a bit field in a structure.
470 */
471#define FLAG_FUNC(_name) \
472static int dict_flag_##_name(fr_dict_attr_t **da_p, UNUSED char const *value, UNUSED fr_dict_flag_parser_rule_t const *rules)\
473{ \
474 (*da_p)->flags._name = 1; \
475 return 0; \
476}
477
478FLAG_FUNC(array)
479
480static int dict_flag_clone(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rules)
481{
482 if (((*da_p)->type != FR_TYPE_TLV) && ((*da_p)->type != FR_TYPE_STRUCT)) {
483 fr_strerror_const("'clone=...' references can only be used for 'tlv' and 'struct' types");
484 return -1;
485 }
486
487 /*
488 * Allow cloning of any types, so long as
489 * the types are the same. We do the checks later.
490 */
492
493 /*
494 * We don't know how big the cloned reference is, so it isn't known width.
495 */
496 (*da_p)->flags.is_known_width = 0;
497
498 return 0;
499}
500
501FLAG_FUNC(counter)
502
503static int dict_flag_enum(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
504{
505 /*
506 * Allow enum=... as a synonym for
507 * "clone". We check the sources and not
508 * the targets, because that's easier.
509 *
510 * Plus, ENUMs are really just normal attributes
511 * in disguise.
512 */
513 if (!fr_type_is_leaf((*da_p)->type)) {
514 fr_strerror_const("'enum=...' references cannot be used for structural types");
515 return -1;
516 }
517
519
520 return 0;
521}
522
523FLAG_FUNC(internal)
524
525static int dict_flag_key(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
526{
527 fr_dict_attr_t *da = *da_p;
528 fr_dict_attr_t const *key;
530
531 if (fr_type_is_leaf(da->type)) {
532 if (value) {
533 fr_strerror_const("Attributes defining a 'key' field cannot specify a key reference");
534 return -1;
535 }
536
537 if ((da->type != FR_TYPE_UINT8) && (da->type != FR_TYPE_UINT16) && (da->type != FR_TYPE_UINT32)) {
538 fr_strerror_const("The 'key' flag can only be used for attributes of type 'uint8', 'uint16', or 'uint32'");
539 return -1;
540 }
541
542 if (da->flags.extra) {
543 fr_strerror_const("Bit fields cannot be key fields");
544 return -1;
545 }
546
547 da->flags.extra = 1;
548 da->flags.subtype = FLAG_KEY_FIELD;
549 return 0;
550 }
551
552 if (da->type != FR_TYPE_UNION) {
553 fr_strerror_printf("Attributes of type '%s' cannot define a 'key' reference", fr_type_to_str(da->type));
554 return -1;
555 }
556
557 if (!value) {
558 fr_strerror_const("Missing reference for 'key=...'");
559 return -1;
560 }
561
562 /*
563 * The reference must be to a sibling, which is marked "is key".
564 */
565 key = fr_dict_attr_by_name(NULL, da->parent, value);
566 if (!key) {
567 fr_strerror_printf("Invalid reference for 'key=...'. Parent %s does not have a child attribute named %s",
568 da->parent->name, value);
569 return -1;
570 }
571
572 if (da->parent != key->parent) {
573 fr_strerror_printf("Invalid reference for 'key=...'. Reference %s does not share a common parent",
574 value);
575 return -1;
576 }
577
578 if (!fr_dict_attr_is_key_field(key)) {
579 fr_strerror_printf("Invalid reference for 'key=...'. Reference %s is not a 'key' field",
580 value);
581 return -1;
582 }
583
584 /*
585 * Allocate the ref and save the value.
586 */
588 if (ext) {
589 fr_strerror_printf("Attribute already has a 'key=...' defined");
590 return -1;
591 }
592
593 ext = dict_attr_ext_alloc(da_p, FR_DICT_ATTR_EXT_KEY); /* can change da_p */
594 if (unlikely(!ext)) return -1;
595
597 ext->ref = key;
598
599 return 0;
600}
601
602static int dict_flag_length(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
603{
604 fr_dict_attr_t *da = *da_p;
605
606 if (strcmp(value, "uint8") == 0) {
607 da->flags.is_known_width = true;
608 da->flags.extra = 1;
609 da->flags.subtype = FLAG_LENGTH_UINT8;
610
611 } else if (strcmp(value, "uint16") == 0) {
612 da->flags.is_known_width = true;
613 da->flags.extra = 1;
614 da->flags.subtype = FLAG_LENGTH_UINT16;
615
616 } else {
617 fr_strerror_const("Invalid value given for the 'length' flag");
618 return -1;
619 }
620 da->flags.type_size = 0;
621
622 return 0;
623}
624
625static int dict_flag_offset(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
626{
627 fr_dict_attr_t *da = *da_p;
628 int offset;
629
630 if (da->type != FR_TYPE_STRUCT) {
631 fr_strerror_const("The 'offset' flag can only be used with data type 'struct'");
632 return -1;
633 }
634
635 if (!da_is_length_field(da)) {
636 fr_strerror_const("The 'offset' flag can only be used in combination with 'length=uint8' or 'length=uint16'");
637 return -1;
638 }
639
640 offset = atoi(value);
641 if ((offset <= 0) || (offset > 255)) {
642 fr_strerror_const("The 'offset' value must be between 1..255");
643 return -1;
644 }
645 da->flags.type_size = offset;
646
647 return 0;
648}
649
651{
652 fr_dict_attr_t *da = *da_p;
653 int precision;
654
655 switch (da->type) {
656 case FR_TYPE_DATE:
658 break;
659
660 default:
661 fr_strerror_const("The 'precision' flag can only be used with data types 'date' or 'time'");
662 return -1;
663 }
664
666 if (precision < 0) {
667 fr_strerror_printf("Unknown %s precision '%s'", fr_type_to_str(da->type), value);
668 return -1;
669 }
670 da->flags.flag_time_res = precision;
671
672 return 0;
673}
674
675static int dict_flag_ref(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
676{
677 fr_dict_attr_t *da = *da_p;
678
679 if (da->flags.extra) {
680 fr_strerror_const("Cannot use 'ref' with other flags");
681 return -1;
682 }
683
684 if (da->type != FR_TYPE_GROUP) {
685 fr_strerror_printf("The 'ref' flag cannot be used for type '%s'",
686 fr_type_to_str(da->type));
687 return -1;
688 }
689
691
692 return 0;
693}
694
696{
697 fr_dict_attr_t *da = *da_p;
698
699 da->flags.secret = 1;
700
701 if ((da->type != FR_TYPE_STRING) && (da->type != FR_TYPE_OCTETS)) {
702 fr_strerror_const("The 'secret' flag can only be used with data types 'string' or 'octets'");
703 return -1;
704 }
705
706 return 0;
707}
708
709static int dict_flag_subtype(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
710{
711 fr_dict_attr_t *da = *da_p;
712 fr_type_t subtype;
713
714 switch (da->type) {
715 case FR_TYPE_DATE:
717 break;
718
719 default:
720 fr_strerror_const("The 'subtype' flag can only be used with data types 'date' or 'time'");
721 return -1;
722 }
723
724 subtype = fr_type_from_str(value);
725 if (fr_type_is_null(subtype)) {
726 unknown_type:
727 fr_strerror_printf("Unknown or unsupported %s type '%s'",
728 fr_type_to_str(subtype),
729 value);
730 return -1;
731 }
732
733 switch (subtype) {
734 default:
735 goto unknown_type;
736
737 case FR_TYPE_INT16:
738 if (da->type == FR_TYPE_DATE) goto unknown_type;
739 da->flags.length = 2;
740 break;
741
742 case FR_TYPE_UINT16:
743 da->flags.is_unsigned = true;
744 da->flags.length = 2;
745 break;
746
747 case FR_TYPE_INT32:
748 if (da->type == FR_TYPE_DATE) goto unknown_type;
749 da->flags.length = 4;
750 break;
751
752 case FR_TYPE_UINT32:
753 da->flags.is_unsigned = true;
754 da->flags.length = 4;
755 break;
756
757 case FR_TYPE_INT64:
758 if (da->type == FR_TYPE_DATE) goto unknown_type;
759 da->flags.length = 8;
760 break;
761
762 case FR_TYPE_UINT64:
763 da->flags.is_unsigned = true;
764 da->flags.length = 8;
765 break;
766 }
767
768 return 0;
769}
770
771FLAG_FUNC(unsafe)
772
773/** A lookup function for dictionary attribute flags
774 *
775 */
777 fr_dict_attr_flag_to_parser, fr_dict_flag_parser_rule_t const *, fr_dict_flag_parser_rule_t const *)
778
779static int CC_HINT(nonnull) dict_process_flag_field(dict_tokenize_ctx_t *dctx, char *name, fr_dict_attr_t **da_p)
780{
781 static fr_dict_flag_parser_t dict_common_flags[] = {
782 { L("array"), { .func = dict_flag_array } },
783 { L("clone"), { .func = dict_flag_clone, .needs_value = true } },
784 { L("counter"), { .func = dict_flag_counter } },
785 { L("enum"), { .func = dict_flag_enum, .needs_value = true } },
786 { L("internal"), { .func = dict_flag_internal } },
787 { L("key"), { .func = dict_flag_key } },
788 { L("length"), { .func = dict_flag_length, .needs_value = true } },
789 { L("offset"), { .func = dict_flag_offset, .needs_value = true } },
790 { L("precision"), { .func = dict_flag_precision, .needs_value = true } },
791 { L("ref"), { .func = dict_flag_ref, .needs_value = true } },
792 { L("secret"), { .func = dict_flag_secret } },
793 { L("subtype"), { .func = dict_flag_subtype, .needs_value = true } },
794 { L("unsafe"), { .func = dict_flag_unsafe } },
795 };
796 static size_t dict_common_flags_len = NUM_ELEMENTS(dict_common_flags);
797
798 char *p, *next = NULL;
799
800 if ((*da_p)->type == FR_TYPE_NULL) {
801 fr_strerror_const("Type must be specified before parsing flags");
802 return -1;
803 }
804
805 for (p = name; p && *p != '\0' ; p = next) {
806 char *key, *value;
807 fr_dict_flag_parser_rule_t const *parser;
808
809 key = p;
810
811 /*
812 * Search for the first '=' or ','
813 */
814 for (next = p + 1; *next && (*next != '=') && (*next != ','); next++) {
815 /* do nothing */
816 }
817
818 /*
819 * We have a value, zero out the '=' and point to the value.
820 */
821 if (*next == '=') {
822 *(next++) = '\0';
823 value = next;
824
825 if (!*value || (*value == ',')) {
826 fr_strerror_printf("Missing value after '%s='", key);
827 return -1;
828 }
829 } else {
830 value = NULL;
831 }
832
833 /*
834 * Skip any trailing text in the value.
835 */
836 for (/* nothing */; *next; next++) {
837 if (*next == ',') {
838 *(next++) = '\0';
839 break;
840 }
841 }
842
843 /*
844 * Search the protocol table, then the main table.
845 * This allows protocols to overload common flags.
846 */
847 if (!((dctx->dict->proto->attr.flags.table &&
848 fr_dict_attr_flag_to_parser(&parser, dctx->dict->proto->attr.flags.table,
849 dctx->dict->proto->attr.flags.table_len, key, NULL)) ||
850 fr_dict_attr_flag_to_parser(&parser, dict_common_flags, dict_common_flags_len, key, NULL))) {
851 fr_strerror_printf("Unknown flag '%s'", key);
852 return -1;
853 }
854
855 if (parser->needs_value && !value) {
856 fr_strerror_printf("Flag '%s' requires a value", key);
857 return -1;
858 }
859
860 if (unlikely(parser->func(da_p, value, parser) < 0)) return -1;
861 }
862
863 /*
864 * Don't check the flags field for validity via
865 * dict_attr_flags_valid(). It may be updated by various
866 * protocol-specific callback functions. And,
867 * fr_dict_attr_add() calls dict_attr_flags_valid() anyways.
868 */
869
870 return 0;
871}
872
874{
875 if (dict_fixup_apply(&dctx->fixup) < 0) return -1;
876
877 dctx->value_attr = NULL;
878 dctx->relative_attr = NULL;
879
880 return 0;
881}
882
883static inline CC_HINT(always_inline)
885{
886 da->filename = CURRENT_FILENAME(dctx);
887 da->line = CURRENT_LINE(dctx);
888}
889
890/** Add an attribute to the dictionary, or add it to a list of attributes to clone later
891 *
892 * @param[in] fixup context to add an entry to (if needed).
893 * @param[in] da_p to either add, or create a fixup for.
894 * @return
895 * - 0 on success, and an attribute was added.
896 * - 1 on success, and a deferred entry was added.
897 * - -1 on failure.
898 */
900{
902 fr_dict_attr_t *da = *da_p;
903 int ret = 0;
904
905 /*
906 * Check for any references associated with the attribute,
907 * if they're unresolved, then add fixups.
908 *
909 * We do this now, as we know the attribute memory chunk
910 * is stable, and we can safely add the fixups.
911 */
913 if (ref && fr_dict_attr_ref_is_unresolved(ref->type)) {
914 /*
915 * See if we can immediately apply the ref.
916 */
917 fr_dict_attr_t const *src;
918
919 switch (fr_dict_attr_ref_type(ref->type)) {
921 /*
922 * IF the ref exists, we can always add it. The ref won't be changed later.
923 */
924 if (fr_dict_protocol_reference(&src, da->parent, &FR_SBUFF_IN_STR(ref->unresolved)) < 0) return -1;
925
926 if (src && (dict_attr_ref_set(*da_p, src, FR_DICT_ATTR_REF_ALIAS) < 0)) return -1;
927
928 if (fr_dict_attr_add_initialised(da) < 0) {
929 error:
930 talloc_free(da);
931 *da_p = NULL;
932 return -1;
933 }
934
935 if (!src && (dict_fixup_group_enqueue(fixup, da, ref->unresolved) < 0)) return -1;
936 ret = 1;
937 break;
938
940 /*
941 * Do NOT copy the enums now. Later dictionaries may add more values, and we
942 * want to be able to copy all values.
943 */
944 if (fr_dict_attr_add_initialised(da) < 0) goto error;
945
946 if (dict_fixup_clone_enum_enqueue(fixup, da, ref->unresolved) < 0) return -1;
947 break;
948
950 /*
951 * @todo - if we defer this clone, we get errors loading dictionary.wimax. That
952 * likely means there are issues with the dict_fixup_clone_apply() function.
953 */
954 if (fr_dict_protocol_reference(&src, da->parent, &FR_SBUFF_IN_STR(ref->unresolved)) < 0) return -1;
955 if (src) {
956 if (dict_fixup_clone(da_p, src) < 0) return -1;
957 break;
958 }
959
960 if (dict_fixup_clone_enqueue(fixup, da, ref->unresolved) < 0) return -1;
961 ret = 1;
962 break;
963
964 default:
965 fr_strerror_const("Unknown reference type");
966 return -1;
967 }
968 } else {
969 if (fr_dict_attr_add_initialised(da) < 0) goto error;
970 }
971
972 return ret;
973}
974
975/** Check if this definition is a duplicate, and if it is, whether we should skip it error out
976 *
977 * @return
978 * - 1 if this is not a duplicate.
979 * - 0 if this is a duplicate, and we should ignore the definition.
980 * - -1 if this is a duplicate, and we should error out.
981 */
983{
984 fr_dict_attr_t const *dup_name = NULL;
985 fr_dict_attr_t const *dup_num = NULL;
986 fr_dict_attr_t const *found;
987
988 /*
989 * Search in the parent for a duplicate by name and then by num
990 */
991 if (!da->parent) return 1; /* no parent no conflicts possible */
992
993 dup_name = fr_dict_attr_by_name(NULL, da->parent, da->name);
994 if (da->flags.name_only) dup_num = fr_dict_attr_child_by_num(da->parent, da->attr);
995
996 /*
997 * Not a duplicate...
998 */
999 if (!dup_name && !dup_num) return 1;
1000
1001 found = dup_name ? dup_name : dup_num;
1002
1003 switch (da->type) {
1004 /*
1005 * For certain STRUCTURAL types, we allow strict duplicates
1006 * as if the user wants to add extra children in the custom
1007 * dictionary, or wants to avoid ordering issues between
1008 * multiple dictionaries, we need to support this.
1009 */
1010 case FR_TYPE_VSA:
1011 case FR_TYPE_VENDOR:
1012 case FR_TYPE_TLV:
1013 if (fr_dict_attr_cmp_fields(da, found) == 0) return -1;
1014 break;
1015
1016 default:
1017 break;
1018 }
1019
1020 if (dup_name) {
1021 fr_strerror_printf("Duplicate attribute name '%s' in namespace '%s'. Originally defined %s[%d]",
1022 da->name, da->parent->name, dup_name->filename, dup_name->line);
1023 return 0;
1024 }
1025
1026 fr_strerror_printf("Duplicate attribute number %u in parent '%s'. Originally defined %s[%d]",
1027 da->attr, da->parent->name, dup_num->filename, dup_num->line);
1028 return 0;
1029}
1030
1032{
1033 fr_dict_attr_t const *da;
1034 dict_tokenize_frame_t const *frame = CURRENT_FRAME(dctx);
1035
1036 da = frame->da;
1037 fr_assert(da->type == FR_TYPE_STRUCT);
1038
1039 /*
1040 * The structure was fixed-size, but the fields don't fill it. That's an error.
1041 *
1042 * Since process_member() checks for overflow, the check here is really only for
1043 * underflow.
1044 */
1045 if (da->flags.is_known_width) {
1046 if (CURRENT_FRAME(dctx)->struct_size != da->flags.length) {
1047 fr_strerror_printf("MEMBERs of %s struct[%u] do not exactly fill the fixed-size structure",
1048 da->name, da->flags.length);
1049 return -1;
1050 }
1051
1052 return 0;
1053 }
1054
1055 /*
1056 * If we have discovered that the structure has a fixed size, then update the da with that
1057 * information.
1058 */
1059 if (frame->struct_size < UINT16_MAX) {
1060 UNCONST(fr_dict_attr_t *, da)->flags.length = frame->struct_size;
1061 } /* else length 0 means "unknown / variable size / too large */
1062
1063 return 0;
1064}
1065
1067{
1068 /*
1069 * Adding an attribute of type 'struct' is an implicit
1070 * BEGIN-STRUCT.
1071 */
1072 if (da->type == FR_TYPE_STRUCT) {
1073 if (dict_dctx_push(dctx, da, NEST_NONE) < 0) return -1;
1074
1075 CURRENT_FRAME(dctx)->finalise = dict_struct_finalise;
1076 dctx->value_attr = NULL;
1077
1078 } else if (fr_type_is_leaf(da->type)) {
1079 dctx->value_attr = da;
1080
1081 } else {
1082 dctx->value_attr = NULL;
1083 }
1084
1085 return 0;
1086}
1087
1089 fr_dict_attr_t const *parent, char const *name,
1090 char const *type_name, char *flag_name,
1091 fr_dict_attr_flags_t const *base_flags)
1092{
1093 fr_dict_attr_t *da, *to_free = NULL;
1094
1095 /*
1096 * Dictionaries need to have real names, not shitty ones.
1097 */
1098 if (strncmp(name, "Attr-", 5) == 0) {
1099 fr_strerror_const("Invalid name");
1100 return -1;
1101 }
1102
1103 /*
1104 * Allocate the attribute here, and then fill in the fields
1105 * as we start parsing the various elements of the definition.
1106 */
1107 if (!*da_p) {
1108 da = dict_attr_alloc_null(dctx->dict->pool, dctx->dict->proto);
1109 if (unlikely(!da)) return -1;
1110 to_free = da;
1111
1112 } else {
1113 da = *da_p;
1114 }
1115 dict_attr_location_set(dctx, da);
1116 da->dict = dctx->dict;
1117
1118 /*
1119 * Set some fields to be friendlier to the type / flag
1120 * parsing and validation routines.
1121 */
1122 da->parent = parent;
1123 da->name = name;
1124
1125 /*
1126 * Set the attribute flags from the base flags.
1127 */
1128 memcpy(&da->flags, base_flags, sizeof(da->flags));
1129
1130 /*
1131 * Set the base type of the attribute.
1132 */
1133 if (dict_process_type_field(dctx, type_name, &da) < 0) {
1134 error:
1135 if (da == to_free) talloc_free(to_free);
1136 return -1;
1137 }
1138
1139 /*
1140 * Clear the temporary parent pointer.
1141 */
1142 da->parent = NULL;
1143 if (unlikely(dict_attr_parent_init(&da, parent) < 0)) goto error;
1144
1145 /*
1146 * Parse optional flags. We pass in the partially allocated
1147 * attribute so that flags can be set directly.
1148 *
1149 * Where flags contain variable length fields, this is
1150 * significantly easier than populating a temporary struct.
1151 */
1152 if (flag_name) if (dict_process_flag_field(dctx, flag_name, &da) < 0) goto error;
1153
1154 da->name = NULL; /* the real name will be a talloc'd chunk */
1155
1156 *da_p = da;
1157 return 0;
1158}
1159
1160/*
1161 * Process the $INCLUDE command
1162 */
1163static int dict_read_process_include(dict_tokenize_ctx_t *dctx, char **argv, int argc, char const *dir)
1164{
1165 int rcode;
1166 bool required = true;
1167 int stack_depth = dctx->stack_depth;
1168 char *src_file = dctx->filename;
1169 int src_line = dctx->line;
1170 char *pattern;
1171 char const *filename;
1172 fr_globdir_iter_t iter;
1173
1174 /*
1175 * Allow "$INCLUDE" or "$INCLUDE-", but
1176 * not anything else.
1177 */
1178 if ((argv[0][8] != '\0') && ((argv[0][8] != '-') || (argv[0][9] != '\0'))) {
1179 fr_strerror_printf("Invalid keyword '%s'", argv[0]);
1180 return -1;
1181 }
1182
1183 if (argc != 2) {
1184 fr_strerror_printf("Unexpected text after $INCLUDE at %s[%d]", fr_cwd_strip(src_file), src_line);
1185 return -1;
1186 }
1187
1188 pattern = argv[1];
1189 required = (argv[0][8] != '-');
1190
1191 /*
1192 * Allow limited macro capability, so people don't have
1193 * to remember where the root dictionaries are located.
1194 */
1195 if (strncmp(pattern, "${dictdir}/", 11) == 0) {
1196 dir = fr_dict_global_ctx_dir();
1197 pattern += 11;
1198 }
1199
1200 /*
1201 * Figure out what we need to open, and put the result into "filename".
1202 */
1203 rcode = fr_globdir_iter_init(&filename, dir, pattern, &iter);
1204 if (rcode < 0) {
1205 failed:
1206 fr_strerror_printf("Failed opening $INCLUDE of %s/%s at %s[%d] - %s",
1207 dir, pattern, fr_cwd_strip(src_file), src_line, fr_syserror(errno));
1208 return -1;
1209 }
1210
1211 /*
1212 * No files may or may not be an error, depending on if the $INCLUDE was required.
1213 */
1214 if (rcode == 0) {
1215 if (required) {
1216 errno = ENOENT;
1217 goto failed;
1218 }
1219
1220 fr_strerror_clear(); /* delete all errors */
1221 return 0;
1222 }
1223
1224 /*
1225 * "filename" is already the file, so we use do{}while() instead of while{}
1226 */
1227 do {
1228 rcode = _dict_from_file(dctx, dir, filename, src_file, src_line);
1229 if (rcode < 0) {
1230 fr_strerror_printf_push("from $INCLUDE at %s[%d]", fr_cwd_strip(src_file), src_line);
1231 break;
1232 }
1233
1234 if (dctx->stack_depth < stack_depth) {
1235 fr_strerror_printf("unexpected END-??? in $INCLUDE at %s[%d]",
1236 fr_cwd_strip(src_file), src_line);
1237 rcode = -1;
1238 break;
1239 }
1240
1241 } while ((rcode = fr_globdir_iter_next(&filename, &iter)) == 1);
1242 (void) fr_globdir_iter_free(&iter);
1243
1244 /*
1245 * Reset the filename and line number.
1246 */
1247 dctx->filename = src_file;
1248 dctx->line = src_line;
1249 return rcode; /* could be an error! */
1250}
1251
1252static int dict_read_parse_format(char const *format, int *ptype, int *plength, bool *pcontinuation)
1253{
1254 char const *p;
1255 int type, length;
1256 bool continuation = false;
1257
1258 if (strncasecmp(format, "format=", 7) != 0) {
1259 fr_strerror_printf("Invalid format for VENDOR. Expected 'format=', got '%s'",
1260 format);
1261 return -1;
1262 }
1263
1264 p = format + 7;
1265 if ((strlen(p) < 3) ||
1266 !isdigit((uint8_t)p[0]) ||
1267 (p[1] != ',') ||
1268 !isdigit((uint8_t)p[2]) ||
1269 (p[3] && (p[3] != ','))) {
1270 fr_strerror_printf("Invalid format for VENDOR. Expected text like '1,1', got '%s'",
1271 p);
1272 return -1;
1273 }
1274
1275 type = (int)(p[0] - '0');
1276 length = (int)(p[2] - '0');
1277
1278 if ((type != 1) && (type != 2) && (type != 4)) {
1279 fr_strerror_printf("Invalid type value %d for VENDOR", type);
1280 return -1;
1281 }
1282
1283 if ((length != 0) && (length != 1) && (length != 2)) {
1284 fr_strerror_printf("Invalid length value %d for VENDOR", length);
1285 return -1;
1286 }
1287
1288 if (p[3] == ',') {
1289 if (!p[4]) {
1290 fr_strerror_printf("Invalid format for VENDOR. Expected text like '1,1', got '%s'",
1291 p);
1292 return -1;
1293 }
1294
1295 if ((p[4] != 'c') ||
1296 (p[5] != '\0')) {
1297 fr_strerror_printf("Invalid format for VENDOR. Expected text like '1,1', got '%s'",
1298 p);
1299 return -1;
1300 }
1301 continuation = true;
1302
1303 if ((type != 1) || (length != 1)) {
1304 fr_strerror_const("Only VSAs with 'format=1,1' can have continuations");
1305 return -1;
1306 }
1307 }
1308
1309 *ptype = type;
1310 *plength = length;
1311 *pcontinuation = continuation;
1312 return 0;
1313}
1314
1315/*
1316 * Process the ALIAS command
1317 *
1318 * ALIAS name ref
1319 *
1320 * Creates an attribute "name" in the root namespace of the current
1321 * dictionary, which is a pointer to "ref".
1322 */
1323static int dict_read_process_alias(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
1324{
1325 fr_dict_attr_t const *da;
1326 fr_dict_attr_t const *parent = CURRENT_FRAME(dctx)->da;
1327 fr_dict_attr_t const *ref_namespace;
1328
1329 if (argc != 2) {
1330 fr_strerror_const("Invalid ALIAS syntax");
1331 return -1;
1332 }
1333
1334 /*
1335 * Dictionaries need to have real names, not shitty ones.
1336 */
1337 if (strncmp(argv[0], "Attr-", 5) == 0) {
1338 fr_strerror_const("Invalid ALIAS name");
1339 return -1;
1340 }
1341
1342 /*
1343 * Relative refs get resolved from the current namespace.
1344 */
1345 if (argv[1][0] == '.') {
1346 ref_namespace = parent;
1347 /*
1348 * No dot, so we're looking in the root namespace.
1349 */
1350 } else {
1351 ref_namespace = dctx->dict->root;
1352 }
1353
1354 /*
1355 * The <ref> can be a name.
1356 */
1357 da = fr_dict_attr_by_oid(NULL, ref_namespace, argv[1]);
1358 if (!da) {
1359 /*
1360 * If we can't find it now, the file
1361 * containing the ALIASes may have
1362 * been allowed before the ALIASed
1363 * attributes.
1364 */
1365 return dict_fixup_alias_enqueue(&dctx->fixup, CURRENT_FILENAME(dctx), CURRENT_LINE(dctx),
1366 fr_dict_attr_unconst(parent), argv[0],
1367 fr_dict_attr_unconst(ref_namespace), argv[1]);
1368 }
1369
1370 return dict_attr_alias_add(fr_dict_attr_unconst(parent), argv[0], da);
1371}
1372
1373/*
1374 * Process the ATTRIBUTE command
1375 */
1376static int dict_read_process_attribute(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
1377{
1378 bool set_relative_attr;
1379
1380 ssize_t slen;
1381 unsigned int attr;
1382
1383 fr_dict_attr_t const *parent, *key = NULL;
1384 fr_dict_attr_t *da;
1385 fr_value_box_t box;
1386
1387 if ((argc < 3) || (argc > 4)) {
1388 fr_strerror_const("Invalid ATTRIBUTE syntax");
1389 return -1;
1390 }
1391
1392#ifdef STATIC_ANALYZER
1393 if (!dctx->dict) return -1;
1394#endif
1395
1396 /*
1397 * A non-relative ATTRIBUTE definition means that it is
1398 * in the context of the previous BEGIN-FOO. So we
1399 * unwind the stack to match.
1400 */
1401 if (argv[1][0] != '.') {
1402 dict_tokenize_frame_t const *frame;
1403
1404 frame = dict_dctx_unwind(dctx);
1405 if (!frame) return -1;
1406
1407 parent = frame->da;
1408
1409 /*
1410 * Allow '0xff00' as attribute numbers, but only
1411 * if there is no OID component.
1412 */
1413 if (strchr(argv[1], '.') == 0) {
1414 if (!dict_read_sscanf_i(&attr, argv[1])) {
1415 fr_strerror_const("Invalid ATTRIBUTE number");
1416 return -1;
1417 }
1418
1419 } else {
1420 slen = fr_dict_attr_by_oid_legacy(dctx->dict, &parent, &attr, argv[1]);
1421 if (slen <= 0) return -1;
1422 }
1423
1424 /*
1425 * We allow relative attributes only for TLVs.
1426 *
1427 * We haven't parsed the type field yet, so we
1428 * just check it here manually.
1429 */
1430 set_relative_attr = (strcasecmp(argv[2], "tlv") == 0);
1431
1432 } else {
1433 if (!dctx->relative_attr) {
1434 fr_strerror_printf("No parent attribute reference was set for partial OID %s", argv[1]);
1435 return -1;
1436 }
1437
1438 parent = dctx->relative_attr;
1439
1440 slen = fr_dict_attr_by_oid_legacy(dctx->dict, &parent, &attr, argv[1]);
1441 if (slen <= 0) return -1;
1442
1443 set_relative_attr = false;
1444 }
1445
1446 if (!fr_cond_assert(parent)) return -1; /* Should have provided us with a parent */
1447
1448 /*
1449 * Members of a 'struct' MUST use MEMBER, not ATTRIBUTE.
1450 */
1451 if (parent->type == FR_TYPE_STRUCT) {
1452 fr_strerror_printf("Member %s of ATTRIBUTE %s type 'struct' MUST use the \"MEMBER\" keyword",
1453 argv[0], parent->name);
1454 return -1;
1455 }
1456
1457 /*
1458 * A UNION can have child ATTRIBUTEs
1459 */
1460 if (parent->type == FR_TYPE_UNION) {
1462
1463 /*
1464 * The parent is a union. Get and verify the key ref.
1465 */
1467 fr_assert(ext != NULL);
1468
1469 /*
1470 * Double-check names against the reference.
1471 */
1472 key = ext->ref;
1473 fr_assert(key);
1475 da = UNCONST(fr_dict_attr_t *, key);
1476 da->flags.migration_union_key = true;
1477 }
1478
1479 da = dict_attr_alloc_null(dctx->dict->pool, dctx->dict->proto);
1480 if (unlikely(!da)) return -1;
1481
1482 /*
1483 * Record the attribute number BEFORE we parse the type and flags.
1484 *
1485 * This is needed for the DER dictionaries, and 'option'.
1486 *
1487 * It can also be useful for other protocols, which may
1488 * have restrictions on the various fields. It is
1489 * therefore useful to have all fields initialized before
1490 * the type/flag validation routines are called.
1491 */
1492 if (unlikely(dict_attr_num_init(da, attr) < 0)) {
1493 error:
1494 talloc_free(da);
1495 return -1;
1496 }
1497
1498 /*
1499 * Check the attribute number against the allowed values.
1500 */
1501 if (key) {
1502 fr_value_box_init(&box, FR_TYPE_UINT32, NULL, false);
1503 box.vb_uint32 = attr;
1504
1505 if (fr_value_box_cast_in_place(da, &box, key->type, NULL) < 0) {
1506 fr_strerror_printf_push("Invalid attribute number as key field %s has data type %s",
1507 key->name, fr_type_to_str(key->type));
1508 goto error;
1509 }
1510 }
1511
1512 if (dict_read_process_common(dctx, &da, parent, argv[0], argv[2],
1513 (argc > 3) ? argv[3] : NULL, base_flags) < 0) {
1514 goto error;
1515 }
1516
1517 if (da_is_bit_field(da)) {
1518 fr_strerror_const("Bit fields can only be defined as a MEMBER of data type 'struct'");
1519 goto error;
1520 }
1521
1522 /*
1523 * Unions need a key field. And key fields can only appear inside of a struct.
1524 */
1525 if (da->type == FR_TYPE_UNION) {
1526 fr_strerror_const("ATTRIBUTEs of type 'union' can only be defined as a MEMBER of data type 'struct'");
1527 return -1;
1528 }
1529
1530 /*
1531 * Cross-check fixed lengths.
1532 */
1533 if (key && (parent->flags.is_known_width)) {
1534 if (!da->flags.is_known_width) {
1535 da->flags.is_known_width = 1;
1536 da->flags.length = parent->flags.length;
1537
1538 } else if (da->flags.length != parent->flags.length) {
1539 fr_strerror_printf("Invalid length %u for struct, the parent union %s has a different length %u",
1540 da->flags.length, parent->name, parent->flags.length);
1541 return -1;
1542 }
1543 }
1544
1545#ifdef WITH_DICTIONARY_WARNINGS
1546 /*
1547 * Hack to help us discover which vendors have illegal
1548 * attributes.
1549 */
1550 if (!vendor && (attr < 256) &&
1551 !strstr(fn, "rfc") && !strstr(fn, "illegal")) {
1552 fprintf(stderr, "WARNING: Illegal attribute %s in %s\n",
1553 argv[0], fn);
1554 }
1555#endif
1556
1557 /*
1558 * Set the attribute name
1559 */
1560 if (unlikely(dict_attr_finalise(&da, argv[0]) < 0)) {
1561 goto error;
1562 }
1563
1564 /*
1565 * Check to see if this is a duplicate attribute
1566 * and whether we should ignore it or error out...
1567 */
1568 switch (dict_attr_allow_dup(da)) {
1569 case 1:
1570 break;
1571
1572 case 0:
1573 talloc_free(da);
1574 return 0;
1575
1576 default:
1577 goto error;
1578 }
1579
1580 /*
1581 * Add the attribute we allocated earlier
1582 */
1583 switch (dict_attr_add_or_fixup(&dctx->fixup, &da)) {
1584 default:
1585 goto error;
1586
1587 /* New attribute, fixup stack */
1588 case 0:
1589 /*
1590 * Dynamically define where VSAs go. Note that we CANNOT
1591 * define VSAs until we define an attribute of type VSA!
1592 */
1593 if (da->type == FR_TYPE_VSA) {
1594 if (parent->flags.is_root) dctx->dict->vsa_parent = attr;
1595
1596 if (dict_fixup_vsa_enqueue(&dctx->fixup, da) < 0) {
1597 return -1; /* Leaves attr added */
1598 }
1599 }
1600
1601 /*
1602 * Add the VALUE to the key attribute, and ensure that
1603 * the VALUE also contains a pointer to the child struct.
1604 */
1605 if (key && (dict_attr_enum_add_name(fr_dict_attr_unconst(key), da->name, &box, false, true, da) < 0)) {
1606 goto error;
1607 }
1608
1609 /*
1610 * Adding an attribute of type 'struct' is an implicit
1611 * BEGIN-STRUCT.
1612 */
1613 if (da->type == FR_TYPE_STRUCT) {
1614 if (dict_dctx_push(dctx, da, NEST_NONE) < 0) return -1;
1615
1616 CURRENT_FRAME(dctx)->finalise = dict_struct_finalise;
1617 dctx->value_attr = NULL;
1618 } else {
1619 dctx->value_attr = da;
1620 }
1621
1622 if (set_relative_attr) dctx->relative_attr = da;
1623 break;
1624
1625 /* Deferred attribute, don't begin the TLV section automatically */
1626 case 1:
1627 break;
1628 }
1629
1630 return 0;
1631}
1632
1633static int dict_read_process_begin(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
1634{
1635 dict_tokenize_frame_t const *frame;
1636 fr_dict_attr_t const *da;
1637 fr_dict_attr_t const *common;
1638
1639 dctx->value_attr = NULL;
1640 dctx->relative_attr = NULL;
1641
1642 if (argc != 1) {
1643 fr_strerror_const("Invalid BEGIN keyword. Expected BEGIN <name>");
1644 return -1;
1645 }
1646
1648 if (!fr_cond_assert_msg(frame, "Context stack doesn't have an attribute or dictionary "
1649 "root to begin searching from %s[%d]", CURRENT_FILENAME(dctx), CURRENT_LINE(dctx)) ||
1650 !fr_cond_assert_msg(fr_type_is_structural(frame->da->type), "Context attribute is not structural %s[%d]",
1651 CURRENT_FILENAME(dctx), CURRENT_LINE(dctx))) {
1652 return -1;
1653 }
1654
1655 /*
1656 * Not really a reference as we don't support any of the
1657 * fancy syntaxes like refs do. A straight OID string
1658 * resolved from the current level of nesting is all we support.
1659 */
1660 da = fr_dict_attr_by_oid(NULL, frame->da, argv[0]);
1661 if (!da) {
1662 fr_strerror_printf("BEGIN %s is not resolvable in current context '%s'", argv[0], frame->da->name);
1663 return -1;
1664 }
1665
1666 if (!fr_type_is_tlv(da->type) && !fr_type_is_struct(da->type) && (da->type != FR_TYPE_UNION)) {
1667 fr_strerror_printf("BEGIN %s cannot be used with data type '%s'",
1668 argv[0],
1669 fr_type_to_str(da->type));
1670 return -1;
1671 }
1672
1673 common = fr_dict_attr_common_parent(frame->da, da, true);
1674 if (!common) {
1675 fr_strerror_printf("BEGIN %s should be a child of '%s'",
1676 argv[0], CURRENT_FRAME(dctx)->da->name);
1677 return -1;
1678 }
1679
1680 return dict_dctx_push(dctx, da, NEST_ATTRIBUTE);
1681}
1682
1683static int dict_read_process_begin_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc,
1684 UNUSED fr_dict_attr_flags_t *base_flags)
1685{
1686 fr_dict_t *found;
1687 dict_tokenize_frame_t const *frame;
1688
1689 dctx->value_attr = NULL;
1690 dctx->relative_attr = NULL;
1691
1692 if (argc != 1) {
1693 fr_strerror_const("Invalid BEGIN-PROTOCOL entry");
1694 return -1;
1695 }
1696
1697 /*
1698 * If we're not parsing in the context of the internal
1699 * dictionary, then we don't allow BEGIN-PROTOCOL
1700 * statements.
1701 */
1702 if (dctx->dict != dict_gctx->internal) {
1703 fr_strerror_const("Nested BEGIN-PROTOCOL statements are not allowed");
1704 return -1;
1705 }
1706
1707 found = dict_by_protocol_name(argv[0]);
1708 if (!found) {
1709 fr_strerror_printf("Unknown protocol '%s'", argv[0]);
1710 return -1;
1711 }
1712
1714 if (frame) {
1715 fr_strerror_printf("BEGIN-PROTOCOL cannot be used inside of any other BEGIN/END block. Previous definition is at %s[%d]",
1716 frame->filename, frame->line);
1717 return -1;
1718 }
1719
1720 /*
1721 * Add a temporary fixup pool
1722 *
1723 * @todo - make a nested ctx?
1724 */
1725 dict_fixup_init(NULL, &dctx->fixup);
1726
1727 /*
1728 * We're in the middle of loading this dictionary. Tell
1729 * fr_dict_protocol_afrom_file() to suppress recursive references.
1730 */
1731 found->loading = true;
1732
1733 dctx->dict = found;
1734
1735 return dict_dctx_push(dctx, dctx->dict->root, NEST_PROTOCOL);
1736}
1737
1738static int dict_read_process_begin_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc,
1739 UNUSED fr_dict_attr_flags_t *base_flags)
1740{
1741 fr_dict_vendor_t const *vendor;
1743
1744 fr_dict_attr_t const *vsa_da;
1745 fr_dict_attr_t const *vendor_da;
1746 fr_dict_attr_t *new;
1747 dict_tokenize_frame_t const *frame;
1748 char *p;
1749
1750 dctx->value_attr = NULL;
1751 dctx->relative_attr = NULL;
1752
1753 if (argc < 1) {
1754 fr_strerror_const("Invalid BEGIN-VENDOR entry");
1755 return -1;
1756 }
1757
1758 vendor = fr_dict_vendor_by_name(dctx->dict, argv[0]);
1759 if (!vendor) {
1760 fr_strerror_printf("Unknown vendor '%s'", argv[0]);
1761 return -1;
1762 }
1763
1764 /*
1765 * Check for extended attr VSAs
1766 *
1767 * BEGIN-VENDOR foo parent=Foo-Encapsulation-Attr
1768 */
1769 if (argc > 1) {
1770 fr_dict_attr_t const *da;
1771
1772 if (strncmp(argv[1], "parent=", 7) != 0) {
1773 fr_strerror_printf("BEGIN-VENDOR invalid argument (%s)", argv[1]);
1774 return -1;
1775 }
1776
1777 p = argv[1] + 7;
1778 da = fr_dict_attr_by_oid(NULL, CURRENT_FRAME(dctx)->da, p);
1779 if (!da) {
1780 fr_strerror_printf("BEGIN-VENDOR invalid argument (%s)", argv[1]);
1781 return -1;
1782 }
1783
1784 if (da->type != FR_TYPE_VSA) {
1785 fr_strerror_printf("Invalid parent for BEGIN-VENDOR. "
1786 "Attribute '%s' should be 'vsa' but is '%s'", p,
1787 fr_type_to_str(da->type));
1788 return -1;
1789 }
1790
1791 vsa_da = da;
1792
1793 } else if (dctx->dict->vsa_parent) {
1794 /*
1795 * Check that the protocol-specific VSA parent exists.
1796 */
1797 vsa_da = dict_attr_child_by_num(CURRENT_FRAME(dctx)->da, dctx->dict->vsa_parent);
1798 if (!vsa_da) {
1799 fr_strerror_printf("Failed finding VSA parent for Vendor %s",
1800 vendor->name);
1801 return -1;
1802 }
1803
1804 } else if (dctx->dict->string_based) {
1805 vsa_da = dctx->dict->root;
1806
1807 } else {
1808 fr_strerror_printf("BEGIN-VENDOR is forbidden for protocol %s - it has no ATTRIBUTE of type 'vsa'",
1809 dctx->dict->root->name);
1810 return -1;
1811 }
1812
1813 frame = dict_dctx_find_frame(dctx, NEST_VENDOR);
1814 if (frame) {
1815 fr_strerror_printf("Nested BEGIN-VENDOR is forbidden. Previous definition is at %s[%d]",
1816 frame->filename, frame->line);
1817 return -1;
1818 }
1819
1820 /*
1821 * Create a VENDOR attribute on the fly, either in the context
1822 * of the VSA (26) attribute.
1823 */
1824 vendor_da = dict_attr_child_by_num(vsa_da, vendor->pen);
1825 if (!vendor_da) {
1826 memset(&flags, 0, sizeof(flags));
1827
1828 flags.type_size = dctx->dict->proto->default_type_size;
1829 flags.length = dctx->dict->proto->default_type_length;
1830
1831 /*
1832 * See if this vendor has
1833 * specific sizes for type /
1834 * length.
1835 *
1836 * @todo - Make this more protocol agnostic!
1837 */
1838 if ((vsa_da->type == FR_TYPE_VSA) &&
1839 (vsa_da->parent->flags.is_root)) {
1840 fr_dict_vendor_t const *dv;
1841
1842 dv = fr_dict_vendor_by_num(dctx->dict, vendor->pen);
1843 if (dv) {
1844 flags.type_size = dv->type;
1845 flags.length = dv->length;
1846 }
1847 }
1848
1849 new = dict_attr_alloc(dctx->dict->pool,
1850 vsa_da, argv[0], vendor->pen, FR_TYPE_VENDOR,
1851 &(dict_attr_args_t){ .flags = &flags });
1852 if (unlikely(!new)) return -1;
1853
1854 if (dict_attr_child_add(UNCONST(fr_dict_attr_t *, vsa_da), new) < 0) {
1855 talloc_free(new);
1856 return -1;
1857 }
1858
1859 if (dict_attr_add_to_namespace(UNCONST(fr_dict_attr_t *, vsa_da), new) < 0) {
1860 talloc_free(new);
1861 return -1;
1862 }
1863
1864 vendor_da = new;
1865 } else {
1866 fr_assert(vendor_da->type == FR_TYPE_VENDOR);
1867 }
1868
1869 return dict_dctx_push(dctx, vendor_da, NEST_VENDOR);
1870}
1871
1872/*
1873 * Process the DEFINE command
1874 *
1875 * Which is mostly like ATTRIBUTE, but does not have a number.
1876 */
1877static int dict_read_process_define(dict_tokenize_ctx_t *dctx, char **argv, int argc,
1878 fr_dict_attr_flags_t *base_flags)
1879{
1880 fr_dict_attr_t const *parent;
1881 fr_dict_attr_t *da = NULL;
1882 dict_tokenize_frame_t const *frame;
1883
1884 if ((argc < 2) || (argc > 3)) {
1885 fr_strerror_const("Invalid DEFINE syntax");
1886 return -1;
1887 }
1888
1889 frame = dict_dctx_unwind(dctx);
1890 if (!fr_cond_assert(frame && frame->da)) return -1; /* Should have provided us with a parent */
1891
1892 parent = frame->da;
1893
1894 /*
1895 * Members of a 'struct' MUST use MEMBER, not ATTRIBUTE.
1896 */
1897 if (parent->type == FR_TYPE_STRUCT) {
1898 fr_strerror_printf("Member %s of parent %s type 'struct' MUST use the \"MEMBER\" keyword",
1899 argv[0], parent->name);
1900 return -1;
1901 }
1902
1903 if (parent->type == FR_TYPE_UNION) {
1904 fr_strerror_printf("Parent attribute %s is of type 'union', and can only have STRUCT children",
1905 parent->name);
1906 return -1;
1907 }
1908
1909 /*
1910 * We don't set the attribute number before parsing the
1911 * type and flags. The number is chosen internally, and
1912 * no one should depend on it.
1913 */
1914 if (dict_read_process_common(dctx, &da, parent, argv[0], argv[1],
1915 (argc > 2) ? argv[2] : NULL, base_flags) < 0) {
1916 return -1;
1917 }
1918
1919 /*
1920 * Certain structural types MUST have numbers.
1921 */
1922 switch (da->type) {
1923 case FR_TYPE_VSA:
1924 case FR_TYPE_VENDOR:
1925 fr_strerror_printf("DEFINE cannot be used for type '%s'", argv[1]);
1926 error:
1927 talloc_free(da);
1928 return -1;
1929
1930 default:
1931 break;
1932 }
1933
1934 if (da_is_bit_field(da)) {
1935 fr_strerror_const("Bit fields can only be defined as a MEMBER of data type 'struct'");
1936 goto error;
1937 }
1938
1939#ifdef STATIC_ANALYZER
1940 if (!dctx->dict) goto error;
1941#endif
1942
1943 /*
1944 * Since there is no number, the attribute cannot be
1945 * encoded as a number.
1946 */
1947 da->flags.name_only = true;
1948
1949 /*
1950 * Add an attribute number now so the allocations occur in order
1951 */
1952 if (unlikely(dict_attr_num_init_name_only(da) < 0)) goto error;
1953
1954 /*
1955 * Set the attribute name
1956 */
1957 if (unlikely(dict_attr_finalise(&da, argv[0]) < 0)) goto error;
1958
1959 /*
1960 * Check to see if this is a duplicate attribute
1961 * and whether we should ignore it or error out...
1962 */
1963 switch (dict_attr_allow_dup(da)) {
1964 case 1:
1965 break;
1966
1967 case 0:
1968 talloc_free(da);
1969 return 0;
1970
1971 default:
1972 goto error;
1973 }
1974
1975 /*
1976 * Add the attribute we allocated earlier
1977 */
1978 switch (dict_attr_add_or_fixup(&dctx->fixup, &da)) {
1979 default:
1980 goto error;
1981
1982 /* New attribute, fixup stack */
1983 case 0:
1984 if (dict_set_value_attr(dctx, da) < 0) return -1;
1985
1986 if (da->type == FR_TYPE_TLV) {
1987 dctx->relative_attr = da;
1988 } else {
1989 dctx->relative_attr = NULL;
1990 }
1991 break;
1992
1993 /* Deferred attribute, don't begin the TLV section automatically */
1994 case 1:
1995 break;
1996 }
1997
1998 return 0;
1999}
2000
2001static int dict_read_process_end(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2002 UNUSED fr_dict_attr_flags_t *base_flags)
2003{
2004 fr_dict_attr_t const *current;
2005 fr_dict_attr_t const *da;
2006 dict_tokenize_frame_t const *frame;
2007
2008 dctx->value_attr = NULL;
2009 dctx->relative_attr = NULL;
2010
2011 if (argc > 2) {
2012 fr_strerror_const("Invalid END syntax, expected END <ref>");
2013 return -1;
2014 }
2015
2016 /*
2017 * Unwind until we hit an attribute nesting section
2018 */
2020 return -1;
2021 }
2022
2023 /*
2024 * Pop the stack to get the attribute we're ending.
2025 */
2026 current = dict_dctx_pop(dctx)->da;
2027
2028 /*
2029 * No checks on the attribute, we're just popping _A_ frame,
2030 * we don't care what attribute it represents.
2031 */
2032 if (argc == 1) return 0;
2033
2034 /*
2035 * This is where we'll have begun the previous search to
2036 * evaluate the BEGIN keyword.
2037 */
2039 if (!fr_cond_assert(frame)) return -1;
2040
2041 da = fr_dict_attr_by_oid(NULL, frame->da, argv[0]);
2042 if (!da) {
2043 fr_strerror_const_push("Failed resolving attribute in BEGIN entry");
2044 return -1;
2045 }
2046
2047 if (da != current) {
2048 fr_strerror_printf("END %s does not match previous BEGIN %s", argv[0], current->name);
2049 return -1;
2050 }
2051
2052 return 0;
2053}
2054
2055static int dict_read_process_end_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2056 UNUSED fr_dict_attr_flags_t *base_flags)
2057{
2058 fr_dict_t const *found;
2059
2060 dctx->value_attr = NULL;
2061 dctx->relative_attr = NULL;
2062
2063 if (argc != 1) {
2064 fr_strerror_const("Invalid END-PROTOCOL entry");
2065 return -1;
2066 }
2067
2068 found = dict_by_protocol_name(argv[0]);
2069 if (!found) {
2070 fr_strerror_printf("END-PROTOCOL %s does not refer to a valid protocol", argv[0]);
2071 return -1;
2072 }
2073
2074 if (found != dctx->dict) {
2075 fr_strerror_printf("END-PROTOCOL %s does not match previous BEGIN-PROTOCOL %s",
2076 argv[0], dctx->dict->root->name);
2077 return -1;
2078 }
2079
2080 /*
2081 * Unwind until we get to a BEGIN-PROTOCOL nesting.
2082 */
2084 return -1;
2085 }
2086
2087 if (found->root != CURRENT_FRAME(dctx)->da) {
2088 fr_strerror_printf("END-PROTOCOL %s does not match previous BEGIN-PROTOCOL %s", argv[0],
2089 CURRENT_FRAME(dctx)->da->name);
2090 return -1;
2091 }
2092
2093 /*
2094 * Applies fixups to any attributes added to the protocol
2095 * dictionary. Note that the finalise function prints
2096 * out the original filename / line of the error. So we
2097 * don't need to do that here.
2098 */
2099 if (dict_finalise(dctx) < 0) return -1;
2100
2102
2103 fr_assert(!dctx->stack[dctx->stack_depth].finalise);
2104 dctx->stack_depth--; /* nuke the BEGIN-PROTOCOL */
2105
2107 dctx->dict = dict_gctx->internal;
2108
2109 return 0;
2110}
2111
2112static int dict_read_process_end_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2113 UNUSED fr_dict_attr_flags_t *base_flags)
2114{
2115 fr_dict_vendor_t const *vendor;
2116
2117 dctx->value_attr = NULL;
2118 dctx->relative_attr = NULL;
2119
2120 if (argc != 1) {
2121 fr_strerror_const("END-VENDOR is missing vendor name");
2122 return -1;
2123 }
2124
2125 vendor = fr_dict_vendor_by_name(dctx->dict, argv[0]);
2126 if (!vendor) {
2127 fr_strerror_printf("Unknown vendor '%s'", argv[0]);
2128 return -1;
2129 }
2130
2131 /*
2132 * Unwind until we get to a BEGIN-VENDOR nesting.
2133 */
2134 if (!dict_dctx_unwind_until(dctx, NEST_VENDOR)) {
2135 return -1;
2136 }
2137
2138 if (vendor->pen != CURRENT_FRAME(dctx)->da->attr) {
2139 fr_strerror_printf("END-VENDOR %s does not match previous BEGIN-VENDOR %s", argv[0],
2140 CURRENT_FRAME(dctx)->da->name);
2141 return -1;
2142 }
2143
2144 fr_assert(!dctx->stack[dctx->stack_depth].finalise);
2145 dctx->stack_depth--; /* nuke the BEGIN-VENDOR */
2146
2147 return 0;
2148}
2149
2150/*
2151 * Process the ENUM command
2152 */
2153static int dict_read_process_enum(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2154 fr_dict_attr_flags_t *base_flags)
2155{
2156 fr_dict_attr_t const *parent;
2157 fr_dict_attr_t *da = NULL;
2158
2159 if (argc != 2) {
2160 fr_strerror_const("Invalid ENUM syntax");
2161 return -1;
2162 }
2163
2164 /*
2165 * Dictionaries need to have real names, not shitty ones.
2166 */
2167 if (strncmp(argv[0], "Attr-", 5) == 0) {
2168 fr_strerror_const("Invalid ENUM name");
2169 return -1;
2170 }
2171
2172#ifdef STATIC_ANALYZER
2173 if (!dctx->dict) goto error;
2174#endif
2175
2176 /*
2177 * Allocate the attribute here, and then fill in the fields
2178 * as we start parsing the various elements of the definition.
2179 */
2180 da = dict_attr_alloc_null(dctx->dict->pool, dctx->dict->proto);
2181 if (unlikely(da == NULL)) return -1;
2182 dict_attr_location_set(dctx, da);
2183 da->dict = dctx->dict;
2184
2185 /*
2186 * Set the attribute flags from the base flags.
2187 */
2188 memcpy(&da->flags, base_flags, sizeof(da->flags));
2189
2190 da->flags.name_only = true; /* values for ENUM are irrelevant */
2191 da->flags.internal = true; /* ENUMs will never get encoded into a protocol */
2192#if 0
2193 flags.is_enum = true; /* it's an enum, and can't be assigned to a #fr_pair_t */
2194#endif
2195
2196 /*
2197 * Set the base type of the attribute.
2198 */
2199 if (dict_process_type_field(dctx, argv[1], &da) < 0) {
2200 error:
2201 talloc_free(da);
2202 return -1;
2203 }
2204
2205 if (da_is_bit_field(da)) {
2206 fr_strerror_const("Bit fields can only be defined as a MEMBER of a data type 'struct'");
2207 goto error;
2208 }
2209
2210 switch (da->type) {
2211 case FR_TYPE_LEAF:
2212 break;
2213
2214 default:
2215 fr_strerror_printf("ENUMs can only be a leaf type, not %s",
2216 fr_type_to_str(da->type));
2217 break;
2218 }
2219
2220 parent = CURRENT_FRAME(dctx)->da;
2221 if (!parent) {
2222 fr_strerror_const("Invalid location for ENUM");
2223 goto error;
2224 }
2225
2226 /*
2227 * ENUMs cannot have a flag field, so we don't parse that.
2228 *
2229 * Maybe we do want a flag field for named time deltas?
2230 */
2231
2232 if (unlikely(dict_attr_parent_init(&da, parent) < 0)) goto error;
2233 if (unlikely(dict_attr_finalise(&da, argv[0]) < 0)) goto error;
2234
2235 /*
2236 * Add the attribute we allocated earlier
2237 */
2238 switch (dict_attr_add_or_fixup(&dctx->fixup, &da)) {
2239 default:
2240 goto error;
2241
2242 case 0:
2243 memcpy(&dctx->value_attr, &da, sizeof(da));
2244 break;
2245
2246 case 1:
2247 break;
2248 }
2249
2250 return 0;
2251}
2252
2253/*
2254 * Process the FLAGS command
2255 */
2256static int dict_read_process_flags(UNUSED dict_tokenize_ctx_t *dctx, char **argv, int argc,
2257 fr_dict_attr_flags_t *base_flags)
2258{
2259 bool sense = true;
2260
2261 if (argc == 1) {
2262 char *p;
2263
2264 p = argv[0];
2265 if (*p == '!') {
2266 sense = false;
2267 p++;
2268 }
2269
2270 if (strcmp(p, "internal") == 0) {
2271 base_flags->internal = sense;
2272 return 0;
2273 }
2274 }
2275
2276 fr_strerror_const("Invalid FLAGS syntax");
2277 return -1;
2278}
2279
2280/*
2281 * Process the MEMBER command
2282 */
2283static int dict_read_process_member(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2284 fr_dict_attr_flags_t *base_flags)
2285{
2286 fr_dict_attr_t *da = NULL;
2287
2288 if ((argc < 2) || (argc > 3)) {
2289 fr_strerror_const("Invalid MEMBER syntax");
2290 return -1;
2291 }
2292
2293 if (CURRENT_FRAME(dctx)->da->type != FR_TYPE_STRUCT) {
2294 fr_strerror_printf("MEMBER can only be used for ATTRIBUTEs of type 'struct', not for data type %s",
2295 fr_type_to_str(CURRENT_FRAME(dctx)->da->type));
2296 return -1;
2297 }
2298
2299 /*
2300 * Check if the parent 'struct' is fixed size. And if
2301 * so, complain if we're adding a variable sized member.
2302 */
2303 if (CURRENT_FRAME(dctx)->struct_is_closed) {
2304 fr_strerror_printf("Cannot add MEMBER to 'struct' %s after a variable sized member %s",
2305 CURRENT_FRAME(dctx)->da->name,
2306 CURRENT_FRAME(dctx)->struct_is_closed->name);
2307 return -1;
2308 }
2309
2310 /*
2311 * We don't set the attribute number before parsing the
2312 * type and flags. The number is chosen internally, and
2313 * no one should depend on it.
2314 *
2315 * Although _arguably_, it may be useful to know which
2316 * field this is, 0..N?
2317 */
2318 if (dict_read_process_common(dctx, &da, CURRENT_FRAME(dctx)->da, argv[0], argv[1],
2319 (argc > 2) ? argv[2] : NULL, base_flags) < 0) {
2320 return -1;
2321 }
2322
2323#ifdef STATIC_ANALYZER
2324 if (!dctx->dict) goto error;
2325#endif
2326
2327 /*
2328 * If our parent is a known width struct, then we're
2329 * allowed to be variable width. The parent might just
2330 * have a "length=16" prefix, which lets its children be
2331 * variable sized.
2332 */
2333
2334 /*
2335 * Double check any bit field magic
2336 */
2337 if (CURRENT_FRAME(dctx)->member_num > 0) {
2338 fr_dict_attr_t const *previous;
2339
2340 previous = dict_attr_child_by_num(CURRENT_FRAME(dctx)->da,
2341 CURRENT_FRAME(dctx)->member_num);
2342 /*
2343 * Check that the previous bit field ended on a
2344 * byte boundary.
2345 *
2346 * Note that the previous attribute might be a deferred TLV, in which case it doesn't
2347 * exist. That's fine.
2348 */
2349 if (previous && da_is_bit_field(previous)) {
2350 /*
2351 * This attribute is a bit field. Keep
2352 * track of where in the byte we are
2353 * located.
2354 */
2355 if (da_is_bit_field(da)) {
2356 da->flags.flag_byte_offset = (da->flags.length + previous->flags.flag_byte_offset) & 0x07;
2357
2358 } else {
2359 if (previous->flags.flag_byte_offset != 0) {
2360 fr_strerror_printf("Previous bitfield %s did not end on a byte boundary",
2361 previous->name);
2362 error:
2363 talloc_free(da);
2364 return -1;
2365 }
2366 }
2367 }
2368 }
2369
2370 /*
2371 * Ensure that no previous child has "key" or "length" set.
2372 */
2373 if (da->type == FR_TYPE_TLV) {
2374 fr_dict_attr_t const *key;
2375 int i;
2376
2377 /*
2378 * @todo - cache the key field in the stack frame, so we don't have to loop over the children.
2379 */
2380 for (i = 1; i <= CURRENT_FRAME(dctx)->member_num; i++) {
2381 key = dict_attr_child_by_num(CURRENT_FRAME(dctx)->da, i);
2382 if (!key) continue; /* really should be WTF? */
2383
2384 /*
2385 * @todo - we can allow this if the _rest_ of the struct is fixed size, i.e. if
2386 * there is a key field, and then the union is fixed size.
2387 */
2388 if (fr_dict_attr_is_key_field(key)) {
2389 fr_strerror_printf("'struct' %s has a 'key' field %s, and cannot end with a TLV %s",
2390 CURRENT_FRAME(dctx)->da->name, key->name, argv[0]);
2391 goto error;
2392 }
2393
2394 if (da_is_length_field(key)) {
2395 fr_strerror_printf("'struct' %s has a 'length' field %s, and cannot end with a TLV %s",
2396 CURRENT_FRAME(dctx)->da->name, key->name, argv[0]);
2397 goto error;
2398 }
2399 }
2400
2401 /*
2402 * TLVs are variable sized, and close the parent struct.
2403 */
2404 CURRENT_FRAME(dctx)->struct_is_closed = da;
2405 }
2406
2407 /*
2408 * Unions close the parent struct, even if they're fixed size. For now, the struct to/from
2409 * network code assumes that a union is the last member of a structure.
2410 */
2411 if (da->type == FR_TYPE_UNION) {
2412 CURRENT_FRAME(dctx)->struct_is_closed = da;
2413 }
2414
2415 if (unlikely(dict_attr_num_init(da, ++CURRENT_FRAME(dctx)->member_num) < 0)) goto error;
2416 if (unlikely(dict_attr_finalise(&da, argv[0]) < 0)) goto error;
2417
2418 /*
2419 * Check to see if this is a duplicate attribute
2420 * and whether we should ignore it or error out...
2421 */
2422 switch (dict_attr_allow_dup(da)) {
2423 case 1:
2424 break;
2425
2426 case 0:
2427 talloc_free(da);
2428 return 0;
2429
2430 default:
2431 goto error;
2432 }
2433
2434 switch (dict_attr_add_or_fixup(&dctx->fixup, &da)) {
2435 default:
2436 goto error;
2437
2438 case 1:
2439 /*
2440 * @todo - a MEMBER can theoretically have a "ref=..", though non currently do.
2441 *
2442 * If the ref is deferred, then we cannot finalise the parent struct until we have
2443 * resolved the reference. But the "finalise struct on fixup" code isn't written. So
2444 * instead of silently doing the wrong thing, we just return an error.
2445 */
2446 fr_strerror_printf("Cannot have MEMBER with deferred ref=...");
2447 return -1;
2448
2449 case 0:
2450 /*
2451 * New attribute - avoid lots of indentation.
2452 */
2453 break;
2454 }
2455
2456 /*
2457 * Check if this MEMBER closes the structure.
2458 *
2459 * Close this struct if the child struct is variable sized. For now, it we only support
2460 * child structs at the end of the parent.
2461 *
2462 * The solution is to update the unwind() function to check if the da we've
2463 * unwound to is a struct, and then if so... get the last child, and mark it
2464 * closed.
2465 *
2466 * @todo - a MEMBER which is of type 'struct' and has 'clone=foo', we delay the clone
2467 * until after all of the dictionaries have been loaded. As such, this attribute
2468 * is unknown width, and MUST be at the end of the parent structure.
2469 *
2470 * If the cloned MEMBER is in the middle of a structure, then the user will get an opaque
2471 * error. But that case should be rare.
2472 */
2473 if (!da->flags.is_known_width) {
2474 /*
2475 * The child is unknown width, but we were told that the parent has known width.
2476 * That's an error.
2477 */
2478 if (CURRENT_FRAME(dctx)->da->flags.length) {
2479 fr_strerror_printf("'struct' %s has fixed size %u, but member %s is of unknown size",
2480 CURRENT_FRAME(dctx)->da->name, CURRENT_FRAME(dctx)->da->flags.length,
2481 argv[0]);
2482 return -1;
2483 }
2484
2485 /*
2486 * Mark the structure as closed by this attribute. And then set the size to
2487 * zero, for "unknown size".
2488 */
2489 CURRENT_FRAME(dctx)->struct_is_closed = da;
2490 CURRENT_FRAME(dctx)->struct_size = 0;
2491
2492 /*
2493 * A 'struct' can have a MEMBER of type 'tlv', but ONLY
2494 * as the last entry in the 'struct'. If we see that,
2495 * set the previous attribute to the TLV we just added.
2496 * This allows the children of the TLV to be parsed as
2497 * partial OIDs, so we don't need to know the full path
2498 * to them.
2499 */
2500 if (da->type == FR_TYPE_TLV) {
2501 dctx->relative_attr = da;
2502 if (dict_dctx_push(dctx, dctx->relative_attr, NEST_NONE) < 0) return -1;
2503 }
2504
2505 } else if (CURRENT_FRAME(dctx)->da->flags.length) {
2506 /*
2507 * The parent is fixed size, so we track the length of the children.
2508 */
2509 CURRENT_FRAME(dctx)->struct_size += da->flags.length;
2510
2511 /*
2512 * Adding this child may result in an overflow, so we check that.
2513 */
2514 if (CURRENT_FRAME(dctx)->struct_size > CURRENT_FRAME(dctx)->da->flags.length) {
2515 fr_strerror_printf("'struct' %s has fixed size %u, but member %s overflows that length",
2516 CURRENT_FRAME(dctx)->da->name, CURRENT_FRAME(dctx)->da->flags.length,
2517 argv[0]);
2518 return -1;
2519 }
2520 }
2521
2522 /*
2523 * Set or clear the attribute for VALUE statements.
2524 */
2525 return dict_set_value_attr(dctx, da);
2526}
2527
2528/** Process a STRUCT name attr value
2529 *
2530 * Define struct 'name' when key 'attr' has 'value'.
2531 *
2532 * Which MUST be a sub-structure of another struct
2533 */
2534static int dict_read_process_struct(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2535 UNUSED fr_dict_attr_flags_t *base_flags)
2536{
2538 int i;
2539 fr_dict_attr_t const *parent = NULL;
2540 fr_dict_attr_t const *key = NULL;
2541 unsigned int attr;
2542 char const *name = argv[0];
2543 char const *value;
2544 char *flags = NULL;
2545 fr_dict_attr_t *da;
2546
2547 fr_assert(dctx->stack_depth > 0);
2548
2549 /*
2550 * Old-stle: unwind the stack until we find a parent which has a child named for key_attr.
2551 */
2552 parent = CURRENT_FRAME(dctx)->da;
2553 if (parent->type != FR_TYPE_UNION) {
2554 char const *key_attr;
2555
2556 if ((argc < 3) || (argc > 4)) {
2557 fr_strerror_const("Invalid STRUCT syntax");
2558 return -1;
2559 }
2560
2561 key_attr = argv[1];
2562 value = argv[2];
2563 if (argc == 4) flags = argv[3];
2564
2565 parent = NULL;
2566 for (i = dctx->stack_depth; i > 0; i--) {
2567 key = dict_attr_by_name(NULL, dctx->stack[i].da, key_attr);
2568 if (key) {
2569 parent = key;
2570 dctx->stack_depth = i;
2571 break;
2572 }
2573 }
2574
2575 /*
2576 * No parent was found, maybe the reference is a fully qualified name from the root.
2577 */
2578 if (!parent) {
2579 parent = fr_dict_attr_by_oid(NULL, CURRENT_FRAME(dctx)->da->dict->root, key_attr);
2580
2581 if (!parent) {
2582 fr_strerror_printf("Invalid STRUCT definition, unknown key attribute %s",
2583 key_attr);
2584 return -1;
2585 }
2586
2587 /*
2588 * @todo - remove after migration_union_key is deleted
2589 */
2591 fr_strerror_printf("Attribute '%s' is not a 'key' attribute", key_attr);
2592 return -1;
2593 }
2594
2595 key = parent;
2596 }
2597
2598 } else {
2600
2601 /*
2602 * STRUCT inside of a UNION doesn't need to specify the name of the key.
2603 *
2604 * STRUCT name value [flags]
2605 */
2606 if ((argc < 2) || (argc > 3)) {
2607 fr_strerror_const("Invalid STRUCT syntax");
2608 return -1;
2609 }
2610
2611 value = argv[1];
2612 if (argc == 3) flags = argv[2];
2613
2614 /*
2615 * The parent is a union. Get and verify the key ref.
2616 */
2618 fr_assert(ext != NULL);
2619
2620 /*
2621 * Double-check names against the reference.
2622 */
2623 key = ext->ref;
2624 fr_assert(key);
2626 }
2627
2628 /*
2629 * Rely on dict_attr_flags_valid() to ensure that
2630 * da->type is an unsigned integer, AND that da->parent->type == struct
2631 */
2632 if (!fr_cond_assert(parent->parent->type == FR_TYPE_STRUCT)) return -1;
2633
2634 /*
2635 * Parse the value, which should be a small integer.
2636 */
2637 if (fr_value_box_from_str(NULL, &box, key->type, NULL, value, strlen(value), NULL) < 0) {
2638 fr_strerror_printf_push("Invalid value for STRUCT \"%s\"", value);
2639 return -1;
2640 }
2641
2642 /*
2643 * Allocate the attribute here, and then fill in the fields
2644 * as we start parsing the various elements of the definition.
2645 */
2646 da = dict_attr_alloc_null(dctx->dict->pool, dctx->dict->proto);
2647 if (unlikely(da == NULL)) return -1;
2648 dict_attr_location_set(dctx, da);
2649 da->dict = dctx->dict;
2650
2652 error:
2653 talloc_free(da);
2654 return -1;
2655 }
2656
2657 /*
2658 * Structs can be prefixed with 16-bit lengths, but not
2659 * with any other type of length.
2660 */
2661 if (flags) {
2662 if (dict_process_flag_field(dctx, flags, &da) < 0) goto error;
2663 }
2664
2665 /*
2666 * Create a unique number for the child attribute, based on the value of the key.
2667 */
2668 switch (key->type) {
2669 case FR_TYPE_UINT8:
2670 attr = box.vb_uint8;
2671 break;
2672
2673 case FR_TYPE_UINT16:
2674 attr = box.vb_uint16;
2675 break;
2676
2677 case FR_TYPE_UINT32:
2678 attr = box.vb_uint32;
2679 break;
2680
2681 default:
2682 fr_assert(0); /* should have been checked earlier when the key attribute was defined */
2683 return -1;
2684 }
2685
2686 if (unlikely(dict_attr_num_init(da, attr) < 0)) goto error;
2687 if (unlikely(dict_attr_parent_init(&da, parent) < 0)) goto error;
2688 if (unlikely(dict_attr_finalise(&da, name) < 0)) goto error;
2689
2690 /*
2691 * Check to see if this is a duplicate attribute
2692 * and whether we should ignore it or error out...
2693 */
2694 switch (dict_attr_allow_dup(da)) {
2695 case 1:
2696 break;
2697
2698 case 0:
2699 talloc_free(da);
2700 return 0;
2701
2702 default:
2703 goto error;
2704 }
2705
2706 /*
2707 * Add the STRUCT to the global namespace, and as a child of "parent".
2708 */
2709 switch (dict_attr_add_or_fixup(&dctx->fixup, &da)) {
2710 default:
2711 goto error;
2712
2713 /* FIXME: Should dict_attr_enum_add_name also be called in the fixup code? */
2714 case 0:
2715 da = dict_attr_by_name(NULL, parent, name);
2716 if (!da) return -1;
2717
2718 /*
2719 * A STRUCT definition is an implicit BEGIN-STRUCT.
2720 */
2721 dctx->relative_attr = NULL;
2722 if (dict_dctx_push(dctx, da, NEST_NONE) < 0) return -1;
2723
2724 /*
2725 * Add the VALUE to the key attribute, and ensure that
2726 * the VALUE also contains a pointer to the child struct.
2727 */
2728 if (dict_attr_enum_add_name(fr_dict_attr_unconst(key), name, &box, false, true, da) < 0) {
2729 fr_value_box_clear(&box);
2730 return -1;
2731 }
2732 fr_value_box_clear(&box);
2733 break;
2734
2735 case 1:
2736 break;
2737 }
2738
2739 return 0;
2740}
2741
2742/** Process a value alias
2743 *
2744 */
2745static int dict_read_process_value(dict_tokenize_ctx_t *dctx, char **argv, int argc,
2746 UNUSED fr_dict_attr_flags_t *base_flags)
2747{
2748 fr_dict_attr_t *da;
2750 size_t enum_len;
2751 fr_dict_attr_t const *parent = CURRENT_FRAME(dctx)->da;
2752 fr_dict_attr_t const *enumv = NULL;
2753
2754 if (argc != 3) {
2755 fr_strerror_const("Invalid VALUE syntax");
2756 return -1;
2757 }
2758
2759 /*
2760 * Most VALUEs are bunched together by ATTRIBUTE. We can
2761 * save a lot of lookups on dictionary initialization by
2762 * caching the last attribute for a VALUE.
2763 *
2764 * If it's not the same, we look up the attribute in the
2765 * current context, which is generally:
2766 *
2767 * * the current attribute of type `struct`
2768 * * if no `struct`, then the VENDOR for VSAs
2769 * * if no VENDOR, then the dictionary root
2770 */
2771 if (!dctx->value_attr || (strcasecmp(argv[0], dctx->value_attr->name) != 0)) {
2772 fr_dict_attr_t const *tmp;
2773
2774 if (!(tmp = fr_dict_attr_by_oid(NULL, parent, argv[0]))) goto fixup;
2775 dctx->value_attr = fr_dict_attr_unconst(tmp);
2776 }
2777 da = dctx->value_attr;
2778
2779 /*
2780 * Verify the enum name matches the expected from.
2781 */
2782 enum_len = strlen(argv[1]);
2783 if (fr_dict_enum_name_from_substr(NULL, NULL, &FR_SBUFF_IN(argv[1], enum_len), NULL) != (fr_slen_t) enum_len) {
2784 fr_strerror_printf_push("Invalid VALUE name '%s' for attribute '%s'", argv[1], da->name);
2785 return -1;
2786 }
2787
2788 /*
2789 * enum names cannot be integers. People should just use the integer instead.
2790 *
2791 * But what about IPv6 addresses, which also use a "::" prefix?
2792 *
2793 * The ::FOO addresses were historically part of the "ipv4 compatible ipv6 address" range
2794 * "::0.0.0.0/96". That range has since been deprecated, and the "::FOO" range is tracked in the
2795 * IANA Special-Purpose Address Registry. That lists three things beginning with ::
2796 *
2797 * * ::/128 - unspecified address (i.e. ::0/128).
2798 * * ::1/128 - Loopback address
2799 * * ::ffff:0:0/96 - IPv4-mapped address.
2800 *
2801 * Since IPv6 addresses are 128 bits, the first two are just ::0 and ::1. No other possibilities
2802 * exist.
2803 *
2804 * For the range "::ffff:0:0/96", a value such as "::ffff:192.168.1.2 is not a valid enum name.
2805 * It contains an extra ':' (and MUST contain the extra ':'), and the ':' is not allowed in an
2806 * enum name.
2807 *
2808 * IANA could assign other values in the :: range, but this seems unlikely.
2809 *
2810 * As a result, the only overlap between enum ::FOO and IPv6 addresses is the single case of ::1.
2811 * This check disallows that.
2812 */
2813 if (fr_sbuff_adv_past_allowed( &FR_SBUFF_IN(argv[1], enum_len), SIZE_MAX, sbuff_char_class_int, NULL) == enum_len) {
2814 fr_strerror_printf("Invalid VALUE name '%s' for attribute '%s' - the name cannot be an integer", argv[1], da->name);
2815 return -1;
2816 }
2817
2818 /*
2819 * Remember which attribute is associated with this
2820 * value. This allows us to define enum
2821 * values before the attribute exists, and fix them
2822 * up later.
2823 */
2824 if (!da) {
2825 fixup:
2826 if (!fr_cond_assert_msg(dctx->fixup.pool, "fixup pool context invalid")) return -1;
2827
2829 CURRENT_FILENAME(dctx), CURRENT_LINE(dctx),
2830 argv[0], strlen(argv[0]),
2831 argv[1], strlen(argv[1]),
2832 argv[2], strlen(argv[2]), parent) < 0) {
2833 fr_strerror_const("Out of memory");
2834 return -1;
2835 }
2836 return 0;
2837 }
2838
2839 /*
2840 * Only a leaf types can have values defined.
2841 */
2842 if (!fr_type_is_leaf(da->type)) {
2843 fr_strerror_printf("Cannot define VALUE for attribute '%s' of data type '%s'", da->name,
2844 fr_type_to_str(da->type));
2845 return -1;
2846 }
2847
2848 /*
2849 * Pass in the root for type attr, so that we can find the reference.
2850 */
2851 if (da->type == FR_TYPE_ATTR) enumv = fr_dict_root(da->dict);
2852
2853 if (fr_value_box_from_str(NULL, &value, da->type, enumv,
2854 argv[2], strlen(argv[2]),
2855 NULL) < 0) {
2856 fr_strerror_printf_push("Invalid VALUE '%s' for attribute '%s' of data type '%s'",
2857 argv[2],
2858 da->name,
2859 fr_type_to_str(da->type));
2860 return -1;
2861 }
2862
2863 if (fr_dict_enum_add_name(da, argv[1], &value, false, true) < 0) {
2865 return -1;
2866 }
2868
2869 return 0;
2870}
2871
2872/*
2873 * Process the VENDOR command
2874 */
2875static int dict_read_process_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
2876{
2877 unsigned int value;
2878 int type, length;
2879 bool continuation = false;
2880 fr_dict_vendor_t const *dv;
2881 fr_dict_vendor_t *mutable;
2882 fr_dict_t *dict = dctx->dict;
2883
2884 dctx->value_attr = NULL;
2885 dctx->relative_attr = NULL;
2886
2887 if ((argc < 2) || (argc > 3)) {
2888 fr_strerror_const("Invalid VENDOR syntax");
2889 return -1;
2890 }
2891
2892 /*
2893 * Validate all entries
2894 */
2895 if (!dict_read_sscanf_i(&value, argv[1])) {
2896 fr_strerror_const("Invalid number in VENDOR");
2897 return -1;
2898 }
2899
2900 /*
2901 * Look for a format statement. Allow it to over-ride the hard-coded formats below.
2902 */
2903 if (argc == 3) {
2904 if (dict_read_parse_format(argv[2], &type, &length, &continuation) < 0) return -1;
2905
2906 } else {
2907 type = length = 1;
2908 }
2909
2910 /* Create a new VENDOR entry for the list */
2911 if (dict_vendor_add(dict, argv[0], value) < 0) return -1;
2912
2913 dv = fr_dict_vendor_by_num(dict, value);
2914 if (!dv) {
2915 fr_strerror_const("Failed adding format for VENDOR");
2916 return -1;
2917 }
2918
2919 mutable = UNCONST(fr_dict_vendor_t *, dv);
2920 mutable->type = type;
2921 mutable->length = length;
2922 mutable->continuation = continuation;
2923
2924 return 0;
2925}
2926
2927/** Register the specified dictionary as a protocol dictionary
2928 *
2929 * Allows vendor and TLV context to persist across $INCLUDEs
2930 */
2931static int dict_read_process_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flag)
2932{
2933 unsigned int value;
2934 unsigned int type_size = 0;
2935 fr_dict_t *dict;
2936 fr_dict_attr_t *mutable;
2937 bool require_dl = false;
2938 bool string_based = false;
2939
2940 /*
2941 * We cannot define a PROTOCOL inside of another protocol.
2942 */
2943 if (CURRENT_FRAME(dctx)->nest != NEST_TOP) {
2944 fr_strerror_const("PROTOCOL definitions cannot occur inside of any other BEGIN/END block");
2945 return -1;
2946 }
2947
2948 dctx->value_attr = NULL;
2949 dctx->relative_attr = NULL;
2950
2951 if ((argc < 2) || (argc > 3)) {
2952 fr_strerror_const("Missing arguments after PROTOCOL. Expected PROTOCOL <num> <name>");
2953 return -1;
2954 }
2955
2956 /*
2957 * Validate all entries
2958 */
2959 if (!dict_read_sscanf_i(&value, argv[1])) {
2960 fr_strerror_printf("Invalid number '%s' following PROTOCOL", argv[1]);
2961 return -1;
2962 }
2963
2964 /*
2965 * 255 protocols FR_TYPE_GROUP type_size hack
2966 */
2967 if (!value) {
2968 fr_strerror_printf("Invalid value '%u' following PROTOCOL", value);
2969 return -1;
2970 }
2971
2972 /*
2973 * Look for a format statement. This may specify the
2974 * type length of the protocol's types.
2975 */
2976 if (argc == 3) {
2977 char const *p;
2978 char *q;
2979
2980 /*
2981 * For now, we don't allow multiple options here.
2982 *
2983 * @todo - allow multiple options.
2984 */
2985 if (strcmp(argv[2], "verify=lib") == 0) {
2986 require_dl = true;
2987 goto post_option;
2988 }
2989
2990 if (strcmp(argv[2], "format=string") == 0) {
2991 type_size = 4;
2992 string_based = true;
2993 goto post_option;
2994 }
2995
2996 if (strncasecmp(argv[2], "format=", 7) != 0) {
2997 fr_strerror_printf("Invalid format for PROTOCOL. Expected 'format=', got '%s'", argv[2]);
2998 return -1;
2999 }
3000 p = argv[2] + 7;
3001
3002 type_size = strtoul(p, &q, 10);
3003 if (q != (p + strlen(p))) {
3004 fr_strerror_printf("Found trailing garbage '%s' after format specifier", p);
3005 return -1;
3006 }
3007 }
3008post_option:
3009
3010 /*
3011 * Cross check name / number.
3012 */
3013 dict = dict_by_protocol_name(argv[0]);
3014 if (dict) {
3015#ifdef STATIC_ANALYZER
3016 if (!dict->root) return -1;
3017#endif
3018
3019 if (dict->root->attr != value) {
3020 fr_strerror_printf("Conflicting numbers %u vs %u for PROTOCOL \"%s\"",
3021 dict->root->attr, value, dict->root->name);
3022 return -1;
3023 }
3024
3025 } else if ((dict = dict_by_protocol_num(value)) != NULL) {
3026#ifdef STATIC_ANALYZER
3027 if (!dict->root || !dict->root->name || !argv[0]) return -1;
3028#endif
3029
3030 if (strcasecmp(dict->root->name, argv[0]) != 0) {
3031 fr_strerror_printf("Conflicting names current \"%s\" vs new \"%s\" for PROTOCOL %u",
3032 dict->root->name, argv[0], dict->root->attr);
3033 return -1;
3034 }
3035 }
3036
3037 /*
3038 * And check types no matter what.
3039 */
3040 if (dict) {
3041 if (type_size && (dict->root->flags.type_size != type_size)) {
3042 fr_strerror_printf("Conflicting flags for PROTOCOL \"%s\" (current %d versus new %u)",
3043 dict->root->name, dict->root->flags.type_size, type_size);
3044 return -1;
3045 }
3046
3047 /*
3048 * Do NOT talloc_free() dict on error.
3049 */
3050 return dict_dctx_push(dctx, dict->root, NEST_NONE);
3051 }
3052
3053 dict = dict_alloc(dict_gctx);
3054
3055 /*
3056 * Try to load protocol-specific validation routines.
3057 * Some protocols don't need them, so it's OK if the
3058 * validation routines don't exist.
3059 */
3060 if ((dict_dlopen(dict, argv[0]) < 0) && require_dl) {
3061 error:
3062 talloc_free(dict);
3063 return -1;
3064 }
3065
3066 /*
3067 * Set the root attribute with the protocol name
3068 */
3069 if (dict_root_set(dict, argv[0], value) < 0) goto error;
3070
3071 if (dict_protocol_add(dict) < 0) goto error;
3072
3073 mutable = UNCONST(fr_dict_attr_t *, dict->root);
3074 dict->string_based = string_based;
3075 if (!type_size) {
3076 mutable->flags.type_size = dict->proto->default_type_size;
3077 mutable->flags.length = dict->proto->default_type_length;
3078 } else {
3079 mutable->flags.type_size = type_size;
3080 mutable->flags.length = 1; /* who knows... */
3081 }
3082
3083 /*
3084 * Make the root available on the stack, in case
3085 * something wants to begin it. Note that we mark it as
3086 * NONE, so that it can be cleaned up by anything.
3087 *
3088 * This stack entry is just a place-holder so that the
3089 * BEGIN statement can find the dictionary.
3090 */
3091 if (unlikely(dict_dctx_push(dctx, dict->root, NEST_NONE) < 0)) goto error;
3092
3093 return 0;
3094}
3095
3096/** Maintain a linked list of filenames which we've seen loading this dictionary
3097 *
3098 * This is used for debug messages, so we have a copy of the original file path
3099 * that we can reference from fr_dict_attr_t without having the memory bloat of
3100 * assigning a buffer to every attribute.
3101 */
3102static inline int dict_filename_add(char **filename_out, fr_dict_t *dict, char const *filename,
3103 char const *src_file, int src_line)
3104{
3106
3107 file = talloc_zero(dict, fr_dict_filename_t);
3108 if (unlikely(!file)) {
3109 oom:
3110 fr_strerror_const("Out of memory");
3111 return -1;
3112 }
3113 *filename_out = file->filename = talloc_typed_strdup(file, filename);
3114 if (unlikely(!*filename_out)) goto oom;
3115
3116 if (src_file) {
3117 file->src_line = src_line;
3118 file->src_file = talloc_typed_strdup(file, src_file);
3119 if (!file->src_file) goto oom;
3120 }
3121
3122 fr_dlist_insert_tail(&dict->filenames, file);
3123
3124 return 0;
3125}
3126
3127#ifndef NDEBUG
3128/** See if we have already loaded the file,
3129 *
3130 */
3131static inline bool dict_filename_loaded(fr_dict_t *dict, char const *filename,
3132 char const *src_file, int src_line)
3133{
3135
3136 for (file = (fr_dict_filename_t *) fr_dlist_head(&dict->filenames);
3137 file != NULL;
3138 file = (fr_dict_filename_t *) fr_dlist_next(&dict->filenames, &file->entry)) {
3139 if (file->src_file && src_file) {
3140 if (file->src_line != src_line) continue;
3141 if (strcmp(file->src_file, src_file) != 0) continue;
3142 }
3143
3144 if (strcmp(file->filename, filename) == 0) return true; /* this should always be true */
3145 }
3146
3147 return false;
3148}
3149#endif
3150
3151/** Process an inline BEGIN PROTOCOL block
3152 *
3153 * This function is called *after* the PROTOCOL handler.
3154 */
3156{
3158 fr_assert(CURRENT_DA(dctx)->flags.is_root);
3159
3160 /*
3161 * Rewrite it in place.
3162 */
3163 CURRENT_FRAME(dctx)->nest = NEST_PROTOCOL;
3164 dctx->dict = CURRENT_DA(dctx)->dict;
3165
3166 return 0;
3167}
3168
3169/** Keyword parser
3170 *
3171 * @param[in] dctx containing the dictionary we're currently parsing.
3172 * @param[in] argv arguments to the keyword.
3173 * @param[in] argc number of arguments.
3174 * @param[in] base_flags set in the context of the current file.
3175 * @return
3176 * - 0 on success.
3177 * - -1 on failure.
3178 */
3179typedef int (*fr_dict_keyword_parse_t)(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags);
3180
3181/** Pushes a new frame onto the top of the stack based on the current frame
3182 *
3183 * Whenever a protocol, vendor, or attribute is defined in the dictionary it either mutates or
3184 * pushes a new NONE frame onto the stack. This holds the last defined object at a given level
3185 * of nesting.
3186 *
3187 * This function is used to push an additional frame onto the stack, effectively entering the
3188 * context of the last defined object at a given level of nesting
3189 *
3190 * @param[in] dctx Contains the current state of the dictionary parser.
3191 * Used to track what PROTOCOL, VENDOR or TLV block
3192 * we're in.
3193 * @return
3194 * - 0 on success.
3195 * - -1 on failure.
3196 */
3198
3199typedef struct {
3200 fr_dict_keyword_parse_t parse; //!< Function to parse the keyword with.
3201 fr_dict_section_begin_t begin; //!< Can have a BEGIN prefix
3203
3204typedef struct {
3205 fr_table_elem_name_t name; //!< Name of the keyword, e.g. "ATTRIBUTE"
3206 fr_dict_keyword_parser_t value; //!< Value to return from lookup.
3208
3210 fr_dict_keyword, fr_dict_keyword_parser_t const *, fr_dict_keyword_parser_t const *)
3211
3212/** Parse a dictionary file
3213 *
3214 * @param[in] dctx Contains the current state of the dictionary parser.
3215 * Used to track what PROTOCOL, VENDOR or TLV block
3216 * we're in. Block context changes in $INCLUDEs should
3217 * not affect the context of the including file.
3218 * @param[in] dir Directory containing the dictionary we're loading.
3219 * @param[in] filename we're parsing.
3220 * @param[in] src_file The including file.
3221 * @param[in] src_line Line on which the $INCLUDE or $NCLUDE- statement was found.
3222 * @return
3223 * - 0 on success.
3224 * - -1 on failure.
3225 */
3226static int _dict_from_file(dict_tokenize_ctx_t *dctx,
3227 char const *dir, char const *filename,
3228 char const *src_file, int src_line)
3229{
3230 static fr_dict_keyword_t const keywords[] = {
3231 { L("ALIAS"), { .parse = dict_read_process_alias } },
3232 { L("ATTRIBUTE"), { .parse = dict_read_process_attribute } },
3233 { L("BEGIN-PROTOCOL"), { .parse = dict_read_process_begin_protocol } },
3234 { L("BEGIN-VENDOR"), { .parse = dict_read_process_begin_vendor } },
3235 { L("DEFINE"), { .parse = dict_read_process_define } },
3236 { L("END"), { .parse = dict_read_process_end } },
3237 { L("END-PROTOCOL"), { .parse = dict_read_process_end_protocol } },
3238 { L("END-VENDOR"), { .parse = dict_read_process_end_vendor } },
3239 { L("ENUM"), { .parse = dict_read_process_enum } },
3240 { L("FLAGS"), { .parse = dict_read_process_flags } },
3241 { L("MEMBER"), { .parse = dict_read_process_member } },
3242 { L("PROTOCOL"), { .parse = dict_read_process_protocol, .begin = dict_begin_protocol }},
3243 { L("STRUCT"), { .parse = dict_read_process_struct } },
3244 { L("VALUE"), { .parse = dict_read_process_value } },
3245 { L("VENDOR"), { .parse = dict_read_process_vendor } },
3246 };
3247
3248 FILE *fp;
3249 char filename_buf[256];
3250 char buf[256];
3251 char *p;
3252 int line = 0;
3253
3254 struct stat statbuf;
3255 char *argv[DICT_MAX_ARGV];
3256 int argc;
3257
3258 int stack_depth = dctx->stack_depth;
3259
3260 /*
3261 * Base flags are only set for the current file
3262 */
3263 fr_dict_attr_flags_t base_flags = {};
3264
3265 if (!fr_cond_assert(!dctx->dict->root || CURRENT_FRAME(dctx)->da)) return -1;
3266
3267 if ((strlen(dir) + 2 + strlen(filename)) > sizeof(filename_buf)) {
3268 fr_strerror_printf("%s: Filename name too long", "Error reading dictionary");
3269 return -1;
3270 }
3271
3272 /*
3273 * The filename is relative to the current directory.
3274 *
3275 * Ensure that the directory name doesn't end with 2 '/',
3276 * and then create the full path from dir + filename.
3277 */
3278 if (FR_DIR_IS_RELATIVE(filename)) {
3279 /*
3280 * The filename is relative to the input
3281 * directory.
3282 */
3283 strlcpy(filename_buf, dir, sizeof(filename_buf));
3284 p = strrchr(filename_buf, FR_DIR_SEP);
3285 if (p && !p[1]) *p = '\0';
3286
3287 snprintf(filename_buf, sizeof(filename_buf), "%s/%s", dir, filename);
3288 filename = filename_buf;
3289 }
3290 /*
3291 * Else we ignore the input directory. We also assume
3292 * that the filename is normalized, and therefore don't
3293 * change it.
3294 */
3295
3296 /*
3297 * See if we have already loaded this filename. If so, suppress it.
3298 */
3299#ifndef NDEBUG
3300 if (unlikely(dict_filename_loaded(dctx->dict, filename, src_file, src_line))) {
3301 fr_strerror_printf("ERROR - we have a recursive $INCLUDE or load of dictionary %s", filename);
3302 return -1;
3303 }
3304#endif
3305
3306 if ((fp = fopen(filename, "r")) == NULL) {
3307 if (!src_file) {
3308 fr_strerror_printf("Couldn't open dictionary %s: %s", fr_syserror(errno), filename);
3309 } else {
3310 fr_strerror_printf("Error reading dictionary: %s[%d]: Couldn't open dictionary '%s': %s",
3311 fr_cwd_strip(src_file), src_line, filename,
3312 fr_syserror(errno));
3313 }
3314 return -2;
3315 }
3316
3317 /*
3318 * If fopen works, this works.
3319 */
3320 if (fstat(fileno(fp), &statbuf) < 0) {
3321 fr_strerror_printf("Failed stating dictionary \"%s\" - %s", filename, fr_syserror(errno));
3322
3323 perm_error:
3324 fclose(fp);
3325 return -1;
3326 }
3327
3328 if (!S_ISREG(statbuf.st_mode)) {
3329 fr_strerror_printf("Dictionary is not a regular file: %s", filename);
3330 goto perm_error;
3331 }
3332
3333 /*
3334 * Globally writable dictionaries means that users can control
3335 * the server configuration with little difficulty.
3336 */
3337#ifdef S_IWOTH
3338 if (dict_gctx->perm_check && ((statbuf.st_mode & S_IWOTH) != 0)) {
3339 fr_strerror_printf("Dictionary is globally writable: %s. "
3340 "Refusing to start due to insecure configuration", filename);
3341 goto perm_error;
3342 }
3343#endif
3344
3345 /*
3346 * Now that we've opened the file, copy the filename into the dictionary and add it to the ctx
3347 * This string is safe to assign to the filename pointer in any attributes added beneath the
3348 * dictionary.
3349 */
3350 if (unlikely(dict_filename_add(&dctx->filename, dctx->dict, filename, src_file, src_line) < 0)) {
3351 goto perm_error;
3352 }
3353
3354 while (fgets(buf, sizeof(buf), fp) != NULL) {
3355 bool do_begin = false;
3356 fr_dict_keyword_parser_t const *parser;
3357 char **argv_p = argv;
3358
3359 dctx->line = ++line;
3360
3361 switch (buf[0]) {
3362 case '#':
3363 case '\0':
3364 case '\n':
3365 case '\r':
3366 continue;
3367 }
3368
3369 /*
3370 * Comment characters should NOT be appearing anywhere but
3371 * as start of a comment;
3372 */
3373 p = strchr(buf, '#');
3374 if (p) *p = '\0';
3375
3376 argc = fr_dict_str_to_argv(buf, argv, DICT_MAX_ARGV);
3377 if (argc == 0) continue;
3378
3379 if (argc == 1) {
3380 /*
3381 * Be nice.
3382 */
3383 if ((strcmp(argv[0], "BEGIN") == 0) ||
3384 (fr_dict_keyword(&parser, keywords, NUM_ELEMENTS(keywords), argv_p[0], NULL))) {
3385 fr_strerror_printf("Keyword %s is missing all of its arguments", argv[0]);
3386 } else {
3387 fr_strerror_printf("Invalid syntax - unknown keyword %s", argv[0]);
3388 }
3389
3390 error:
3391 fr_strerror_printf_push("Failed parsing dictionary at %s[%d]", fr_cwd_strip(filename), line);
3392 fclose(fp);
3393 return -1;
3394 }
3395
3396 /*
3397 * Special prefix for "beginnable" keywords.
3398 * These are keywords that can automatically change
3399 * the context of subsequent definitions if they're
3400 * prefixed with a BEGIN keyword.
3401 */
3402 if (strcasecmp(argv_p[0], "BEGIN") == 0) {
3403 do_begin = true;
3404 argv_p++;
3405 argc--;
3406 }
3407
3408 if (fr_dict_keyword(&parser, keywords, NUM_ELEMENTS(keywords), argv_p[0], NULL)) {
3409 /*
3410 * We are allowed to have attributes
3411 * named for keywords. Most notably
3412 * "value". If there's no such attribute
3413 * 'value', then the user will get a
3414 * descriptive error.
3415 */
3416 if (do_begin && !parser->begin) {
3417 goto process_begin;
3418 }
3419
3420 if (unlikely(parser->parse(dctx, argv_p + 1 , argc - 1, &base_flags) < 0)) goto error;
3421
3422 /*
3423 * We've processed the definition, now enter the section
3424 */
3425 if (do_begin && unlikely(parser->begin(dctx) < 0)) goto error;
3426 continue;
3427 }
3428
3429 /*
3430 * It's a naked BEGIN keyword
3431 */
3432 if (do_begin) {
3433 process_begin:
3434 if (unlikely(dict_read_process_begin(dctx, argv_p, argc, &base_flags) < 0)) goto error;
3435 continue;
3436 }
3437
3438 /*
3439 * See if we need to import another dictionary.
3440 */
3441 if (strncasecmp(argv_p[0], "$INCLUDE", 8) == 0) {
3442 /*
3443 * Included files operate on a copy of the context.
3444 *
3445 * This copy means that they inherit the
3446 * current context, including parents,
3447 * TLVs, etc. But if the included file
3448 * leaves a "dangling" TLV or "last
3449 * attribute", then it won't affect the
3450 * parent.
3451 */
3452 if (dict_read_process_include(dctx, argv_p, argc, dir) < 0) goto error;
3453 continue;
3454 } /* $INCLUDE */
3455
3456 /*
3457 * Any other string: We don't recognize it.
3458 */
3459 fr_strerror_printf("Invalid keyword '%s'", argv_p[0]);
3460 goto error;
3461 }
3462
3463 /*
3464 * Unwind until the stack depth matches what we had on input.
3465 */
3466 while (dctx->stack_depth > stack_depth) {
3467 dict_tokenize_frame_t *frame = CURRENT_FRAME(dctx);
3468
3469 if (frame->nest == NEST_PROTOCOL) {
3470 fr_strerror_printf("BEGIN-PROTOCOL at %s[%d] is missing END-PROTOCOL",
3471 fr_cwd_strip(frame->filename), line);
3472 goto error;
3473 }
3474
3475 if (frame->nest == NEST_ATTRIBUTE) {
3476 fr_strerror_printf("BEGIN %s at %s[%d] is missing END %s",
3477 frame->da->name, fr_cwd_strip(frame->filename), line,
3478 frame->da->name);
3479 goto error;
3480 }
3481
3482 if (frame->nest == NEST_VENDOR) {
3483 fr_strerror_printf("BEGIN-VENDOR at %s[%d] is missing END-VENDOR",
3484 fr_cwd_strip(frame->filename), line);
3485 goto error;
3486 }
3487
3488 /*
3489 * Run any necessary finalise callback, and then pop the frame.
3490 */
3491 if (frame->finalise) {
3492 if (frame->finalise(dctx) < 0) goto error;
3493 frame->finalise = NULL;
3494 }
3495
3496 fr_assert(!dctx->stack[dctx->stack_depth].finalise);
3497 dctx->stack_depth--;
3498 }
3499
3500 fclose(fp);
3501
3502 return 0;
3503}
3504
3505static int dict_from_file(fr_dict_t *dict,
3506 char const *dir_name, char const *filename,
3507 char const *src_file, int src_line)
3508{
3509 int ret;
3511
3512 memset(&dctx, 0, sizeof(dctx));
3513 dctx.dict = dict;
3514 dict_fixup_init(NULL, &dctx.fixup);
3515 dctx.stack[0].da = dict->root;
3516 dctx.stack[0].nest = NEST_TOP;
3517
3518 ret = _dict_from_file(&dctx, dir_name, filename, src_file, src_line);
3519 if (ret < 0) {
3520 talloc_free(dctx.fixup.pool);
3521 return ret;
3522 }
3523
3524 /*
3525 * Applies to any attributes added to the *internal*
3526 * dictionary.
3527 *
3528 * Fixups should have been applied already to any protocol
3529 * dictionaries.
3530 */
3531 return dict_finalise(&dctx);
3532}
3533
3534/** (Re-)Initialize the special internal dictionary
3535 *
3536 * This dictionary has additional programmatically generated attributes added to it,
3537 * and is checked in addition to the protocol specific dictionaries.
3538 *
3539 * @note The dictionary pointer returned in out must have its reference counter
3540 * decremented with #fr_dict_free when no longer used.
3541 *
3542 * @param[out] out Where to write pointer to the internal dictionary.
3543 * @param[in] dict_subdir name of the internal dictionary dir (may be NULL).
3544 * @param[in] dependent Either C src file, or another dictionary.
3545 * @return
3546 * - 0 on success.
3547 * - -1 on failure.
3548 */
3549int fr_dict_internal_afrom_file(fr_dict_t **out, char const *dict_subdir, char const *dependent)
3550{
3551 fr_dict_t *dict;
3552 char *dict_path = NULL;
3553 size_t i;
3554 fr_dict_attr_flags_t flags = { .internal = true };
3555 char *type_name;
3556 fr_dict_attr_t *cast_base;
3558
3559 if (unlikely(!dict_gctx)) {
3560 fr_strerror_const("fr_dict_global_ctx_init() must be called before loading dictionary files");
3561 return -1;
3562 }
3563
3564 /*
3565 * Increase the reference count of the internal dictionary.
3566 */
3567 if (dict_gctx->internal) {
3570 return 0;
3571 }
3572
3573 dict_path = dict_subdir ?
3574 talloc_asprintf(NULL, "%s%c%s", fr_dict_global_ctx_dir(), FR_DIR_SEP, dict_subdir) :
3575 talloc_strdup(NULL, fr_dict_global_ctx_dir());
3576
3577 fr_strerror_clear(); /* Ensure we don't report spurious errors */
3578
3579 dict = dict_alloc(dict_gctx);
3580 if (!dict) {
3581 error:
3582 if (!dict_gctx->internal) talloc_free(dict);
3583 talloc_free(dict_path);
3584 return -1;
3585 }
3586
3587 /*
3588 * Set the root name of the dictionary
3589 */
3590 if (dict_root_set(dict, "internal", 0) < 0) goto error;
3591
3592 if (dict_path && dict_from_file(dict, dict_path, FR_DICTIONARY_FILE, NULL, 0) < 0) goto error;
3593
3594 TALLOC_FREE(dict_path);
3595
3596 dict_dependent_add(dict, dependent);
3597
3598 if (!dict_gctx->internal) {
3599 dict_gctx->internal = dict;
3600 dict_dependent_add(dict, "global");
3601 }
3602
3603 /*
3604 * Try to load libfreeradius-internal, too. If that
3605 * fails (i.e. fuzzers???), ignore it.
3606 */
3607 (void) dict_dlopen(dict, "internal");
3608
3609 cast_base = dict_attr_child_by_num(dict->root, FR_CAST_BASE);
3610 if (!cast_base) {
3611 fr_strerror_printf("Failed to find 'Cast-Base' in internal dictionary");
3612 goto error;
3613 }
3614
3615 fr_assert(cast_base->type == FR_TYPE_UINT8);
3616 fr_value_box_init(&box, FR_TYPE_UINT8, NULL, false);
3617
3618 /*
3619 * Add cast attributes. We do it this way,
3620 * so cast attributes get added automatically for new types.
3621 *
3622 * We manually add the attributes to the dictionary, and bypass
3623 * fr_dict_attr_add(), because we know what we're doing, and
3624 * that function does too many checks.
3625 */
3626 for (i = 0; i < fr_type_table_len; i++) {
3629
3630 switch (p->value) {
3631 case FR_TYPE_NULL: /* Can't cast to NULL */
3632 case FR_TYPE_VENDOR: /* Vendors can't exist in dictionaries as attributes */
3633 continue;
3634 }
3635
3636 type_name = talloc_typed_asprintf(NULL, "Tmp-Cast-%s", p->name.str);
3637
3638 n = dict_attr_alloc(dict->pool, dict->root, type_name,
3639 FR_CAST_BASE + p->value, p->value, &(dict_attr_args_t){ .flags = &flags});
3640 if (!n) {
3641 talloc_free(type_name);
3642 goto error;
3643 }
3644
3645 if (dict_attr_add_to_namespace(dict->root, n) < 0) {
3646 fr_strerror_printf_push("Failed inserting '%s' into internal dictionary", type_name);
3647 talloc_free(type_name);
3648 goto error;
3649 }
3650
3651 talloc_free(type_name);
3652
3653 /*
3654 * Set up parenting for the attribute.
3655 */
3656 if (dict_attr_child_add(dict->root, n) < 0) goto error;
3657
3658 /*
3659 * Add the enum, too.
3660 */
3661 box.vb_uint8 = p->value;
3662 if (dict_attr_enum_add_name(cast_base, p->name.str, &box, false, false, NULL) < 0) {
3663 fr_strerror_printf_push("Failed adding '%s' as a VALUE into internal dictionary", p->name.str);
3664 goto error;
3665 }
3666 }
3667
3668 *out = dict;
3669
3670 return 0;
3671}
3672
3673/** (Re)-initialize a protocol dictionary
3674 *
3675 * Initialize the directory, then fix the attr number of all attributes.
3676 *
3677 * @param[out] out Where to write a pointer to the new dictionary. Will free existing
3678 * dictionary if files have changed and *out is not NULL.
3679 * @param[in] proto_name that we're loading the dictionary for.
3680 * @param[in] proto_dir Explicitly set where to hunt for the dictionary files. May be NULL.
3681 * @param[in] dependent Either C src file, or another dictionary.
3682 * @return
3683 * - 0 on success.
3684 * - -1 on failure.
3685 */
3686int fr_dict_protocol_afrom_file(fr_dict_t **out, char const *proto_name, char const *proto_dir, char const *dependent)
3687{
3688 char *dict_dir = NULL;
3689 fr_dict_t *dict;
3690 bool added = false;
3691
3692 *out = NULL;
3693
3694 if (unlikely(!dict_gctx)) {
3695 fr_strerror_const("fr_dict_global_ctx_init() must be called before loading dictionary files");
3696 return -1;
3697 }
3698
3699 if (unlikely(!dict_gctx->internal)) {
3700 fr_strerror_const("Internal dictionary must be initialised before loading protocol dictionaries");
3701 return -1;
3702 }
3703
3704 /*
3705 * Increment the reference count if the dictionary
3706 * has already been loaded and return that.
3707 */
3708 dict = dict_by_protocol_name(proto_name);
3709 if (dict) {
3710 /*
3711 * If we're in the middle of loading this dictionary, then the only way we get back here
3712 * is via a circular reference. So we catch that, and drop the circular dependency.
3713 *
3714 * When we have A->B->A, it means that we don't need to track B->A, because we track
3715 * A->B. And if A is freed, then B is freed.
3716 */
3717 added = true;
3718 dict_dependent_add(dict, dependent);
3719
3720 /*
3721 * But we only return a pre-existing dict if _this function_ has loaded it.
3722 */
3723 if (dict->loaded) {
3724 *out = dict;
3725 return 0;
3726 }
3727
3728 /*
3729 * Set the flag to true _before_ loading the file. That prevents recursion.
3730 */
3731 dict->loaded = true;
3732 }
3733
3734 if (!proto_dir) {
3735 dict_dir = talloc_asprintf(NULL, "%s%c%s", fr_dict_global_ctx_dir(), FR_DIR_SEP, proto_name);
3736 } else {
3737 dict_dir = talloc_asprintf(NULL, "%s%c%s", fr_dict_global_ctx_dir(), FR_DIR_SEP, proto_dir);
3738 }
3739
3740 fr_strerror_clear(); /* Ensure we don't report spurious errors */
3741
3742 /*
3743 * Start in the context of the internal dictionary,
3744 * and switch to the context of a protocol dictionary
3745 * when we hit a BEGIN-PROTOCOL line.
3746 *
3747 * This allows a single file to provide definitions
3748 * for multiple protocols, which'll probably be useful
3749 * at some point.
3750 */
3751 if (dict_from_file(dict_gctx->internal, dict_dir, FR_DICTIONARY_FILE, NULL, 0) < 0) {
3752 error:
3753 if (dict) dict->loading = false;
3754 talloc_free(dict_dir);
3755 return -1;
3756 }
3757
3758 /*
3759 * Check the dictionary actually defined the protocol
3760 */
3761 dict = dict_by_protocol_name(proto_name);
3762 if (!dict) {
3763 fr_strerror_printf("Dictionary \"%s\" missing \"BEGIN-PROTOCOL %s\" declaration", dict_dir, proto_name);
3764 goto error;
3765 }
3766
3767 /*
3768 * Initialize the library.
3769 */
3770 dict->loaded = true;
3771 if (dict->proto && dict->proto->init) {
3772 if (dict->proto->init() < 0) goto error;
3773 }
3774 dict->loading = false;
3775
3776 dict->dir = talloc_steal(dict, dict_dir);
3777
3778 if (!added) dict_dependent_add(dict, dependent);
3779
3780 *out = dict;
3781
3782 return 0;
3783}
3784
3785/* Alloc a new root dictionary attribute
3786 *
3787 * @note Must only be called once per dictionary.
3788 *
3789 * @param[in] proto_name that we're loading the dictionary for.
3790 * @param[in] proto_number The artificial (or IANA allocated) number for the protocol.
3791 * @return
3792 * - A pointer to the new dict context on success.
3793 * - NULL on failure.
3794 */
3795fr_dict_t *fr_dict_alloc(char const *proto_name, unsigned int proto_number)
3796{
3797 fr_dict_t *dict;
3798
3799 if (unlikely(!dict_gctx)) {
3800 fr_strerror_printf("fr_dict_global_ctx_init() must be called before loading dictionary files");
3801 return NULL;
3802 }
3803
3804 /*
3805 * Alloc dict instance.
3806 */
3807 dict = dict_alloc(dict_gctx);
3808 if (!dict) return NULL;
3809
3810 /*
3811 * Set the root name of the dictionary
3812 */
3813 if (dict_root_set(dict, proto_name, proto_number) < 0) {
3814 talloc_free(dict);
3815 return NULL;
3816 }
3817
3818 return dict;
3819}
3820
3821/** Read supplementary attribute definitions into an existing dictionary
3822 *
3823 * @param[in] dict Existing dictionary.
3824 * @param[in] dir dictionary is located in.
3825 * @param[in] filename of the dictionary.
3826 * @return
3827 * - 0 on success.
3828 * - -1 on failure.
3829 */
3830int fr_dict_read(fr_dict_t *dict, char const *dir, char const *filename)
3831{
3832 INTERNAL_IF_NULL(dict, -1);
3833
3834 if (!dir) dir = dict->dir;
3835
3836 if (unlikely(dict->read_only)) {
3837 fr_strerror_printf("%s dictionary has been marked as read only", fr_dict_root(dict)->name);
3838 return -1;
3839 }
3840
3841 if (!dict->vendors_by_name) {
3842 fr_strerror_printf("%s: Must initialise dictionary before calling fr_dict_read()", __FUNCTION__);
3843 return -1;
3844 }
3845
3846 return dict_from_file(dict, dir, filename, NULL, 0);
3847}
3848
3849/*
3850 * External API for testing
3851 */
3853{
3854 int argc;
3855 char *argv[DICT_MAX_ARGV];
3856 int ret;
3857 fr_dict_attr_flags_t base_flags;
3859
3860 INTERNAL_IF_NULL(dict, -1);
3861
3862 argc = fr_dict_str_to_argv(buf, argv, DICT_MAX_ARGV);
3863 if (argc == 0) return 0;
3864
3865
3866 memset(&dctx, 0, sizeof(dctx));
3867 dctx.dict = dict;
3868 dctx.stack[0].nest = NEST_TOP;
3869
3870 if (dict_fixup_init(NULL, &dctx.fixup) < 0) return -1;
3871
3872 if (strcasecmp(argv[0], "VALUE") == 0) {
3873 if (argc < 4) {
3874 fr_strerror_printf("VALUE needs at least 4 arguments, got %i", argc);
3875 error:
3876 TALLOC_FREE(dctx.fixup.pool);
3877 return -1;
3878 }
3879
3880 if (!fr_dict_attr_by_oid(NULL, fr_dict_root(dict), argv[1])) {
3881 fr_strerror_printf("Attribute '%s' does not exist in dictionary \"%s\"",
3882 argv[1], dict->root->name);
3883 goto error;
3884 }
3885 ret = dict_read_process_value(&dctx, argv + 1, argc - 1, &base_flags);
3886 if (ret < 0) goto error;
3887
3888 } else if (strcasecmp(argv[0], "ATTRIBUTE") == 0) {
3889 if (parent && (parent != dict->root)) {
3890 (void) dict_dctx_push(&dctx, parent, NEST_NONE);
3891 }
3892
3893 memset(&base_flags, 0, sizeof(base_flags));
3894
3895 ret = dict_read_process_attribute(&dctx,
3896 argv + 1, argc - 1, &base_flags);
3897 if (ret < 0) goto error;
3898 } else if (strcasecmp(argv[0], "VENDOR") == 0) {
3899 ret = dict_read_process_vendor(&dctx, argv + 1, argc - 1, &base_flags);
3900 if (ret < 0) goto error;
3901 } else {
3902 fr_strerror_printf("Invalid input '%s'", argv[0]);
3903 goto error;
3904 }
3905
3906 return dict_finalise(&dctx);
3907}
int const char * file
Definition acutest.h:702
int n
Definition acutest.h:577
int const char int line
Definition acutest.h:702
#define UNCONST(_type, _ptr)
Remove const qualification from a pointer.
Definition build.h:167
#define RCSID(id)
Definition build.h:485
#define L(_str)
Helper for initialising arrays of string literals.
Definition build.h:209
#define NDEBUG_UNUSED
Definition build.h:328
#define DIAG_ON(_x)
Definition build.h:460
#define unlikely(_x)
Definition build.h:383
#define UNUSED
Definition build.h:317
#define NUM_ELEMENTS(_t)
Definition build.h:339
#define DIAG_OFF(_x)
Definition build.h:459
#define fr_cond_assert(_x)
Calls panic_action ifndef NDEBUG, else logs error and evaluates to value of _x.
Definition debug.h:131
#define FR_FAULT_LOG(_fmt,...)
Definition debug.h:50
#define fr_cond_assert_msg(_x, _fmt,...)
Calls panic_action ifndef NDEBUG, else logs error and evaluates to value of _x.
Definition debug.h:148
size_t type
Length of type data.
Definition dict.h:267
int fr_dict_attr_add_initialised(fr_dict_attr_t *da)
A variant of fr_dict_attr_t that allows a pre-allocated, populated fr_dict_attr_t to be added.
Definition dict_util.c:1668
fr_slen_t fr_dict_enum_name_from_substr(fr_sbuff_t *out, fr_sbuff_parse_error_t *err, fr_sbuff_t *in, fr_sbuff_term_t const *tt)
Extract an enumeration name from a string.
Definition dict_util.c:3652
int fr_dict_enum_add_name(fr_dict_attr_t *da, char const *name, fr_value_box_t const *value, bool coerce, bool replace)
Add a value name.
Definition dict_util.c:2037
char const * name
Vendor name.
Definition dict.h:269
@ FLAG_LENGTH_UINT8
string / octets type is prefixed by uint8 of length
Definition dict.h:165
@ FLAG_LENGTH_UINT16
string / octets type is prefixed by uint16 of length
Definition dict.h:166
@ FLAG_KEY_FIELD
this is a key field for a subsequent struct
Definition dict.h:163
@ FLAG_BIT_FIELD
bit field inside of a struct
Definition dict.h:164
unsigned int is_root
Is root of a dictionary.
Definition dict.h:77
fr_dict_attr_t const * fr_dict_attr_common_parent(fr_dict_attr_t const *a, fr_dict_attr_t const *b, bool is_ancestor)
Find a common ancestor that two TLV type attributes share.
Definition dict_util.c:2133
int fr_dict_protocol_reference(fr_dict_attr_t const **da_p, fr_dict_attr_t const *root, fr_sbuff_t *in)
Resolve a reference string to a dictionary attribute.
Definition dict_fixup.c:135
fr_dict_attr_t const * fr_dict_attr_by_name(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *attr))
Locate a fr_dict_attr_t by its name.
Definition dict_util.c:3359
fr_dict_attr_t * fr_dict_attr_unconst(fr_dict_attr_t const *da)
Coerce to non-const.
Definition dict_util.c:4736
fr_dict_attr_t const * fr_dict_root(fr_dict_t const *dict)
Return the root attribute of a dictionary.
Definition dict_util.c:2496
fr_dict_flag_parse_func_t func
Custom parsing function to convert a flag value string to a C type value.
Definition dict.h:387
unsigned int internal
Internal attribute, should not be received in protocol packets, should not be encoded.
Definition dict.h:89
#define DA_VERIFY(_x)
Definition dict.h:68
fr_slen_t fr_dict_attr_by_oid_legacy(fr_dict_t const *dict, fr_dict_attr_t const **parent, unsigned int *attr, char const *oid)
Get the leaf attribute of an OID string.
Definition dict_util.c:2221
#define da_is_bit_field(_da)
Definition dict.h:170
uint32_t pen
Private enterprise number.
Definition dict.h:265
#define da_is_length_field(_da)
Definition dict.h:171
uint8_t type_size
Type size for TLVs.
Definition dict.h:143
size_t length
Length of length data.
Definition dict.h:268
uint16_t length
length of the attribute
Definition dict.h:152
char const * fr_dict_global_ctx_dir(void)
Definition dict_util.c:4631
@ FR_DICT_ATTR_EXT_REF
Attribute references another attribute and/or dictionary.
Definition dict.h:183
@ FR_DICT_ATTR_EXT_KEY
UNION attribute references a key.
Definition dict.h:185
fr_dict_vendor_t const * fr_dict_vendor_by_name(fr_dict_t const *dict, char const *name)
Look up a vendor by its name.
Definition dict_util.c:2753
bool needs_value
This parsing flag must have a value. Else we error.
Definition dict.h:389
fr_dict_attr_t const * fr_dict_attr_by_oid(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *oid))
Resolve an attribute using an OID string.
Definition dict_util.c:2469
fr_dict_vendor_t const * fr_dict_vendor_by_num(fr_dict_t const *dict, uint32_t vendor_pen)
Look up a vendor by its PEN.
Definition dict_util.c:2776
fr_dict_attr_t const * fr_dict_attr_child_by_num(fr_dict_attr_t const *parent, unsigned int attr)
Check if a child attribute exists in a parent using an attribute number.
Definition dict_util.c:3424
#define fr_dict_attr_is_key_field(_da)
Definition dict.h:169
static int8_t fr_dict_attr_cmp_fields(const fr_dict_attr_t *a, const fr_dict_attr_t *b)
Compare two dictionary attributes by their contents.
Definition dict.h:670
Values of the encryption flags.
Protocol specific custom flag definitnion.
Definition dict.h:417
Private enterprise.
Definition dict.h:264
#define fr_dict_attr_ref_type(_type)
Definition dict_ext.h:72
fr_dict_attr_ref_type_t type
The state of the reference.
Definition dict_ext.h:78
static void * fr_dict_attr_ext(fr_dict_attr_t const *da, fr_dict_attr_ext_t ext)
Definition dict_ext.h:141
#define fr_dict_attr_ref_is_unresolved(_type)
Definition dict_ext.h:71
@ FR_DICT_ATTR_REF_ENUM
The attribute is an enumeration value.
Definition dict_ext.h:64
@ FR_DICT_ATTR_REF_KEY
it is a UNION which has a ref to a key, and children.
Definition dict_ext.h:65
@ FR_DICT_ATTR_REF_ALIAS
The attribute is an alias for another attribute.
Definition dict_ext.h:60
@ FR_DICT_ATTR_REF_CLONE
The attribute is a "copy" of another attribute.
Definition dict_ext.h:63
Attribute extension - Holds a reference to an attribute in another dictionary.
Definition dict_ext.h:77
static int dict_attr_ref_set(fr_dict_attr_t const *da, fr_dict_attr_t const *ref, fr_dict_attr_ref_type_t type)
static int dict_attr_ref_aunresolved(fr_dict_attr_t **da_p, char const *ref, fr_dict_attr_ref_type_t type)
static void * dict_attr_ext_alloc(fr_dict_attr_t **da_p, fr_dict_attr_ext_t ext)
Allocate an attribute extension.
int dict_fixup_apply(dict_fixup_ctx_t *fctx)
Apply all outstanding fixes to a set of dictionaries.
Definition dict_fixup.c:872
int dict_fixup_enumv_enqueue(dict_fixup_ctx_t *fctx, char const *filename, int line, char const *attr, size_t attr_len, char const *name, size_t name_len, char const *value, size_t value_len, fr_dict_attr_t const *parent)
Add an enumeration value to an attribute which has not yet been defined.
Definition dict_fixup.c:275
int dict_fixup_alias_enqueue(dict_fixup_ctx_t *fctx, char const *filename, int line, fr_dict_attr_t *alias_parent, char const *alias, fr_dict_attr_t *ref_parent, char const *ref)
Resolve a group reference.
Definition dict_fixup.c:801
int dict_fixup_clone_enqueue(dict_fixup_ctx_t *fctx, fr_dict_attr_t *da, char const *ref)
Clone one area of a tree into another.
Definition dict_fixup.c:425
int dict_fixup_init(TALLOC_CTX *ctx, dict_fixup_ctx_t *fctx)
Initialise a fixup ctx.
Definition dict_fixup.c:853
int dict_fixup_clone_enum_enqueue(dict_fixup_ctx_t *fctx, fr_dict_attr_t *da, char const *ref)
Clone enumeration values from one attribute to another.
Definition dict_fixup.c:637
int dict_fixup_vsa_enqueue(dict_fixup_ctx_t *fctx, fr_dict_attr_t *da)
Push a fixup for a VSA.
Definition dict_fixup.c:740
int dict_fixup_clone(fr_dict_attr_t **dst_p, fr_dict_attr_t const *src)
Clone a dictionary attribute from a ref.
Definition dict_fixup.c:458
int dict_fixup_group_enqueue(dict_fixup_ctx_t *fctx, fr_dict_attr_t *da, char const *ref)
Resolve a group reference.
Definition dict_fixup.c:358
TALLOC_CTX * pool
Temporary pool for fixups, reduces holes.
int dict_attr_enum_add_name(fr_dict_attr_t *da, char const *name, fr_value_box_t const *value, bool coerce, bool replace, fr_dict_attr_t const *child_struct)
Definition dict_util.c:1830
int dict_attr_type_init(fr_dict_attr_t **da_p, fr_type_t type)
Initialise type specific fields within the dictionary attribute.
Definition dict_util.c:588
int dict_attr_parent_init(fr_dict_attr_t **da_p, fr_dict_attr_t const *parent)
Initialise fields which depend on a parent attribute.
Definition dict_util.c:682
#define dict_attr_alloc(_ctx, _parent, _name, _attr, _type, _args)
Definition dict_priv.h:239
fr_dict_t * dict_alloc(TALLOC_CTX *ctx)
Allocate a new dictionary.
Definition dict_util.c:4009
#define INTERNAL_IF_NULL(_dict, _ret)
Set the internal dictionary if none was provided.
Definition dict_priv.h:45
int dict_attr_add_to_namespace(fr_dict_attr_t const *parent, fr_dict_attr_t *da)
Add an attribute to the name table for an attribute.
Definition dict_util.c:1602
fr_dict_attr_t * dict_attr_child_by_num(fr_dict_attr_t const *parent, unsigned int attr)
Internal version of fr_dict_attr_child_by_num.
Definition dict_util.c:3377
fr_dict_attr_t * dict_attr_by_name(fr_dict_attr_err_t *err, fr_dict_attr_t const *parent, char const *name)
Definition dict_util.c:3313
fr_dict_t * dict_by_protocol_num(unsigned int num)
Internal version of fr_dict_by_protocol_num.
Definition dict_util.c:2618
int dict_attr_child_add(fr_dict_attr_t *parent, fr_dict_attr_t *child)
Add a child to a parent.
Definition dict_util.c:1503
int dict_vendor_add(fr_dict_t *dict, char const *name, unsigned int num)
Add a vendor to the dictionary.
Definition dict_util.c:1384
int dict_attr_alias_add(fr_dict_attr_t const *parent, char const *alias, fr_dict_attr_t const *ref)
Add an alias to an existing attribute.
Definition dict_util.c:1249
int dict_attr_finalise(fr_dict_attr_t **da_p, char const *name)
Set remaining fields in a dictionary attribute before insertion.
Definition dict_util.c:777
int dict_attr_num_init(fr_dict_attr_t *da, unsigned int num)
Set the attribute number (if any)
Definition dict_util.c:733
int dict_attr_num_init_name_only(fr_dict_attr_t *da)
Set the attribute number (if any)
Definition dict_util.c:751
int dict_dlopen(fr_dict_t *dict, char const *name)
Definition dict_util.c:3692
fr_dict_t * dict_by_protocol_name(char const *name)
Internal version of fr_dict_by_protocol_name.
Definition dict_util.c:2604
fr_dict_t * internal
Magic internal dictionary.
Definition dict_priv.h:155
fr_dict_attr_t * dict_attr_alloc_null(TALLOC_CTX *ctx, fr_dict_protocol_t const *dict)
Partial initialisation functions.
Definition dict_util.c:985
int dict_dependent_add(fr_dict_t *dict, char const *dependent)
Record a new dependency on a dictionary.
Definition dict_util.c:3784
#define dict_attr_alloc_root(_ctx, _dict, _name, _attr, _args)
Definition dict_priv.h:231
int dict_protocol_add(fr_dict_t *dict)
Add a protocol to the global protocol table.
Definition dict_util.c:1311
fr_dict_gctx_t * dict_gctx
Top level structure containing global dictionary state.
Definition dict_util.c:42
bool perm_check
Whether we should check dictionary file permissions as they're loaded.
Definition dict_priv.h:132
Optional arguments for initialising/allocating attributes.
Definition dict_priv.h:175
Entry in the filename list of files associated with this dictionary.
Definition dict_priv.h:69
Test enumeration values.
Definition dict_test.h:92
fr_dict_keyword_finalise_t finalise
function to call when popping
static fr_table_num_sorted_t const dict_nest_table[]
static int dict_read_process_include(dict_tokenize_ctx_t *dctx, char **argv, int argc, char const *dir)
dict_nest_t nest
for manual vs automatic begin / end things
dict_fixup_ctx_t fixup
static int dict_read_process_common(dict_tokenize_ctx_t *dctx, fr_dict_attr_t **da_p, fr_dict_attr_t const *parent, char const *name, char const *type_name, char *flag_name, fr_dict_attr_flags_t const *base_flags)
#define NEST_ANY
static int dict_read_process_attribute(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
int member_num
structure member numbers
static int dict_filename_add(char **filename_out, fr_dict_t *dict, char const *filename, char const *src_file, int src_line)
Maintain a linked list of filenames which we've seen loading this dictionary.
static int dict_process_type_field(dict_tokenize_ctx_t *dctx, char const *name, fr_dict_attr_t **da_p)
static int dict_read_process_alias(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
static int _dict_from_file(dict_tokenize_ctx_t *dctx, char const *dir_name, char const *filename, char const *src_file, int src_line)
fr_dict_section_begin_t begin
Can have a BEGIN prefix.
static int dict_attr_allow_dup(fr_dict_attr_t const *da)
Check if this definition is a duplicate, and if it is, whether we should skip it error out.
static int dict_finalise(dict_tokenize_ctx_t *dctx)
static int dict_read_process_member(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
fr_dict_t * fr_dict_alloc(char const *proto_name, unsigned int proto_number)
static int dict_flag_ref(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static int dict_flag_precision(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static int dict_read_process_end(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
int stack_depth
points to the last used stack frame
ssize_t struct_size
size of the struct.
static int dict_read_process_struct(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
Process a STRUCT name attr value.
fr_dict_attr_t const * struct_is_closed
no more members are allowed
char * filename
current filename
int(* fr_dict_keyword_parse_t)(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
Keyword parser.
static int dict_read_process_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
int fr_dict_protocol_afrom_file(fr_dict_t **out, char const *proto_name, char const *proto_dir, char const *dependent)
(Re)-initialize a protocol dictionary
int(* fr_dict_section_begin_t)(dict_tokenize_ctx_t *dctx)
Pushes a new frame onto the top of the stack based on the current frame.
int fr_dict_str_to_argv(char *str, char **argv, int max_argc)
static int dict_read_sscanf_i(unsigned int *pvalue, char const *str)
static int dict_read_process_define(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
static size_t const dict_nest_table_len
static int dict_read_parse_format(char const *format, int *ptype, int *plength, bool *pcontinuation)
static int dict_read_process_begin_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
#define ASSERT_CURRENT_NEST(_dctx, _nest)
static dict_tokenize_frame_t const * dict_dctx_unwind_until(dict_tokenize_ctx_t *dctx, dict_nest_t nest)
Unwind the stack until it points to a particular type of stack frame.
static int dict_from_file(fr_dict_t *dict, char const *dir_name, char const *filename, char const *src_file, int src_line)
fr_dict_attr_t const * da
the da we care about
fr_dict_attr_t * value_attr
Cache of last attribute to speed up value processing.
static int dict_read_process_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flag)
Register the specified dictionary as a protocol dictionary.
#define FLAG_FUNC(_name)
Define a flag setting function, which sets one bit in a fr_dict_attr_flags_t.
#define CURRENT_LINE(_dctx)
static dict_tokenize_frame_t const * dict_dctx_pop(dict_tokenize_ctx_t *dctx)
Pop the current stack frame.
char * filename
name of the file where we read this entry
static int dict_set_value_attr(dict_tokenize_ctx_t *dctx, fr_dict_attr_t *da)
static int dict_read_process_enum(dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
int line
current line
#define CURRENT_FILENAME(_dctx)
static int dict_struct_finalise(dict_tokenize_ctx_t *dctx)
static int dict_flag_offset(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static int dict_read_process_begin_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
static int dict_flag_key(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
fr_dict_t * dict
Protocol dictionary we're inserting attributes into.
static int dict_begin_protocol(NDEBUG_UNUSED dict_tokenize_ctx_t *dctx)
Process an inline BEGIN PROTOCOL block.
static int dict_flag_clone(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rules)
dict_tokenize_frame_t stack[DICT_MAX_STACK]
stack of attributes to track
int line
line number where we read this entry
static bool dict_filename_loaded(fr_dict_t *dict, char const *filename, char const *src_file, int src_line)
See if we have already loaded the file,.
static int dict_flag_enum(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static dict_tokenize_frame_t const * dict_dctx_unwind(dict_tokenize_ctx_t *dctx)
#define CURRENT_DA(_dctx)
#define DICT_MAX_ARGV
Maximum number of arguments.
static int dict_read_process_value(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
Process a value alias.
static dict_tokenize_frame_t const * dict_dctx_find_frame(dict_tokenize_ctx_t *dctx, dict_nest_t nest)
fr_dict_keyword_parser_t value
Value to return from lookup.
static int dict_flag_length(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static int dict_read_process_end_vendor(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
int fr_dict_read(fr_dict_t *dict, char const *dir, char const *filename)
Read supplementary attribute definitions into an existing dictionary.
#define DICT_MAX_STACK
Maximum stack size.
int fr_dict_parse_str(fr_dict_t *dict, char *buf, fr_dict_attr_t const *parent)
static int dict_flag_subtype(fr_dict_attr_t **da_p, char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
static int dict_read_process_begin(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
int fr_dict_internal_afrom_file(fr_dict_t **out, char const *dict_subdir, char const *dependent)
(Re-)Initialize the special internal dictionary
static int dict_dctx_push(dict_tokenize_ctx_t *dctx, fr_dict_attr_t const *da, dict_nest_t nest)
static int dict_read_process_flags(UNUSED dict_tokenize_ctx_t *dctx, char **argv, int argc, fr_dict_attr_flags_t *base_flags)
static int dict_attr_add_or_fixup(dict_fixup_ctx_t *fixup, fr_dict_attr_t **da_p)
Add an attribute to the dictionary, or add it to a list of attributes to clone later.
int(* fr_dict_keyword_finalise_t)(dict_tokenize_ctx_t *dctx)
#define CURRENT_FRAME(_dctx)
static void dict_attr_location_set(dict_tokenize_ctx_t *dctx, fr_dict_attr_t *da)
fr_dict_attr_t const * relative_attr
for ".82" instead of "1.2.3.82". only for parents of type "tlv"
static int dict_flag_secret(fr_dict_attr_t **da_p, UNUSED char const *value, UNUSED fr_dict_flag_parser_rule_t const *rule)
fr_table_elem_name_t name
Name of the keyword, e.g. "ATTRIBUTE".
static int dict_read_process_end_protocol(dict_tokenize_ctx_t *dctx, char **argv, int argc, UNUSED fr_dict_attr_flags_t *base_flags)
fr_dict_keyword_parse_t parse
Function to parse the keyword with.
void dict_dctx_debug(dict_tokenize_ctx_t *dctx)
dict_nest_t
This represents explicit BEGIN/END frames pushed onto the stack.
@ NEST_TOP
top of the stack
@ NEST_VENDOR
BEGIN-VENDOR.
@ NEST_PROTOCOL
BEGIN-PROTOCOL.
@ NEST_ATTRIBUTE
BEGIN foo.
@ NEST_NONE
static int dict_root_set(fr_dict_t *dict, char const *name, unsigned int proto_number)
Set a new root dictionary attribute.
Parser context for dict_from_file.
static void * fr_dlist_head(fr_dlist_head_t const *list_head)
Return the HEAD item of a list or NULL if the list is empty.
Definition dlist.h:486
static int fr_dlist_insert_tail(fr_dlist_head_t *list_head, void *ptr)
Insert an item into the tail of a list.
Definition dlist.h:378
static void * fr_dlist_next(fr_dlist_head_t const *list_head, void const *ptr)
Get the next item in a list.
Definition dlist.h:555
int fr_globdir_iter_init(char const **filename, char const *dir, char const *pattern, fr_globdir_iter_t *iter)
Initialize an iterator over filenames.
Definition file.c:687
int fr_globdir_iter_next(char const **filename, fr_globdir_iter_t *iter)
Get the next filename.
Definition file.c:845
char const * fr_cwd_strip(char const *filename)
Intended to be used in logging functions to make output more readable.
Definition file.c:384
int fr_globdir_iter_free(fr_globdir_iter_t *iter)
Definition file.c:879
talloc_free(reap)
static int stack_depth
Definition radmin.c:157
fr_type_t
@ FR_TYPE_TIME_DELTA
A period of time measured in nanoseconds.
@ FR_TYPE_TLV
Contains nested attributes.
@ FR_TYPE_STRING
String of printable characters.
@ FR_TYPE_NULL
Invalid (uninitialised) attribute type.
@ FR_TYPE_UINT16
16 Bit unsigned integer.
@ FR_TYPE_INT64
64 Bit signed integer.
@ FR_TYPE_INT16
16 Bit signed integer.
@ FR_TYPE_DATE
Unix time stamp, always has value >2^31.
@ FR_TYPE_UINT8
8 Bit unsigned integer.
@ FR_TYPE_UINT32
32 Bit unsigned integer.
@ FR_TYPE_STRUCT
like TLV, but without T or L, and fixed-width children
@ FR_TYPE_INT32
32 Bit signed integer.
@ FR_TYPE_VENDOR
Attribute that represents a vendor in the attribute tree.
@ FR_TYPE_UINT64
64 Bit unsigned integer.
@ FR_TYPE_BOOL
A truth value.
@ FR_TYPE_VSA
Vendor-Specific, for RADIUS attribute 26.
@ FR_TYPE_OCTETS
Raw octets.
@ FR_TYPE_GROUP
A grouping of other attributes.
long int ssize_t
unsigned char uint8_t
ssize_t fr_slen_t
int strncasecmp(char *s1, char *s2, int n)
Definition missing.c:36
int strcasecmp(char *s1, char *s2)
Definition missing.c:66
#define fr_assert(_expr)
Definition rad_assert.h:38
static rc_request_t * current
char const * name
Test name (as specified in the request).
Definition radclient.h:101
static char const * name
size_t fr_sbuff_adv_past_allowed(fr_sbuff_t *sbuff, size_t len, bool const allowed[static UINT8_MAX+1], fr_sbuff_term_t const *tt)
Wind position past characters in the allowed set.
Definition sbuff.c:1805
bool const sbuff_char_class_int[UINT8_MAX+1]
Definition sbuff.c:68
#define FR_SBUFF_IN(_start, _len_or_end)
#define FR_SBUFF_IN_STR(_start)
PUBLIC int snprintf(char *string, size_t length, char *format, va_alist)
Definition snprintf.c:689
fr_aka_sim_id_type_t type
size_t strlcpy(char *dst, char const *src, size_t siz)
Definition strlcpy.c:34
char const * fr_syserror(int num)
Guaranteed to be thread-safe version of strerror.
Definition syserror.c:243
char const * str
Literal string.
Definition table.h:42
#define fr_table_value_by_str(_table, _name, _def)
Convert a string to a value using a sorted or ordered table.
Definition table.h:653
#define fr_table_str_by_value(_table, _number, _def)
Convert an integer to a string.
Definition table.h:772
#define TABLE_TYPE_NAME_FUNC_RPTR(_func, _our_table_type, _our_name, _our_def_type, _our_out_type)
Create a type-specific name-to-value function.
Definition table.h:144
static void const * table_sorted_value_by_str(void const *table, size_t table_len, size_t element_size, char const *name)
Convert a string to a value using a lexicographically sorted table.
Definition table.h:328
fr_table_elem_name_t name
Definition table.h:58
An element in an arbitrarily ordered array of name to num mappings.
Definition table.h:57
An element in a lexicographically sorted array of name to num mappings.
Definition table.h:49
char * talloc_typed_asprintf(TALLOC_CTX *ctx, char const *fmt,...)
Call talloc vasprintf, setting the type on the new chunk correctly.
Definition talloc.c:514
char * talloc_typed_strdup(TALLOC_CTX *ctx, char const *p)
Call talloc_strdup, setting the type on the new chunk correctly.
Definition talloc.c:467
fr_table_num_ordered_t const fr_time_precision_table[]
Definition time.c:46
#define FR_DICTIONARY_FILE
Definition conf.h:7
static fr_slen_t parent
Definition pair.h:841
void fr_strerror_clear(void)
Clears all pending messages from the talloc pools.
Definition strerror.c:576
#define fr_strerror_printf(_fmt,...)
Log to thread local error buffer.
Definition strerror.h:64
#define fr_strerror_printf_push(_fmt,...)
Add a message to an existing stack of messages at the tail.
Definition strerror.h:84
#define fr_strerror_const_push(_msg)
Definition strerror.h:227
#define fr_strerror_const(_msg)
Definition strerror.h:223
fr_table_num_ordered_t const fr_type_table[]
Map data types to names representing those types.
Definition types.c:31
size_t fr_type_table_len
Definition types.c:87
#define fr_type_is_structural(_x)
Definition types.h:393
@ FR_TYPE_UNION
A union of limited children.
Definition types.h:82
@ FR_TYPE_ATTR
A contains an attribute reference.
Definition types.h:84
#define fr_type_is_null(_x)
Definition types.h:348
#define fr_type_is_tlv(_x)
Definition types.h:373
#define fr_type_is_leaf(_x)
Definition types.h:394
static char const * fr_type_to_str(fr_type_t type)
Return a static string containing the type name.
Definition types.h:455
#define fr_type_is_struct(_x)
Definition types.h:374
static fr_type_t fr_type_from_str(char const *type)
Return the constant value representing a type.
Definition types.h:465
#define FR_TYPE_LEAF
Definition types.h:318
int fr_value_box_cast_in_place(TALLOC_CTX *ctx, fr_value_box_t *vb, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv)
Convert one type of fr_value_box_t to another in place.
Definition value.c:3976
ssize_t fr_value_box_from_str(TALLOC_CTX *ctx, fr_value_box_t *dst, fr_type_t dst_type, fr_dict_attr_t const *dst_enumv, char const *in, size_t inlen, fr_sbuff_unescape_rules_t const *erules)
Definition value.c:5754
void fr_value_box_clear(fr_value_box_t *data)
Clear/free any existing value and metadata.
Definition value.c:4131
#define FR_VALUE_BOX_INITIALISER_NULL(_vb)
A static initialiser for stack/globally allocated boxes.
Definition value.h:510
int nonnull(2, 5))
#define fr_value_box_init(_vb, _type, _enumv, _tainted)
Initialise a fr_value_box_t.
Definition value.h:609
int format(printf, 5, 0))
static size_t char ** out
Definition value.h:1023